Top Banner

of 14

1_kinematics-handout2

Jul 06, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/17/2019 1_kinematics-handout2

    1/14

    Continuum mechanics

    I. Kinematics in cartesian coordinates

    Aleš Janka

    office Math 0.107

    [email protected]

    http://perso.unifr.ch/ales.janka/mechanics

    September 22, 2010, Université de Fribourg

    Aleš Janka I. Kinematics

    Kinematics: description of position and deformation

    initial configuration x =  x i ei x i  . . . material coordinates

    deformed config. y =  y i ei 

    . . . spatial coordinatesdisplacement u =  y − x

    Two possibilities:

    Lagrange description:u(x) = y(x) − x

    Euler description:

    u(y) = y − x(y)

    e3

    e2e1

    x

    y

    dx

    y

    dy

    x

    u

    u+dux+dx y+dy

    Initial config.

    Deformed config.

    Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    2/14

    Material vs. spatial coordinates: deformation of a 1D rod

    Let  y 1 = y 1(x 1, t ) = [(x 1)2 − 1] · t  + x 1.

    Inversely, x 1 = x 1(y 1, t ) =   12t 

     

    1 + 4t (2t  +  y 1) − 1

    Aleš Janka I. Kinematics

    1. Lagrange description

    x =  x i ei   and  y =  y i ei .

    Choice:   y = y(x)

    Deformation gradient:

    F i  j  (x) = ∂ y i 

    ∂ x  j   = y i , j 

    d x =  dx i ei 

    d y =  dy i ei  = ∂ y i 

    ∂ x  j  dx  j ei 

    d y =  dx  j F i  j 

     (x) gi   = dx  j  ĝ j 

    e3

    e1

    e3

    e2e1

    x

    y

    dx

    y(x)

    dy

    y(x+dx)

    g2

    g3

    e2g

    1

    ^g2

    ^g1

    ^g3

    =

    ==

    Initial config.

    Deformed config.

    Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    3/14

    1. Lagrange description: how to measure deformation?

    The ”edge”  d x   in initial configuration is deformed to  d y

    Convenient measure of deformation:

    d y2−d x2 = (dx i ĝi )·(dx  j ĝ j )−(dx i gi )·(dx  j g j ) = dx i dx  j  (ĝ ij −g ij )

    where  g ij  = gi   · g j    and ĝ ij  = ĝi   · ĝ j are metric tensors (matrices)

    Green strain tensor:

    εij (x) = 1

    2 (ĝ ij  − g ij )

    εij (x) = 1

    2

    F k i   (x)F 

     j  (x) g k  − g ij 

    Aleš Janka I. Kinematics

    1. Lagrange descript.: Green strain tensor in displacement

    u(x) = y(x) − x

    u =  u i 

    gi d y =  d x + d u

    d u = ∂ u i 

    ∂ x  j  dx  j  gi 

    d y =dx i  + u i , j  dx 

     j 

    gi 

    e3

    e2e1

    x

    y

    y(x)

    y(x+dx)

    dy

    (x)u

    (x)u   du

    u(x+dx)dx

    x

    x+dx

    Initial config.

    Deformed config.

    Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    4/14

    1. Lagrange descript.: Green strain tensor in displacement

    (d y)2 =

    dx i  + u i , j  dx 

     j 

    dx k  + u k , dx 

    g ik 

    (d y)2−(d x)2 = u i , j  dx  j dx k g ik  + u 

    k , dx 

    dx i g ik  + u i , j  u 

    k , dx 

     j dx  g ik 

    (d y)2−(d x)2 =u i , j  + u  j ,i  + u k ,i  u 

    k , j 

    dx i  dx  j 

    Green strain tensor in displacements:

    εij  = 1

    2

    u i , j  + u  j ,i  + u k ,i  u 

    k , j 

    Green strain tensor in displacements   in cartesian coordinates:

    εij  = 1

    2

    ∂ u i ∂ x  j 

    + ∂ u  j ∂ x i 

    + ∂ u k ∂ x i 

    ∂ u k ∂ x  j 

    Aleš Janka I. Kinematics

    1. Lagrange description: example 1 – rigid body motion

    x

    u

    a

    y

    e3

    e2

    e1

    Deformed config.

    Initial config.

    α

    y 1y 2y 3

    =

    cos α   − sinα   0sin α   cos α   0

    0 0 1

    ·

    x 1x 2x 3

    +

    a1a2a3

    Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    5/14

    1. Lagrange description: example 1 – rigid body motion

    x

    u

    a

    y

    e3

    e2

    e1

    Deformed config.

    Initial config.

    α

    u 1u 2u 3

    =

    cos α− 1   − sinα   0sinα   cos α− 1 0

    0 0 0

    ·

    x 1x 2x 3

    +

    a1a2a3

    ε11   =  1

    2

    u 1,1 + u 1,1 +

    3k =1

    u k ,1u k ,1

    = cos α− 1 + (cos α− 1)2 + sin2 α

    2  = 0

    Aleš Janka I. Kinematics

    1. Lagrange description: example 1 – rigid body motion

    x

    u

    a

    y

    e3

    e2

    e1

    Deformed config.

    Initial config.

    α

    u 1u 2u 3

    =

    cos α− 1   − sinα   0sinα   cos α− 1 0

    0 0 0

    ·

    x 1x 2x 3

    +

    a1a2a3

    ε12   =

      1

    2u 1,2 + u 2,1 +

    3k =1

    u k ,1u k ,2

    =  − sinα + sin α

    2  +

     − sinα (cos α− 1) + sin α (cos α− 1)

    2  = 0

    Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    6/14

    1. Lagrange description: example 2

    −5 −4 −3 −2 −1 0 1 2 3 4 5

    −2

    −1

    0

    1

    Initial configuration is bent into the deformed configuration

    Principal strain of Green strain tensor (Lagrange formulation)?

    Aleš Janka I. Kinematics

    1. Lagrange description: example 2

    −5 −4 −3 −2 −1 0 1 2 3 4 5

    −2

    −1

    0

    1

    −5 −4 −3 −2 −1 0 1 2 3 4 5

    −2

    −1

    0

    1

    Wrong - this is Almansi strain (Euler formulation)!Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    7/14

    1. Lagrange description: example 2

    −5 −4 −3 −2 −1 0 1 2 3 4 5

    −2

    −1

    0

    1

    −5 −4 −3 −2 −1 0 1 2 3 4 5

    −2

    −1

    0

    1

    This is the correct Green strain (Lagrange formulation)Aleš Janka I. Kinematics

    1. Lagrange description: example 2

    −5 −4 −3 −2 −1 0 1 2 3 4 5

    −2

    −1

    0

    1

    −5 −4 −3 −2 −1 0 1 2 3 4 5

    −2

    −1

    0

    1

    This is the correct Green strain (Lagrange formulation)Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    8/14

    2. Euler description

    x =  x i ei   and  y =  y i ei .

    Choice:   x =  x(y)

    Deformation gradient inverse:

    F −1 i 

     j  = ∂ x i 

    ∂ y  j   = x i , j 

    d y =  dy i ei 

    d x =  dx i ei  = ∂ x i 

    ∂ y  j  dy  j  ei 

    d x =  dx  j  F −1 i  j   gi  = dx 

     j  g̃ j 

    e3

    e2e1

    x

    y

    dx

    dy

    (y)

    y+dy

    y

    e1g1=

    g2e2=

    g1~

    g2

    ~

    g3~

    x(y+dy)

    (y)x

    e3g3 =

    Initial config.

    Deformed config.

    Aleš Janka I. Kinematics

    2. Euler description: Almansi strain tensor

    the deformed ”edge”  d y  corresponds to the undeformed  d x

    Difference of their (lengths)2:

    d y2−d x2 = (dy i gi )·(dy  j g j )−(dy 

    i g̃i )·(dy  j g̃ j ) = dy 

    i dy  j  (g ij −g̃ ij )

    where  g ij  = gi   · g j    and g̃ ij  = g̃i   · g̃ j are metric tensors (matrices)

    Almansi strain tensor:

    E ij (y) = 1

    2 (g ij  − g̃ ij )

    E ij (y) = 12

    g ij  −  F 

    −1 k 

    i    F −1 

     j   g k 

    Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    9/14

    2. Euler description: Almansi strain tensor in displacement

    u(y) = y − x(y)

    u =  u i  gi 

    d x =  d y − d u

    d u = ∂ u i 

    ∂ y  j  dy  j  gi 

    d x =

    dy i − u i , j  dy 

     j 

    gi 

    e3

    e2e1

    x

    y

    dy

    (y)u

    (y)u   du

    u(y+dy)

    dx

    ydx

    (y)

    y+dy

    (y+dy)x

    (y)x

    Initial config.

    Deformed config.

    Aleš Janka I. Kinematics

    2. Euler description: Almansi strain tensor in displacement

    (d x)2 =

    dy i − u i , j  dy 

     j 

    dy k − u k , dy 

    g ik 

    (d y)2−(d x)2 = u i , j  dy  j dy k g ik  + u 

    k , dy 

    dy i g ik  − u i , j  u 

    k , dy 

     j dy  g ik 

    (d y)2−(d x)2 =u i , j  + u  j ,i  − u k ,i  u k , j 

    dy i  dy  j 

    Almansi strain tensor in displacements:

    E ij  = 1

    2

    u i , j  + u  j ,i  − u k ,i  u 

    k , j 

    Almansi strain tensor in displacements   in cartesian coordinates:

    E ij  = 1

    2

    ∂ u i ∂ y  j 

    + ∂ u  j ∂ y i 

    − ∂ u k ∂ y i 

    ∂ u k ∂ y  j 

    Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    10/14

    3. Green and Almansi strain tensors: mutual relation

    Green strain tensor:

    εij (x) = 1

    2

     (ĝ ij  − g ij ) = 1

    2F k i    F  j   g k  − g ij 

    εij  = 1

    2

    ∂ u i ∂ x  j 

    + ∂ u  j ∂ x i 

    + ∂ u k ∂ x i 

    ∂ u k ∂ x  j 

    Almansi strain tensor

    E ij (y) = 1

    2 (g ij  − g̃ ij ) =

     1

    2 g ij  −  F −1 k 

    i    F −1 

     j   g k E ij  =

     1

    2

    ∂ u i ∂ y  j 

    + ∂ u  j ∂ y i 

    − ∂ u k ∂ y i 

    ∂ u k ∂ y  j 

    Aleš Janka I. Kinematics

    3. Green and Almansi strain tensors: mutual relation

    Relation between  F i  j   =  ∂ y i 

    ∂ x  j   and   F −1

     j k  =

      ∂ x  j 

    ∂ y k  :

    F i  j   ·  F 

    −1 j 

    k  =

    3 j =1

    ∂ y i 

    ∂ x  j ∂ x  j 

    ∂ y k   =  ∂ y i 

    ∂ y k   = δ i k 

    by chain rule for the derivatives.

    Hence:εk  = F 

    i k  · E ij  · F 

     j 

    Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    11/14

    3. Green and Almansi strain tensors: matrix form

    Deformation gradient matrix:

    F =

    ∂ y 1

    ∂ x 1∂ y 1

    ∂ x 2∂ y 1

    ∂ x 3

    ∂ y 2

    ∂ x 1

    ∂ y 2

    ∂ x 2

    ∂ y 2

    ∂ x 3

    ∂ y 3

    ∂ x 1∂ y 3

    ∂ x 2∂ y 3

    ∂ x 3

    = F i  j    and   F−1 = F −1

     i 

     j 

    Green and Almansi matrix  for cartesian coords (gi  = ei ,  g ij  = δ ij ):

    [εij ] = 1

    2 FT F − I   and [E ij ] =

     1

    2 I − F−T F−1

    Mutual relations:

    [εij ] = FT  · [E ij ] · F   and [E ij ] = F

    −T  · [εij ] · F−1

    Aleš Janka I. Kinematics

    3. Green and Almansi strain tensors: small deformations

    If  u i , j   1  then  u k ,i   · u k , j   is negligible:

    εij  = 1

    2

    ∂ u i 

    ∂ x  j   +

     ∂ u  j 

    ∂ x i   +

     ∂ u k 

    ∂ x i ∂ u k 

    ∂ x  j 

     1

    2

    ∂ u i 

    ∂ x  j   +

     ∂ u  j 

    ∂ x i 

    = e ij 

    We can replace Green strain  εij  by the Cauchy strain   e ij Advantage:  Cauchy strain  e ij (u) is  linear   in  u

    E ij    =  1

    2

    ∂ u i 

    ∂ y  j   +

     ∂ u  j 

    ∂ y i  −

     ∂ u k 

    ∂ y i ∂ u k 

    ∂ y  j 

     1

    2

    ∂ u i 

    ∂ y  j   +

     ∂ u  j 

    ∂ y i 

    =  1

    2

    ∂ u i 

    ∂ x k ∂ x k 

    ∂ y  j   +

      ∂ u  j 

    ∂ y k ∂ x k 

    ∂ y i 

     1

    2

    ∂ u i 

    ∂ x  j   +

     ∂ u  j 

    ∂ x i 

    = e ij 

    because x k  = y k − u k  and  u i ,k  · u k ,  is negligible.NB: Green and Almansi simplify to the same Cauchy strain!

    Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    12/14

    4. Physical meaning of Cauchy strain in cartesian coords

    dx   dy

    yx

    e1

    e2

    e3x

    yInitial config. Deformed config.

    Special choices of the deformation mode:Let  d x =  dx 1 e1  and  d y =  dy 

    1 e1. Then:

    d y2 − d x2 = (dy 1)2 − (dx 1)2 = 2 e 11 (dx 1)2

    Hence (for small deformations  dx 1 + dy 1 ≈ 2 dx 1):

    e 11 = (dy 1)2 − (dx 1)2

    2 (dx 1)2  =

     (dy 1 − dx 1)(dy 1 + dx 1)

    2 (dx 1)2  ≈

     dy 1

    dx 1 − 1

    Meaning of  e kk : relative elongation along ek 

    Aleš Janka I. Kinematics

    4. Physical meaning of Cauchy strain in cartesian coords

    yx

    e1

    e2

    e3

    yx

    dx2

    dx1   dy1

    dy2

    Initial config. Deformed config.

    θ

    Special choices of the deformation mode:Let  d x =  d x1 + d x2  and  d y = d y1 + d y2,  d xk  = dx 

    k  ek :

    d y2−d x2 =   (d y1)2 +2 d y1 ·d y2 +(d y2)

    2−(d x1)2−2 d x1 ·d x2−(d x2)

    2

    = 2e 11 (dx 

    1)2 + 2 e 12 dx 1 dx 2 + e 22 (dx 

    2)2

    Hence (for small deformations  e kk   1 and  θ   is small):

    e 12   =

      θ

    2

    dy 1

    dx 1

    dy 2

    dx 2  ≈

     θ

    2 (1 + e 11) (1 + e 22)

    ≈  θ

    2 (1 + e 11 + e 22 + e 11 e 22) ≈

     θ

    2

    Meaning of  e 12: half of shear angle  θ   in the plane  (0, e1, e2)Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    13/14

    4. Physical meaning of Cauchy strain in cartesian coords

    yx

    e1

    e2

    e3

    yx

    dx2

    dx1   dy1

    dy2

    Initial config. Deformed config.

    θ

    Special choices of the deformation mode:Let  d x =  d x1 + d x2  and  d y = d y1 + d y2,  d xk  = dx 

    k  ek :

    d y1 · d y2   =   2 e 12 dx 1 dx 2

    =   |d y1| · |d y2| cos(π/2 − θ) ≈ dy 1 dy 2 sin θ ≈ dy 1 dy 2 · θ

    Hence (for small deformations  e kk   1 and  θ   is small):

    e 12   =  θ

    2

    dy 1

    dx 1dy 2

    dx 2 ≈

     θ

    2 (1 + e 11) (1 + e 22)

    ≈  θ

    2 (1 + e 11 + e 22 + e 11 e 22) ≈

     θ

    2

    Meaning of  e 12: half of shear angle  θ   in the plane  (0, e1, e2)Aleš Janka I. Kinematics

    4. Physical meaning of Cauchy strain in cartesian coords

    e1

    e2

    e3

    yxdx3

    dy3dy1

    dy2dx2dx1

    Initial config. Deformed config.

    Volume before (dV ) and after (d ̂V ) deformation (small deformations):

    dV   = dx 1 dx 2 dx 3 d ̂V  ≈ dy 1 dy 2 dy 3

    Relative change of volume  (for small deformations  e kk   1):

    d ̂V  − dV 

    dV   =

      d ̂V 

    dV   − 1 ≈

     dy 1

    dx 1

    dy 2

    dx 2

    dy 3

    dx 3 − 1

    = (1 + e 11)(1 + e 22)(1 + e 33) − 1 ≈ e 11 + e 22 + e 33

    Meaning of trace of   e ij : relative change of volume

    Aleš Janka I. Kinematics

  • 8/17/2019 1_kinematics-handout2

    14/14

    5. How to transform areas   d S0 → d S?

    Nanson’s relation:we know how to transform vectors:

    dy i  =  ∂ y i 

    ∂ x  j  dx  j 

    we know how to transform volumes:

    dV   = J ·dV 0   with  J  = det

    ∂ y i 

    ∂ x  j 

    dx

    e2

    (x)ye3

    e1

    x

    0dV

    dy

    dS

    dS0

    Initial config.

    Deformed config.

    dV

    Idea:  complete areas to volumes (for any  d x, ie. any  d y):

    dS i  dy i  = dV   = J  · dV 0  = J  · dS 0 j  dx 

     j  = J  · dS 0 j ∂ x  j 

    ∂ y i  dy i 

    Aleš Janka I. Kinematics