Top Banner
1 Matthias Liepe August 2, 2007 Future Options Future Options Matthias Liepe
14

1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

Jan 21, 2016

Download

Documents

Candace Tate
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

1Matthias Liepe August 2, 2007

Future Options Future Options

Matthias Liepe

Page 2: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

2Matthias Liepe August 2, 2007

Outline

• Options for cost reduction

• SRF Cavities and higher Q0

• Microphonics, RF Power and Input Couplers

• HOM damping– Waveguide HOM damping

– Beam-line absorber

• Cryomodule Simplifications

Page 3: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

3Matthias Liepe August 2, 2007

Options for cost reduction

Parameter old new change [%] change [%]

Q0 2.0E+10 3.0E+10 -4.1 -13.8

loaded Q 6.5E+07 1.0E+08 -2.5 -13.4

module cost 100% 80% -6.7 0

fill factor 49% 55% -0.8 0

total -14% -27%

• “Baseline layout” should work well, but

• reduction in construction and operating costoperating cost is desirable

• Need to balance lower cost against increased risk

• ExamplesExamples of parameter tuning/optimization:

Cost of cryo-plant

(power)0.4

Page 4: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

4Matthias Liepe August 2, 2007

SRF Cavities and higher Q0• Cavities account for 30% of cryomodule

cost!– keep end groups simple: “the end groups (beam

pipe, input coupler port, HOM couplers, flanges, transition to LHe container) cost a much as the 9-cells alone.” (D. Proch, COST REDUCTION IN CAVITY FABRICATION)

• Q0=3· 1010 at T=1.8K:– 9 n surface resistance gives Q0=3· 1010

– At 1.8 K with 120C bake: RBCS=3 n need <6 n residual resistance

– Very good magnetic shielding required (<15 mOe)

– This has been achieved in vertical tests

Page 5: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

5Matthias Liepe August 2, 2007

Q0=3· 10 10 at T=1.8K

• Such Q-values have been demonstrated in vertical cavity tests, but not in linacs

• Issues: shielding, FE

16.2 MV/m

R&D program for high Q0

– High Q R&D program– Daresbury / Cornell /

LBNL Test Module– Main linac test module– Main linac module

Page 6: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

6Matthias Liepe August 2, 2007

Microphonics and RF Power for QQLL=10=10

88

<600 W at 12.3 MV/m

<1 kW<1 kW at 16.2 MV/m!

11

1

2

2

22

3

3

33

4

pe

ak d

etu

nin

g [

Hz]

gradient [MV/m]10 15 20 250

10

20

30

40

50

60 For peak detuning <10Hz:•QL,opt = 108

•P < 2kW sufficient!

•We have demonstrated this at the JLAB FEL:

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

time [sec]klys

tron

pow

er [

kW]

5.5 mA4 mA2.5 mA0 mA

7-cell cavity

Page 7: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

7Matthias Liepe August 2, 2007

2kW RF System (R&D required!)

• Solid state amplifiers become an alternative to IOTs– Simpler, require less space in tunnel– 40% overall efficiency is feasible (R&D itemR&D item!) – Similar cost at kW power level, further reduction in cost

likely

• Power RF cables instead of waveguides– Require less space in tunnel

– Much simpler input couplersMuch simpler input couplers (similar to the once used in vertical cavity tests) and coupler ports at vacuum vessels

7/16 DIN

7/8" Foam Heliax

2kW cw RF amp Coax input coupler

Page 8: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

8Matthias Liepe August 2, 2007

HOM Damping Alternative I:Waveguide HOM Damping

Scheme• Similar to JLAB 1 A plans

• 6 HOM waveguides per cavity (with integrated fundamental mode input coupler)

• Design / optimization under progress…

• High Q0 requires relative long superconducting niobium waveguide sections

• Mechanical / thermal design needs to be worked out

Page 9: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

9Matthias Liepe August 2, 2007

Waveguide HOM Damping Simulations

• Cell shape optimized for high R/Q*G

• 85º wall angle

• Fill factor: 59%

85º

•Length of beam tubes and Nb section of waveguides adjusted for sufficient attenuation of fundamental mode (-40dB)

Niobium section of waveguide

Page 10: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

10Matthias Liepe August 2, 2007

First HOM Damping Simulation Results

• Level of damping very similar to damping with beam line HOM absorbers

Brillouin diagram

Valery Shemelin

Page 11: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

11Matthias Liepe August 2, 2007

HOM Damping Alternative II:Simplified HOM Beam Line

Absorber

• Fewer absorber tiles• Fewer parts overall • Reduced length fill factor

increases by 4% to 53%• 2 instead of 3 types of materials?

Page 12: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

12Matthias Liepe August 2, 2007

Simplified HOM Beam Line Absorber: ANSYS Results

• HOM load allows for 2mm longitudinal length change from cool-down and cavity tuning

1mm longitudinal from F=1kN Thermal Atmospheric pressure

Page 13: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

13Matthias Liepe August 2, 2007

Simplified HOM Beam Line Absorber: CLANS HOM

Damping Results

Similar level of HOM damping

2000 2500 3000 3500 4000 4500 500010

1

102

103

104

frequency [MHz]

Q

box HOM loadflat load

Monopoles

Page 14: 1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.

14Matthias Liepe August 2, 2007

Cryomodule Simplifications

• No coaxial coupler ports (only feed-thoughts for power RF cables)

– No precise machining of ports required

– Cavities are free to move longitudinal during cool down Can use simple, fixed cavity support without breaking

the HGRP into sections

• Simplified thermal shield and outer magnetic shield

• Tolerances on many parts can be relaxed

• More items: see Eric’s talk