Top Banner
2 Combusti on and  Thermochemistry  
108

2 Combustion and Thermochemistry

Apr 14, 2018

Download

Documents

asp9924
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 1/108

2 Combustion and 

Thermochemistry 

Page 2: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 2/108

Review of Property Relations 

Extensive Properties

V (m3), U (J), H (J)(=U+PV )

Intensive Properties

v (m3/kg), u (J/kg),h =(J/kg)(=u+Pv )

P,T 

V=mv;U=mu;H=mh  

Page 3: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 3/108

Equation of State 

For Ideal-gas Behavior:

PV=NR u T 

PV=mRT 

Pv=RT 

P= RT  where, R=R u  /MW 

R u = 8315J/kmol-K; MW is the gas

molecular weight

Page 4: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 4/108

Calor i f ic Equations of State 

u=u(T,v)

h=h(T,P)du=

dh=

dvv

udT 

uT v )()(

dP  P 

hdT T 

hT  P  )()(

Page 5: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 5/108

Constant-volume specific heats

Constant-pressure specific heats

 P  p

vv

hc

T uc

)(

)(

Page 6: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 6/108

 For Ideal Gas

 pref  

vref  

ref  

ref  

dT chT h

dT cuT u

 P 

h

v

u

)(

)(

0)(

0)(

Page 7: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 7/108

Translation

(a)Monatomic species

Translation Rotation

Vibration

(b)Diatomic Species

Page 8: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 8/108

 Fig.2.2

Page 9: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 9/108

 Ideal-Gas Mixtures

Constituent mole fraction and mass fraction

Mole fraction of species i,xi

tot 

i

i

ii

 N 

 N 

 N  N  N 

 N  x

21

Page 10: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 10/108

Mass fraction of species i, Y i 

tot 

i

i

ii

m

m

mmm

mY 

21

Page 11: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 11/108

By definition 

1

1

i i

i

i

 y

 x

Page 12: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 12/108

Relation of x i and Y i  

imixii

mixiii

 MW  MW Y  x

 MW  MW  xY 

/

/

Page 13: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 13/108

Mixture molecular weight MW mix  

i

iimix

i

iimix

 MW Y  MW 

 MW  x MW 

)/(

1

Page 14: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 14/108

 Partial pressure of ith species,P i 

For ideal gas:

 P  x P 

 P  P 

ii

i

i

Page 15: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 15/108

 Mass-(or Molar-) specific

mixture properties

),(),(

),(),(

ii

i

imix

ii

i

imix

i

iimix

i

iimix

 P T  s x P T  s

 P T  sY  P T  s

h xh

hY h

The mixture entropy is calculated:

Page 16: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 16/108

The consti tuent entropies 

Standard-state( P ref  P 0=1 atm):

ref  

iuref  iii

ref  

iref  iii

 P  P  R P T  s P T  s

 P  P  R P T  s P T  s

ln),(),(

ln),(),(

Page 17: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 17/108

Latent heat of Vapor ization 

It is also called the enthalpy of vaporization

Clausius-Clapeyron Equation

),(),(),( P T h P T h P T h liquid vapor  fg 

2

 sat 

 sat  fg 

 sat 

 sat 

dT 

 R

h

 P 

dP 

Page 18: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 18/108

 First Law of Thermodynamics

First Law-Fixed Mass

212121   E W Q

Heat added to

system in going

fgom state1 to

state 2

Work done by system

on surroundings in

going from state 1 to

state 2

Change in total

system energy in

going from state

1 to state 2

Page 19: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 19/108

E1-2(E2-E1)

) 21 ( 2  gz vum E 

Mass-specific

system internal

energy

Mass-specific

kinetic energy

Mass-specific

system potential

energy

12212121   eeewq

Page 20: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 20/108

dt dE W Q / 

Instantaneousrate of heat

transferred into

system

Instantaneous rateof work done by

system, or power 

Instantaneoustime rate of 

change of 

system energy

dt dewq / 

e  E/m 

Page 21: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 21/108

 First Law-Control Volume-SSSF 

)(  000 iiicvcv v P v P mememW Q

Rate of 

heat

transferred

across the

control

surface

from the

surroundings, to the

control

volume

Rate of 

all work 

done by

the

control

volume,in

cluding

shaftwork, but

excluding

flow

work 

Rate of 

energyflowing

out of 

the

control

volume

Rate of 

energy

flowing

into the

control

volume

 Net rate of 

workjassociated

with

 pressure

forces

where fluidcrosses the

control

surface,

flow work 

Page 22: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 22/108

The principal assumptions

The control volume is fixed relative to the

coordinate system

The properties of the fluid at each pointwithin the control volume,or the control

surface, do not vary with time.

Fluid properties are uniform over the inletand outlet flow areas

There are only inlet and one exit stream

Page 23: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 23/108

 2

1  2  gz vue

Totalenergy

 per unit

mass

Internalenergy

 per unit

mass

Kinetic

energy per 

unit mass

Potentialenergy per 

unit mass

  / P u Pvuh

Page 24: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 24/108

F inal form of energy conservation 

for a control volume 

iiicvcv

z  z  g vvhhmW Q0

22

00 2

1

iiicvcv z  z  g vvhhwq

0

22

00 2

1

Page 25: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 25/108

 Reactant and Product Mixtures

Stoichiometry

3.76=79/21( by volume)

The stoichiometric air-fuel ratio

22222 76.3)2/()76.3( aN O H  y xCO N Oa H C   y x

 fuel 

air 

 stoic fuel 

air  stoic

 MW 

 MW a

m

m F  A

1

76.4)/(

 

 

 

 

S b ti ti f

Page 26: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 26/108

Some combustion properties of 

methane, hydrogen, and solid carbon 

for reactants at 298K Δh R Δh R (O/F)stoic Tad,eq

(kJ/kgfuel)(kJ/kgmix) (kg/kg) (K)

CH4+air -55,528 -3,066 17.11 2226

H2+O2 142,919 -15,880 8.0 3079

C(s)+air -32,794 -2,645 11.4 2301

Page 27: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 27/108

The equivalence ratio   

 stoic

 stoic

 A F 

 A F 

 F  A

 F  A

)/(

)/(

)/(

)/(

>1, fuel rich mixtures

<1, fuel lean mixtures

=1, stoichiometric mixture

Page 28: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 28/108

Percent stoichiometr ic air 

100% % tric stoichiome

Percent excess air 

%100)-(1

 %

excess 

Page 29: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 29/108

Example 2.1 

A small, low-emission, stationary gas-

turbine engine operates at full

load(3950kW) at an equivalence ratio of 0.286 with an air flowrate of 15.9kg/s.

The equivalent composition of the

fuel(natural gas) is C1.16H4.32. Determinethe fuel mass flowrate and the operating

air-fuel ratio for the engine.

Page 30: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 30/108

Solution

Given: =0.286, MWair =28.85,

mair =15.9 kg/s,

MWfuel=1.16(12.01)+4.32(1.008)=18.286

Find: mfuel and (A/F)

We will proceed by first finding (A/F) and

then mfuel .The solution requires only the

application of definitions expressed in

Equs above

Page 31: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 31/108

 

where a=x+y/4=1.16+4.32/4=2.24. Thus,

and, from Equ. above

,76.4)/( fuel 

air  stoic

 MW 

 MW a F  A

,82.16

286.18

85.28)24.2(76.4)/(  stoic F  A

8.58286.0

82.16)/(

stoic F  A

(A/F)

Page 32: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 32/108

Since ( A/F ) is the ratio of the air flowrate to

the fuel flowrate,

Comment

 Note that even at full power, a large quantity

of excess air is supplied to the engine.

 skg  skg  F  A

mm air  /270.08.58

/9.15)/(

Page 33: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 33/108

Example 2.2 

A natural gas-fired industrial boiler

operates with an oxygen

concentration of 3 mole percent in

the flue gases. Determine the

operating air-fuel ratio and the

equivalence ratio. Treat the natural

gas as methane.

Page 34: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 34/108

Solution 

Given: x O 2 =0.03, MW fuel =16.04 

MW air =28.85.

Find : (A/F) and .

We can use the given O2 mole fraction to

find the air-fuel ratio by writing an

overall combustion equation assuming

“complete combustion,” i.e., no

dissociation (all fuel C is found in CO2 

and all fuel H is found in H2O): 

Page 35: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 35/108

CH4+a(O2+3.76N2)CO2+2H2O+bO2+3.76aN2

where a and b are related from conservation of 

O atoms.

2a=2+2+2b

From the definition of a mole fraction

.76.41

2

76.321

2

2 a

a

ab

b

 N 

 N  x

mix

O

O

Page 36: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 36/108

Substituting the known value of  xO2(=0.03)

and then solving for a yields

or a=2.368

The mass air-fuel ratio, in general, is

expressed as

a

a

76.41

203.0

Page 37: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 37/108

3.2004.16

)85.28)(368.2(76.4)/(

1

76.4)/(

,)/(

 F  A

 MW 

 MW a F  A

 so

 MW 

 MW 

 N 

 N  F  A

 fuel 

air 

 fuel 

air 

 fuel 

air 

Page 38: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 38/108

To find , we need to determine( A/F )stoic.

For a=2,hence,

Apply the definition of ,

84.03.20

1.17

)/(

)/(

1.1704.16

85.28)2(76.4)/(

 F  A

 F  A

 F  A

 stoic

 stoic

Ab l t ( St d di d)

Page 39: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 39/108

 Absolute(or Standardized)

 Enthalpy and Enthalpy of 

 Formation)( )( )( ,

0

, T hT hT h i sref  i f   j

Absoluteenthalpy at

temperature T

Enthalpy of 

formation at

standard

reference

state(Tref ,P0)

Sensibleenthalpy

change in

going from

Tref to T

Where,

)()()( 0

,, ref  i f  ii s T hT hT h

Page 40: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 40/108

 A standard state

A standard-state temperature:

Tref =25C(298.15K)

A standard-state pressure:

Pref 

=P0=1 atm(101,325Pa)

Page 41: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 41/108

The enthalpy of formation are zero for 

the elements in their naturally

occurring state at the reference statetemperature and pressure.

For example, at 25ºC and 1 atm, oxygen

exists as diatomic molecules; hence,

0)( 298

0

, 2O f  h

Page 42: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 42/108

To form oxygen atoms at sandard state

requires the breaking of a rather strong

chemical bond. The bond dissociationenergy for O2 at 298K is 498,390 kJ/kmol O2

OO f   kmol kJ h /195,249)( 0

,

Page 43: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 43/108

Enthalpy of formation have a clear 

 physical interpretation as the net change in

enthalpy associated with breaking thechemical bonds of the standard state

elements and forming new bonds to create

the compound of interest.

Page 44: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 44/108

Example 2.3 

A gas stream at 1 atm contains a misture of 

CO, CO2, and N2 in which the CO mole

fraction is 0.10 and the CO2 mole fractionis 0.20. The gas-stream temperature is

1200K. Determine the absolute enthalpy of 

the mixture on both a mole basis(kJ/kmol)and a mass basis(kJ/kg). Also determine

the

Page 45: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 45/108

Solution 

Given X co=0.10, T =1200K, X co2=0.20, P =1 atm

Find:hmix, hmix , Y co, Y co2 , and Y  N2 

Finding hmix requires the straightforwardapplication of the ideal-gas mixture law, thus,

and 

7.0122

COCO N  X  X  X 

222

222

0

298,

0

,

0

298,

0

,

0

298,

0

,

)( 

)( 

)(

 N  f   N  f   N 

CO f  CO f  CO

CO f  CO f  COiimix

hT hh x

hT hh x

hT hh xh xh

Page 46: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 46/108

Substitute values from Appendix A

hmix=0.1[-110,540+28,440]

+0.2[-393,546+44,488]

+0.7[0+28,118]

=-55,339.1kJ/kmolmix

 

To find hmix, we need to determine the

molecular weight of the mixture: 

Page 47: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 47/108

 MW mix= xi MW i=0.1(28.01)+0.20(44.01)+0.7

(28.013)=31.212

Then,mix

mix

mixmix kg kJ 

 MW 

hh /12.1869

212.31

1.339,55

6282.0

212.31

013.2870.0

2820.0212.31

01.4420.0

0897.0

212.31

01.2810.0

2

2

 N 

CO

CO

E h l f C b i d

Page 48: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 48/108

 Enthalpy of Combustion and 

 Heating Values

For the steady-flow reactor, complete

combustion:

All C CO2

All H H2O

Fig.2.7

reac prod icv hhhhq 0

Page 49: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 49/108

The definition of the enthalpy of reaction,

or the enthalpy of Combustion, hR (per 

mass of mixture), is

or, in terms of extensive properties,

 

reac prod cv R hhqh

reac prod  R H  H  H 

Page 50: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 50/108

Page 51: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 51/108

The enthalpy of combustion is shown in

fig2.8

Consistent with the heat transfer being

negative, the absolute enthalpy of the

 products lies below that of the reactants.

For example: stoichiometric mixture of 

CH4 and air, Hreac=-74,831kJ. At the same

conditions H prod=-877,236kJ,Thus

HR =-877,236-(-74,831)=-802,405kJ

Page 52: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 52/108

To a per-mass-of-fuel basis

for the above example:

 fuel  R

 fuel 

 R MW  H kg 

kJ h /)(

016,50)043.16/405,802()(4

CH 

 R kg 

kJ 

h

T it f i t

Page 53: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 53/108

To a per-unit -mass-of-mixture

basis

where,

mix

 fuel 

 fuel 

 R

mix

 Rm

m

kg 

kJ h

kg 

kJ h )()(

1)/(1

 F  Ammm

mm

 fuel air 

 fuel 

mix

 fuel 

Page 54: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 54/108

The stoichiometric air-fuel ratio for CH4 is

17.11; thus,

 Note:The value of the enthalpy of 

combustion depends on the temperature

chosen for its evaluation.

8.2761111.17

016,50)(

mixkg 

kJ h

Th h t f b ti h ti

Page 55: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 55/108

The heat of combustion-heating 

value hc 

hc = hR 

The upper or higher heating value,HHV ,is

the heat of combustion calculatedassuming that the most amount of energy,

hence the designation “upper”. 

The lowering heating value, LHV,corresponds to the case where none of the

water none of the water is assumed to

condense. 

Page 56: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 56/108

Example 2.4 

A. Determine the upper and lower heating

values at 298 K of gaseous n-decane,

C10H22, per kilomole of fuel and per kilogram of fuel. The molecular weight of 

n-decane is 142.284.

B. If the enthalpy of vaporization of n-decane is 359 kJ/kgfuel at 298K,what are

the upper and lower heating values of 

liquid n-decane?

Page 57: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 57/108

Solution A. For 1 mole of C10H22, the combustion

equation can be written as

For either the upper or lower heating value,

where the numerical value of Hproddepends on whether the H2O in the

 products is liquid(determine HHV)or 

gaseous(LHV).

222222210 )76.3(5.15)(1110)76.3(5.15)( N  g or l O H CO N O g  H C 

 prod reac RC  H  H  H  H 

Page 58: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 58/108

The sensible enthalpy for all species

involved are zero since we desire  H C  at

the reference state(298K). Furthermore, the

enthalpy of formation of the O2 and N2 are

also zero at 298K. Recognizing that

and 

 prod 

ii prod 

reac

iireac h N  H h N  H 

Page 59: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 59/108

We obtain

We can calculate the enthalpy of 

formation for the liquid water:

]1110[)1( 0

)(,

0

,

0

,)(, 2222102 l O H  f  CO f   H C  f  l O H C  hhh HHV  H 

kmol kJ hhh  fg  g O H  f  l O H  f   /857,285010,44847,2410

)(,

0

)(, 22

Page 60: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 60/108

 Adiabatic Flame Temperature

There are two definitions of adiabatic

flame temperature.

One for constant-pressure combustionOne for constant-volume combustion

Or on a per-mass-of-mixture basis

),(),( P T  H  P T  H  ad  prod ireac

),(),( P T h P T h ad  prod ireac

Page 61: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 61/108

T ad is defined from this first-law

statement, which is called the

constant-pressure adiabatic flametemperature.

T ad is simple and this quantity

requires knowledge of thecomposition of the combustion

products.

Page 62: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 62/108

The flame temperature

are typically several

thousand kelvins.

Calculating the complex

composition by invokingchemical equilibrium is the

subject of the next section.

Page 63: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 63/108

Example 2.5 

Estimate the constant-pressure adiabatic

flame temperature for the combustion of a

stoichiometric CH4-air mixture. The

 pressure is 1 atm and the initial reactant

temperature is 298 K.

Use the following assumptions:

1.“Complete combustion”(no dissociation)

i.e., the product mixture consists of only

CO2,H2O,and N2.

Page 64: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 64/108

2. The product mixture enthalpy is estimated

using constant specific heats evaluated at1200K(~0.5(Ti+Tad),where Tad is guessed

to be about 2100K)

Page 65: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 65/108

Solution

Mixture composition:

Properties(Appendices A and B)

52.7 ,2 ,1

52.721)76.3(2

222

222224

 N O H CO N  N  N 

 N O H CO N OCH 

Page 66: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 66/108

Species Enthalpy of  

Formation @298K 

h0f,i (kJ/kmol)

Specific Heat

@1200K 

cP,i(kJ/kmol-K)

CH4 -74,831 -----

CO2 -393,546 56.21

H2O -241,845 43.87

 N2 0 33.71

O2 0 ----

Page 67: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 67/108

From F irst Law 

298)]-33.71((7.52)[0 

)]298(87.43845,241)[2( 

)298(21.56546,393)[1( 

)]298([

831,74)0(52.7)0(2)831,74)(1(

,

0

,

ad 

ad 

ad 

ad i pi f  i prod 

react 

i

 prod 

i prod 

react 

iireact 

T ch N  H 

kJ  H 

h N  H h N  H 

Page 68: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 68/108

Equating Hreact to Hprod and

solving for T ad   yields

T ad =2318K 

Constant-volume adiabatic

Page 69: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 69/108

Constant-volume adiabatic 

f lame temperature 

Ideal Otto-cycle analysis:

where U is the absolute(or standardized)internal energy of the mixture.

),(),(  f  ad  prod init init reac P T U  P T U 

0)( f  init  prod reac P  P V  H  H 

Page 70: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 70/108

 For the ideal-gas law

0)(

,

ad  prod init reacu prod reac

 prod 

ad u prod ad ui f  

reac

init ureacinit uiinit 

T  N T  N  R H  H 

Thus

T  R N T  R N V  P 

T  R N T  R N V  P 

Page 71: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 71/108

On a per-mass-of-mixture basis

0)(

obtainthusWe

/

/

 prod 

ad 

reac

init u prod reac

 prod  prod mix

reacreacmix

 MW T 

 MW T  Rhh

 MW  N m

or 

 MW  N m

Page 72: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 72/108

Example 2.6 

Estimate the constant-volume

adiabatic flame temperature for

a stoichiometric CH4-air

mixture using the same

assumtions as in Example 2.5.Initial conditions are T i =298K,

P =1 atm(101,325Pa).

Page 73: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 73/108

Solution 

The same composition and properties used in

Example 2.5 apply here. We note, however,

that the c p,i values should be evaluated at atemperature somewhat greater than 1200K,

since the constant-volume T ad will be

higher than the constant-pressure T ad 

.

 Nevertheless, we will use the same values

as before.

Page 74: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 74/108

First Law:

0)(

0)(

ad  prod init reacu

 prod 

ii

reac

ii

ad  prod init reacu prod reac

T  N T  N  Rh N h N 

or 

T  N T  N  R H  H 

Substitute numerical values we

Page 75: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 75/108

Substitute numerical values, we

have

kJ T 

T T 

T  H 

kJ  H 

ad 

ad 

ad 

ad  prod 

reac

)298(5.397236,877 

)]29833.71((7.52)[0 )]298(87.43845,241)[2( 

)]298(21.56546,393)[1(

831,74)0(52.7)0(2)831,74)(1(

Page 76: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 76/108

And

where N reac =N prod =10.52kmol.

Reassembling and solving for T ad  yields

T ad =2889K 

)298)(52.10(315.8)( ad ad  prod init reacu T T  N T  N  R

Page 77: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 77/108

Chemical Equilibrium

In high temperature combustion

processes, the products of 

combustion are not a simple

mixture of ideal products, as may

be suggested by the simple

atombalance used to determinestoichiometry. Rather, the major

species dissociate, producing a

minor species.

Page 78: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 78/108

For example 

The ideal combustion products for

burning a hydrocarbon with air are

CO2,H2O,O2, and N2. Dissociation of these species and reactions among

the dissociation products yields the

followingspecies:H2,OH,CO,H,O,N,NO, and

possibly others.

Page 79: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 79/108

The problem we address here is the

calculation of the mole fractions of all of 

the product species at a given temperature

and pressure,subject to the constraint of conserving the number of moles of each of 

the elements present in the initial mixture.

This element constraint merely says thatthe number of C, H, O, and N atoms is

constant, regardless of how they are

combined in the various species.

The equilibrium-constant

Page 80: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 80/108

The equilibrium constant 

approach

There are several ways to approach the

calculation of equilibrium composition. To

 be consistent with the treatment of equilibrium in most undergraduate

thermodynamics courses, we focus on the

equilibrium-constant approach and limit

our discussion to the application of ideal

gases.

Page 81: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 81/108

Second-Law Considerations

The concept of chemical equilibrium has its

roots in the second law of thermodynamics.

Consider a fixed-volume, adiabatic reaction

vessel in which a fixed mass of reactants

form products. As the reactions proceed,

 both the temperature and pressure rise until

a final equilibrium condition is reached.This final state(temperature,pressure, and

composition) is not governed solely by first

law considerations----second law

Consider the combustion

Page 82: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 82/108

Consider the combustion

reaction

222

1COOCO

If the final temperature is high enough, the CO2

will dissociate. Assuming the products to consist

only of CO2, CO, and O2, we can write:

 productshot 

tsreaccold 

OCOCOOCO

22

tan

22

)1(2

1    

Page 83: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 83/108

is the fraction of the CO2 dissociated.

Tad is the function of the dissociation fraction

: =1, no heat released and unchanged.=0, the maximum amount of heat release

occurs and the temperature and pressure

would be the highest possible allowed bythe first law.

Page 84: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 84/108

What constraints are imposed by the

second law on this thought experiment

where we vary ? The entropy of the product mixture can be calculated by

summing the product species entropies, i.e.,

22 2)1(),(),(

3

1

OCOCO

i

i f  ii f  mix s s s P T  s N  P T S  

  

Page 85: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 85/108

What constraints are imposed by the

second law on this thought experiment

where we vary ? The entropy of the product mixture can be calculated by

summing the product species entropies, i.e.,

22 2)1(),(),(

3

1

OCOCO

i

i f  ii f  mix s s s P T  s N  P T S  

  

Page 86: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 86/108

Where N i  is the number of moles of species

i in the mixture. The individual species

entropies are obtained from

0,

0 ln)(

 P 

 P  R

dT cT  s s i

u

i pref  ii

 f  

ref  

Page 87: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 87/108

Where ideal-gas behavior is assumed, and P i is the partial pressure of the ith species.

Plotting the mixture entropy as a function of 

, we see a maximum at about 1- =0.5

for CO+0.5O2=CO2 

Page 88: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 88/108

For our choice of conditions(constant

U,V, and m , which implies no heat or

work interactions), the second lawrequires that the entropy change

internal to the system:

dS 0 

Page 89: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 89/108

Thus, we see that the composition of the

system will spontaneously shift toward the

 point of maximum entropy when

approaching from either side, since dS is

 positive. Once the maximum entropy is

reached, no further change in composition

is allowed, since this would required thesystem entropy to decrease in violation of 

the second law. Formally, the condition for 

equilibrium can be written:

Page 90: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 90/108

 

In summary, if we fix the internal energy,

volume, and mass of an isolated system,

the application of second law, first law andequation of state define the equilibrium

temperature, pressure, and chemical

composition.

0)( ,, mV U dS 

Gibb F ti

Page 91: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 91/108

Gibbs Function 

Although the foregoing was useful in

illustrating how the second law

comes into play in establishingchemical equilibrium, the use of an

isolated(fixed-energy) system of 

fixed mass and volume is notparticularly useful for many of the

typical problems involving chemical

equilibrium.

Page 92: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 92/108

For example, there is frequently a

need to calculate the composition of 

a mixture at a give temperature,pressure, and stoichiometry. For

this problem, the Gibbs free energy,

G, replaces the entropy as theimportant thermodynamic property.

Page 93: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 93/108

The Gibbs free energy is defined in terms

of other thermodynamic properties as:

The second law can then be expressed as

TS  H G

0)( ,, m P T dG

Which state that the Gibbs f nction al a s

Page 94: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 94/108

Which state that the Gibbs function always

decreases for a spontaneous, isothermal,

isobaric change of a fixed-mass system inthe absence of all work effects except

 boundary(P-dV) work. This principle

allows us to calculate the equilibriumcomposition of a mixture at a given

temperature and pressure. The Gibbs

function attains a minimum in equilibrium,

in contrast to the maximum in entropy we

saw for the fixed-energy and fixed-volume

case. Thus, at equilibrium,

0)( dG

Page 95: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 95/108

For a mixture of ideal gases, the Gibbs

function for the ith species is given by

where is the Gibbs function of the pure

species at the standard-state pressure( P i

= P 0)

and Pi is the partial pressure. The standard-

state pressur, P 0 by convention taken to be

1 atm, appears in the denominator of the

lo arithm term.

0)( ,, m P T dG

)/ln(

00

,, P  P T  R g  g  iuT iT i

0

,T i g 

Gibb f ti f f ti

Page 96: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 96/108

Gibbs function of formation

)()()( 0

elements

00, T  g vT  g T  g   j

 j

 jii f  

Where the v j

’ are the stoichiometric coefficients

of the elements required to form one mole of the

compound of interest. For example, the

coefficients are vO2’ =1/2 and vC

’=1 for forming

a mole of CO from O2 and C, respectively. Aswith enthalpies, the Gibbs functions of 

formation of the naturally occurring elements

are assigned values of zero at the reference state.

The Gibbs function for a

Page 97: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 97/108

f f

mixture of ideal gases

where Ni is the number of moles of the ithspecies.

For fixed temperature and pressure, the

equilibrium condition becomes:

or

)]/ln([ 00

,, P  P T  R g  N  g  N G iuT iiT imix

0mixdG

Page 98: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 98/108

The second term can be shown to be zero by

reconizing that d(ln P i)=d P i/ P i and that

d P i=0, since all changes in the partial

 pressures must sum to zero because the

total pressure the total pressure is constant.

Thus,

0]/ln([)]/ln([ 00

,

00

, P  P T  R g d  N  P  P T  R g dN  iuT iiiuT ii

)]/ln([0 00

, P  P T  R g dN dG iuT iimix

Page 99: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 99/108

For the general system, where

the change in the number of moles of 

each species is directly proportionalto its stoichiometric coefficient, i.e.,

fF eE bBaA

Page 100: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 100/108

 

kf  dN 

kedN 

kbdN 

kadN 

 F 

 E 

 B

 A

S b tit ti d li th

Page 101: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 101/108

Substituting and canceling the

 proportionality constant k , we obtain

Equation can be rearranged and the log terms

grouped together to yield:

0)]/ln([)]/ln([ 

)]/ln([)]/([

00

,

00

,

00

,

00

,

 P  P T  R g  f   P  P T  R g e

 P  P T  R g b P  P T  R g a

 F uT  F  E uT  E 

 BuT  B AuT  A

.)/()/(

.)/()/(ln

...)...(

00

00

0

,

0

,

0

,

0

,

etc P  P  P  P 

etc P  P  P  P T  R

 g b g a g  f   g e

b

 B

a

 A

 f   F 

e E 

u

T  BT  AT  F T  E 

Page 102: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 102/108

The term in parentheses on the left-hand-side

is called the standard-state Gibbs function

change

GT

0

,i.e.,

T  B f   A f   F  f   E  f  

T  BT  AT  F T  E T 

 g b g a g  f   g e

 g b g a g  f   g eG

...)...(g

y,alternatelor 

...)...(

0,

0,

0,

0,

0T

0

,

0

,

0

,

0

,

0

The equilibrium constant K

Page 103: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 103/108

The equilibrium constant K  P  

.)/()/(

.)/()/(00

00

etc P  P  P  P 

etc P  P  P  P  K 

b

 B

a

 A

 f   F 

e E 

 p

With these definitions, our statement of chemical

equilibrium at constant temperature and

pressure, is given by

)/exp(

ln

0

0

TRGK

or 

 K T  RG

uT  p

 puT 

Page 104: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 104/108

From definition of K  p and its relation to , we

G0T can obtain a qualitative indication of 

whether a particular reaction favors

 products(goes strongly to completion) or reactants(very little reaction occurs) at

equilibrium. If G0T is positive, reactants

will be favored since ln K  p is negative,which requires that K  p itself is less than

unity. Similarly, if G0T  is negative, the

reaction tends to favor products

Page 105: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 105/108

Physical insight to this behavior can be

obtained by appearing to the definition of 

G in terms of the enthalpy and entropychanges associated with the reaction. We

can write:

000 S T  H GT 

Page 106: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 106/108

Which can be substituted into equ. 2.66b

For K  p to be greater than unity,which favors

 products, the enthalpy change for the

reaction, H 0 ,should be negative, i.e., the

reaction is exothermic and the systemenergy is lowered. Also, positive change in

entropy, which indicate greater molecular 

chaos lead to values of K >1

uu RS T  R H 

 P  ee K  //0

Example 2 7

Page 107: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 107/108

 Example 2.7 

Complex Systems

Page 108: 2 Combustion and Thermochemistry

7/29/2019 2 Combustion and Thermochemistry

http://slidepdf.com/reader/full/2-combustion-and-thermochemistry 108/108

Complex Systems