Top Banner
1 Propeller and Variability IGR J18245-2452 - C. Ferrigno EWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR J18245-2452 Carlo Ferrigno University of Geneva Marina Romanova Cornell University 1
32

1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

Jan 04, 2016

Download

Documents

Shannon Reed
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Numerical simulations of propeller accretion regime

and the variability ofIGR J18245-2452

Carlo FerrignoUniversity of GenevaMarina Romanova Cornell University

1

Page 2: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

2Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

General view

• Matter of the disk is stopped by the magnetic pressure• Accretion and outflows depend on amount of matter accretion

rate• Diffusivity at the disk-magnetosphere boundary

2

Page 3: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

3Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Terminology

• Corotation radius: radius at which the magnetic field rotates at the local Keplerian speed

• Alfven radius: distance from a non- rotating star where the free-fall of a quasi-spherical accretion flow is stopped.

• Magnetospheric radius: radius at which magnetic pressure overcomes the ram pressure and flow is trapped by magnetic field in discs rm = f rco f~0.4

3

Page 4: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

4Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Propeller accretion

• Inner disk rotates faster than magnetosphere and plasma is funnelled to the surface by B-field

4

Accretion Propeller• Magnetos

phere rotates faster than accretion flow and matter can be centrifugally ejected.

Page 5: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

5Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Theory

• Study of the effective Alfven radius, which flickers in and out the corotation radius

• Matter and angular momentum flow due to coupling of magnetic field and plasma

• Transitions from propeller to accretion may be stochastic or chaotic in nature, with triggering due to small variations in the accretion flow or in the magnetic field configuration.

5

Illarionov & Sunyaev (1975); Lovelace, Romanova and Bisnovatyi-Kogan (1999)

Illarionov & Sunyaev (1975); Lovelace, Romanova and Bisnovatyi-Kogan (1999)

Page 6: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

6Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

The MHD problem

• Reference frame corotating with the star• Solving for 8 variables: B field (3), plasma speed (3), density,

energy density

6

No shocks

Ideal

γ=5/3 Adiabatic

Stress tensor

e.g., Utsyugova (2006)e.g., Utsyugova (2006)

Viscosity

Diffusivity

Page 7: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

7Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Scalable simulations

• Adimensional variables. • Scalable to objects with small magnetosphere

7

Page 8: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

8Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Set-up of propeller simulations

• Gudonov type MHD code: 2.5D simulations of propeller

• Laminar α- disks. Spherical coordinates, 2.5D – also top-bottom symmetry– αv=0.1-0.3, αd=0.1

• Turbulent MRI-driven disks. Cylindrical coordinates– Viscosity is determined by MRI. – Diffusivity is free parameter

8

Utsyugova et al. (2006)

Utsyugova et al. (2006)

Lii et al. (2014)Lii et al. (2014)

Page 9: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

9Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Accretion excursus

• α-disk model. 3-D simulations to study the Reyleigh-Taylor instabilities.

• Heavy matter pervades the light medium across magnetic field line and produces accretion tongues (low viscosity 0.02)

• Reduction of significance of coherent pulsations9

Romanova et al. (2008) Kuulkarni & Romanova (2008) Spruit et al. (1995); Lubow & Spruit (1993); Kaisig, Tajima,

Lovelace (1992)

Romanova et al. (2008) Kuulkarni & Romanova (2008) Spruit et al. (1995); Lubow & Spruit (1993); Kaisig, Tajima,

Lovelace (1992)

geff = g – Ω2r

Page 10: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

10Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Stable/Unstable accretion

• High accretion rate, unstable accretion.

• Inclination stabilizes.

10

Blinova et al. (2013)Blinova et al. (2013)

3D-slice-movie-short.mov

Page 11: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

11Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Dependencies

• Hollow column or crescent shape

• Dependency on accretion rate is less steep than standard theory (1/5 < 2/7)

11

Kuulkarni & Romanova (2013)

Kuulkarni & Romanova (2013)

Page 12: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

12Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Propeller

• Conical winds dominate the outwards mass outflow• Strong magnetic tower produces a more collimated Pointing

dominated jet.• Accretion continues on episodic fashion

12

rm > rco

Page 13: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

13Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Slow and fast rotators

• Outflows are present in both cases together with accretion in funnels.

• In propeller, there is a fast axial jet, which does not form in conical wind only regime

13

Slow rotator Fast rotatorpropeller

Romanova et al. (2005)Romanova et al. (2005)

Page 14: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

15Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Cyclic accretion

• Matter accumulates and then is accreted in cyclic fashion• Contemporary ejections of material

15

Lii et al. (2014)Lii et al. (2014)

Page 15: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

16Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Episodic accretion cycle

• Observed sporadically in outburst of AMSP, but at different time scale and duty cycle

• Lower diffusivity may reconcile the observations.

16

SAX J1808, Patruno et al. 2009;

NGC 6440 X-2 Patruno & D’Angelo 2013

D’Angelo & Spruit 2010;

SAX J1808, Patruno et al. 2009;

NGC 6440 X-2 Patruno & D’Angelo 2013

D’Angelo & Spruit 2010;

Page 16: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

17Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Strong propeller outflow

• one-sided outflow half-opening angle: ~20-40°, with continued collimation further out

• time averaged ejection efficiency: 50-90% depending on Ω*

17

• Always a fraction is accreted

Page 17: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

18Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Dependencies

• Strong .......................... Weak

18

rm/rco=2.5 rm/rco=1.5 rm/rco=1.1

• Diffusivity quenches bursts of accretion because of diffusive penetration through the boundary.

Lii et al. (2014)Lii et al. (2014)

Page 18: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

20Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

IGR J18245/M 28I

• In the globular cluster M 28: it is at 5.5 kpc.

• In 2013: one bright accretion driven outburst. Coherent pulsation. Strong spectral and timing variability.

• Intermediate accretion events: X-ray & optical brightening. Mode switch variability.

• Faint radio pulsar with irregularly eclipses due to outflows.

20

Papitto+ (2013)Papitto+ (2013)

Page 19: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

21Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

IGR J18245/M 28I in accretion phase

• Only a few days after the last X-ray detection !21

Papitto+ (2013)Papitto+ (2013)

Page 20: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

22Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

XMM-Newton light curve

• Very interesting variability, unique among AMSP.

• Episodes of enhanced hardness at low flux

• No orbital dependency.

22

Hard 3.5-10 keVSoft 0.5-3.5 keV

Ferrigno + (2014)Ferrigno + (2014)

time Bins >= 200 s

Page 21: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

23Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Two branches

• Blue: higher flux, limited Hardness variation• Magenta: lower flux, swings of hardness, what are they?

23

time Bins >= 200 s

Page 22: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

24Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Always pulsed

24

Page 23: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

26Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Light curve - Blue state

26

• Strong second-scale variability.

• red points are bins of 200 s

Page 24: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

27Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Wavelets

• Try to understand if there are particular time scales in the variability of this source.

• Try to check when they appear, if they appear.• Use a wavelet power spectrum:

– continuous wavelet transform – Morlet wavelet with index 6 investigating time scales from 2dt for 8

octaves

27

Page 25: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

28Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Wavelet investigation

• Stripe with period at ~20 s.

28

20 s

Page 26: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

29Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Zoomed wavelet

• There seems to be a typical time scale around 20 s

• Short peaks are highlighted, but do not represent a true periodicity.

• Wavelet are sensitive to shot noise !

29

Page 27: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

30Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

A faster variability

30

sec. scale~2 s scale

Page 28: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

31Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

MHD modelling

• Semi-periodic Flaring αd=0.1

• Not what we observe in IGR J18245

31

ms

Page 29: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

32Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Wavelet

• A clear periodicity is detected at ~60 s and peaks are highlighted by shorter term power.

32

ms

Page 30: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

33Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Higher diffusivity

• αd=0.1• With

higher viscosity flaring is less regular

• It is what we observe in IGR J18245

33

ms

Page 31: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

34Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Wavelet 2

• No clear periodicity.

• Short-time variability at strong peaks

• Longer term variability at ~250 s (windowing problems).

• Irregular.

34

ms

Page 32: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

35Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Conclusions

• Numerical simulations are a unique tool to study accreting system behavior in terms of realistic physical conditions for various scales of objects

• MRI simulations evidence that in propeller regime both accretion and outflows are present both in weak and strong propeller. Strong propeller (rm/rco~2-3), Mwind>Mstar ; weak propeller (rm/rco~1), Mstar>Mwind

• High magnetic diffusivity plays an important role in smoothing spikes. Observed variability might provide a mean to narrow down the parameter space.

• Wavelet is a powerful tool to investigate the intermittent quasi-periodic signal in light curve. Work in progress to identify possible quasi periodic behavior.

• IGR J18245 has a pronounced variability never observed in aMSP: peculiar of transitional pulsars?

35