Top Banner
8/23/2010 1 MECHANICS OF MATERIALS CHAPTER 1 Introduction – Concept of Stress Gunawan MECHANICS OF MATERIALS Contents Concept of Stress Review of Statics Structure Free-Body Diagram Bearing Stress in Connections Stress Analysis & Design Example Rod & Boom Normal Stresses Structure Free Body Diagram Component Free-Body Diagram Method of Joints Stress Analysis Design Axial Loading: Normal Stress C ti &E ti L di Rod & Boom Normal Stresses Pin Shearing Stresses Pin Bearing Stresses Stress in Two Force Members Stress on an Oblique Plane Maximum Stresses St Ud G lL di Gunawan 1 - 2 Centric & Eccentric Loading Shearing Stress Shearing Stress Examples Stress Under General Loadings State of Stress Factor of Safety
25
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1_introduction_MKM.pdf

8/23/2010

1

MECHANICS OF MATERIALS

CHAPTER

1 Introduction –Concept of Stress

Gunawan

MECHANICS OF MATERIALSContents

Concept of StressReview of StaticsStructure Free-Body Diagram

Bearing Stress in ConnectionsStress Analysis & Design ExampleRod & Boom Normal StressesStructure Free Body Diagram

Component Free-Body DiagramMethod of JointsStress AnalysisDesignAxial Loading: Normal StressC t i & E t i L di

Rod & Boom Normal StressesPin Shearing StressesPin Bearing StressesStress in Two Force MembersStress on an Oblique PlaneMaximum StressesSt U d G l L di

Gunawan 1 - 2

Centric & Eccentric LoadingShearing StressShearing Stress Examples

Stress Under General LoadingsState of StressFactor of Safety

Page 2: 1_introduction_MKM.pdf

8/23/2010

2

MECHANICS OF MATERIALSSI Units

Gunawan

Table 1.3 SI units and prefixes.

1 - 3

MECHANICS OF MATERIALS

Conversion Factors

Gunawan

Table 1.4 Conversion factors and definitions.

1 - 4

Page 3: 1_introduction_MKM.pdf

8/23/2010

3

MECHANICS OF MATERIALSRefference

Gunawan 1 - 5

MECHANICS OF MATERIALSRefference

Gunawan 1 - 6

Page 4: 1_introduction_MKM.pdf

8/23/2010

4

MECHANICS OF MATERIALSRefference

Gunawan 1 - 7

MECHANICS OF MATERIALSRefference

Gunawan 1 - 8

Page 5: 1_introduction_MKM.pdf

8/23/2010

5

MECHANICS OF MATERIALSRefference

Gunawan 1 - 9

MECHANICS OF MATERIALSWHY ARE WE HERE? In your future careers you will be required to design load carrying objects, or devices.

• The main objective of the study of mechanics of materials is to provide the future engineer with the means of analyzing and designing various machines and load bearing structures.

Gunawan

As engineers, we need a knowledge of how applied loads cause deformation, and eventual failure of a device.

Basic ElementsComplex StructuresParts in Dynamic Motion

1 - 10

Page 6: 1_introduction_MKM.pdf

8/23/2010

6

MECHANICS OF MATERIALSConcept of Stress

• The main objective of the study of mechanics of materials is to provide the future engineer with the means of analyzing and designing various machines and load bearing structures.

• Both the analysis and design of a given structure involve the determination of stressesand deformations. This chapter is devoted to the concept of stress.

Gunawan 1 - 11

MECHANICS OF MATERIALSReview of Statics

• The structure is designed to support a 30 kN load

• Perform a static analysis to determine the internal force in each structural member and the

• The structure consists of a boom and rod joined by pins (zero moment connections) at the junctions and supports

Gunawan 1 - 12

reaction forces at the supports

Page 7: 1_introduction_MKM.pdf

8/23/2010

7

MECHANICS OF MATERIALS

•Applied loads• External forces

Important Concepts to Revise

External forces• External reactions• Newton’s Laws• FREE BODY DIAGRAMS• Internal forces

Gunawan

You should be happy with these concepts before we move on.

1 - 13

MECHANICS OF MATERIALSStructure Free-Body Diagram

• Structure is detached from supports and the loads and reaction forces are indicated

• Conditions for static equilibrium:( ) ( )( )

kN30

0kN300

kN40

0

kN40

m8.0kN30m6.00

=+

=−+==

−=−=

+==

=

−==

yy

yyy

xx

xxx

x

xC

CA

CAF

AC

CAF

A

AM

Gunawan 1 - 14

• Ay and Cy can not be determined from these equations

yy

Page 8: 1_introduction_MKM.pdf

8/23/2010

8

MECHANICS OF MATERIALSComponent Free-Body Diagram

• In addition to the complete structure, each component must satisfy the conditions for static equilibrium

C id f b d di f th b

• Results:

( )

0

m8.00

=

−==∑

y

yB

A

AM• Consider a free-body diagram for the boom:

kN30=yC

substitute into the structure equilibrium equation

Gunawan 1 - 15

• Results:↑=←=→= kN30kN40kN40 yx CCA

Reaction forces are directed along boom and rod

MECHANICS OF MATERIALSMethod of Joints

• The boom and rod are 2-force members, i.e., the members are subjected to only two forces which are applied at member ends

• Joints must satisfy the conditions for static equilibrium which may be expressed in the f f f i l

• For equilibrium, the forces must be parallel to to an axis between the force application points, equal in magnitude, and in opposite directions

Gunawan 1 - 16

kN50kN403kN30

54

0

==

==

=∑

BCAB

BCAB

B

FF

FF

Fr

form of a force triangle:

Page 9: 1_introduction_MKM.pdf

8/23/2010

9

MECHANICS OF MATERIALSStress Analysis

Can the structure safely support the 30 kN load?

• From a statics analysisFAB = 40 kN (compression)

MPa159m10314N1050

26-

3=

×

×==

AP

BCσ

• At any section through member BC, the internal force is 50 kN with a force intensity or stress of

dBC = 20 mm

FBC = 50 kN (tension)

Gunawan 1 - 17

• Conclusion: the strength of member BC is adequate

MPa165all =σ

• From the material properties for steel, the allowable stress is

MECHANICS OF MATERIALSDesign

• Design of new structures requires selection of appropriate materials and component dimensions to meet performance requirements

• For reasons based on cost, weight, availability, , g , y,etc., the choice is made to construct the rod from aluminum (σall= 100 MPa). What is an appropriate choice for the rod diameter?

4

m10500Pa10100N1050

2

266

3

=

×=×

×=== −

π

σσ

dA

PAAP

allall

Gunawan 1 - 18

( ) mm2.25m1052.2m1050044

4

226

=×=×

== −−

ππAd

• An aluminum rod 26 mm or more in diameter is adequate

Page 10: 1_introduction_MKM.pdf

8/23/2010

10

MECHANICS OF MATERIALSAxial Loading: Normal Stress

• The resultant of the internal forces for an axially loaded member is normal to a section cut perpendicular to the member axis.

• The normal stress at a particular point may not be equal to the average stress but the resultant of the stress distribution must satisfy

AP

AF

aveA

=ΔΔ

=→Δ

σσ0

lim

• The force intensity on that section is defined as the normal stress.

Gunawan 1 - 19

y

∫∫ ===A

ave dAdFAP σσ

• The detailed distribution of stress is statically indeterminate, i.e., can not be found from statics alone.

MECHANICS OF MATERIALSCentric & Eccentric Loading

• A uniform distribution of stress in a section infers that the line of action for the resultant of the internal forces passes through the centroid of the section.

• If a two-force member is eccentrically loaded,

• A uniform distribution of stress is only possible if the concentrated loads on the end sections of two-force members are applied at the section centroids. This is referred to as centric loading.

Gunawan 1 - 20

then the resultant of the stress distribution in a section must yield an axial force and a moment.

• The stress distributions in eccentrically loaded members cannot be uniform or symmetric.

Page 11: 1_introduction_MKM.pdf

8/23/2010

11

MECHANICS OF MATERIALSShearing Stress

• Forces P and P’ are applied transversely to the member AB.

• Corresponding internal forces act in the plane of section C and are called shearing forces

AP

=aveτ

• The corresponding average shear stress is,

• The resultant of the internal shear force distribution is defined as the shear of the section and is equal to the load P.

of section C and are called shearing forces.

Gunawan 1 - 21

• Shear stress distribution varies from zero at the member surfaces to maximum values that may be much larger than the average value.

• The shear stress distribution cannot be assumed to be uniform.

MECHANICS OF MATERIALSShearing Stress Examples

Single Shear Double Shear

Gunawan 1 - 22

AF

AP

==aveτA

FAP

2ave ==τ

Page 12: 1_introduction_MKM.pdf

8/23/2010

12

MECHANICS OF MATERIALSBearing Stress in Connections

• Bolts, rivets, and pins create stresses on the points of contact or bearing surfaces of the members they connectmembers they connect.

• Corresponding average force i t it i ll d th b i

• The resultant of the force distribution on the surface is equal and opposite to the force exerted on the pin.

Gunawan 1 - 23

dtP

AP

==bσ

intensity is called the bearing stress,

MECHANICS OF MATERIALS

• Would like to determine the stresses in the members and connections of the structure h

Stress Analysis & Design Example

shown.

• Must consider maximum l i AB d

• From a statics analysis:FAB = 40 kN (compression) FBC = 50 kN (tension)

Gunawan 1 - 24

normal stresses in AB and BC, and the shearing stress and bearing stress at each pinned connection

Page 13: 1_introduction_MKM.pdf

8/23/2010

13

MECHANICS OF MATERIALSRod & Boom Normal Stresses

• The rod is in tension with an axial force of 50 kN.

• At the rod center, the average normal stress in the circular cross-section (A = 314x10-6m2) is σBC = +159 MPa

( )( )

MPa167m10300

1050

m10300mm25mm40mm20

26

3,

26

×==

×=−=

NAP

A

endBCσ

• At the flattened rod ends, the smallest cross-sectional area occurs at the pin centerline,

MPa.

Gunawan 1 - 25

• The boom is in compression with an axial force of 40 kN and average normal stress of –26.7 MPa.

• The minimum area sections at the boom ends are unstressed since the boom is in compression.

MECHANICS OF MATERIALSPin Shearing Stresses

• The cross-sectional area for pins at A, B, and C,

262

2 m104912mm25 −×=⎟

⎠⎞

⎜⎝⎛== ππ rA

2 ⎠⎝

MPa102m10491N1050

26

3, =

×

×== −A

PaveCτ

• The force on the pin at C is equal to the force exerted by the rod BC,

Gunawan 1 - 26

• The pin at A is in double shear with a total force equal to the force exerted by the boom AB,

MPa7.40m10491

kN2026, =

×== −A

PaveAτ

Page 14: 1_introduction_MKM.pdf

8/23/2010

14

MECHANICS OF MATERIALS

• Divide the pin at B into sections to determine the section with the largest shear force,

(largest)kN25

kN15=E

P

P

Pin Shearing Stresses

(largest) kN25=GP

MPa9.50m10491

kN2526, =

×== −A

PGaveBτ

• Evaluate the corresponding average shearing stress,

Gunawan 1 - 27

MECHANICS OF MATERIALSPin Bearing Stresses

• To determine the bearing stress at A in the boom AB, we have t = 30 mm and d = 25 mm,,

( )( ) MPa3.53mm25mm30

kN40===

tdP

• To determine the bearing stress at A in the bracket, we have t = 2(25 mm) = 50 mm and d = 25 mm,

( )( ) MPa0.32mm25mm50

kN40===

tdP

Gunawan 1 - 28

Page 15: 1_introduction_MKM.pdf

8/23/2010

15

MECHANICS OF MATERIALSStress in Two Force Members

• Axial forces on a two force member result in only normal stresses on a plane cut

di l h b i

Will h th t ith i l

perpendicular to the member axis.

• Transverse forces on bolts and pins result in only shear stresses on the plane perpendicular to bolt or pin axis.

Gunawan 1 - 29

• Will show that either axial or transverse forces may produce both normal and shear stresses with respect to a plane other than one cut perpendicular to the member axis.

MECHANICS OF MATERIALS

• Pass a section through the member forming an angle θ with the normal plane.

Stress on an Oblique Plane

• From equilibrium conditions, the distributed forces (stresses) on the plane

• The average normal and shear stresses on

θθ sincos PVPF ==

• Resolve P into components normal and tangential to the oblique section,

distributed forces (stresses) on the plane must be equivalent to the force P.

Gunawan 1 - 30

θθ

θ

θτ

θ

θ

θσ

θ

θ

cossin

cos

sin

cos

cos

cos

00

2

00

AP

AP

AV

AP

AP

AF

===

===

the oblique plane are

Page 16: 1_introduction_MKM.pdf

8/23/2010

16

MECHANICS OF MATERIALSMaximum Stresses

θθτθσ cossincos0

2

0 AP

AP

==

• Normal and shearing stresses on an oblique plane

• The maximum normal stress occurs when the reference plane is perpendicular to the member axis,

00

m =′= τσAP

• The maximum shear stress occurs for a plane at

00 AA

Gunawan 1 - 31

• The maximum shear stress occurs for a plane at + 45o with respect to the axis,

στ ′===00 2

45cos45sinAP

AP

m

MECHANICS OF MATERIALSStress Under General Loadings

• A member subjected to a general combination of loads is cut into two segments by a plane passing through Q

AV

AV

AF

xz

Axz

xy

Axy

x

Ax

ΔΔ

Δ=

ΔΔ

=

ΔΔ

→Δ

limlim

lim

00

0

ττ

σ

• The distribution of internal stress components may be defined as,

Gunawan 1 - 32

• For equilibrium, an equal and opposite internal force and stress distribution must be exerted on the other segment of the member.

AA AA ΔΔ →Δ→Δ 00

Page 17: 1_introduction_MKM.pdf

8/23/2010

17

MECHANICS OF MATERIALS

• Stress components are defined for the planes cut parallel to the x, y and z axes. For equilibrium, equal and opposite stresses are exerted on the hidden planes.

State of Stress

• The combination of forces generated by the stresses must satisfy the conditions for equilibrium:

0

0

===

===

∑∑∑

∑∑∑

zyx

zyx

MMM

FFF

( ) ( )aAaAM ττ ΔΔ==∑ 0• Consider the moments about the z axis:

Gunawan 1 - 33

• It follows that only 6 components of stress are required to define the complete state of stress

( ) ( )yxxy

yxxyz aAaAM

ττ

ττ

=

Δ−Δ==∑ 0

zyyzzyyz ττττ == andsimilarly,

MECHANICS OF MATERIALSFactor of Safety

Structural members or machines must be designed such that the working stresses are less than the ultimate strength of the material

Factor of safety considerations:• uncertainty in material properties • uncertainty of loadings

stress allowablestress ultimate

safety ofFactor

all

u ==

=

σσFS

FS

ultimate strength of the material. • uncertainty of analyses• number of loading cycles• types of failure• maintenance requirements and

deterioration effects• importance of member to structures

integrity

Gunawan 1 - 34

• risk to life and property• influence on machine function

Page 18: 1_introduction_MKM.pdf

8/23/2010

18

MECHANICS OF MATERIALSContoh Soal1

Gunawan 1 - 35

MECHANICS OF MATERIALSContoh Soal 2

Gunawan 1 - 36

Page 19: 1_introduction_MKM.pdf

8/23/2010

19

MECHANICS OF MATERIALSContoh Soal 3

Gunawan 1 - 37

MECHANICS OF MATERIALSContoh Soal 3 (lanjutan)

Gunawan 1 - 38

Page 20: 1_introduction_MKM.pdf

8/23/2010

20

MECHANICS OF MATERIALSContoh Soal 4

Gunawan 1 - 39

MECHANICS OF MATERIALSContoh Soal 5

Gunawan 1 - 40

Page 21: 1_introduction_MKM.pdf

8/23/2010

21

MECHANICS OF MATERIALSContoh Soal 6

Gunawan 1 - 41

MECHANICS OF MATERIALSContoh Soal 6 (lanjutan)

Gunawan 1 - 42

Page 22: 1_introduction_MKM.pdf

8/23/2010

22

MECHANICS OF MATERIALSContoh Soal 7

Gunawan 1 - 43

MECHANICS OF MATERIALSContoh Soal 8

Gunawan 1 - 44

Page 23: 1_introduction_MKM.pdf

8/23/2010

23

MECHANICS OF MATERIALSContoh Soal 9

Gunawan 1 - 45

MECHANICS OF MATERIALSContoh Soal 9 (lanjutan)

Gunawan 1 - 46

Page 24: 1_introduction_MKM.pdf

8/23/2010

24

MECHANICS OF MATERIALSContoh Soal 10

Gunawan 1 - 47

MECHANICS OF MATERIALSContoh Soal 10 (lanjutan)

Gunawan 1 - 48

Page 25: 1_introduction_MKM.pdf

8/23/2010

25

MECHANICS OF MATERIALSContoh Soal 11

Gunawan 1 - 49

MECHANICS OF MATERIALSContoh Soal 12

Gunawan 1 - 50