Top Banner
Electronic supplementary information (ESI): Density functional study of phase stabilities and Raman spectra of Yb 2 O 3 , Yb 2 SiO 5 and Yb 2 Si 2 O 7 under pressure Takafumi Ogawa, *a Noriko Otani, a Taishi Yokoi, b Craig A. J. Fisher, a Akihide Kuwabara, a,c Hiroki Moriwake, a,c Masato Yoshiya, a,d Satoshi Kitaoka, b and Masasuke Takata a,b 1 Dependence of Raman spectra on hydrostatic pressure Fig. S1 Dependence of (a) Raman spectra and (b) peak positions of C-type Yb 2 O 3 on hydrostatic pressure. a Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan. E-mail: [email protected] b Materials Research and Development Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan. c Center for Materials Research by Information Integration, National Institute for Materials Science, Tsukuba 305-0047, Japan d Department of Adaptive Machine Systems, Osaka University, Osaka 565-0871, Japan 1 Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018
11

1Dependence of Raman spectra on hydrostatic pressure

Nov 17, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1Dependence of Raman spectra on hydrostatic pressure

Electronic supplementary information (ESI): Density functionalstudy of phase stabilities and Raman spectra of Yb2O3, Yb2SiO5and Yb2Si2O7 under pressure

Takafumi Ogawa,∗a Noriko Otani,a Taishi Yokoi,b Craig A. J. Fisher,a Akihide Kuwabara,a,c HirokiMoriwake,a,c Masato Yoshiya,a,d Satoshi Kitaoka,b and Masasuke Takataa,b

1 Dependence of Raman spectra on hydrostatic pressure

100 200 300 400 500 600 700

Frequency [cm−1]

−4

−2

0

2

4

6

8

10

12

Intensity

[arb

.units]

-4 GPa

-2 GPa

0 GPa

2 GPa

4 GPa

6 GPa

8 GPa

P=10 GPa

(a)

−4 −2 0 2 4 6 8 10Pressure [GPa]

100

200

300

400

500

600

700

Frequency

[cm−1]

(b)

Fig. S1 Dependence of (a) Raman spectra and (b) peak positions of C-type Yb2O3 on hydrostatic pressure.

a Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan. E-mail: [email protected] Materials Research and Development Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan.c Center for Materials Research by Information Integration, National Institute for Materials Science, Tsukuba 305-0047, Japand Department of Adaptive Machine Systems, Osaka University, Osaka 565-0871, Japan

1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.This journal is © the Owner Societies 2018

Page 2: 1Dependence of Raman spectra on hydrostatic pressure

200 400 600 800 1000

Frequency [cm−1]

−3

0

1

2

Intensity

[arb

.units]

(a)

-1. 6 GPa

-1. 2 GPa

-0. 8 GPa

-0. 4 GPa

0 GPa

0. 4 GPa

0. 8 GPa

1. 2 GPa

1. 6 GPa

−2 −1 0 1 2Pressure [GPa]

200

400

600

800

1000

Frequen

cy[cm−1]

(b)

Fig. S2 Dependence of (a) Raman spectra and (b) peak positions of X2-Yb2SiO5 on hydrostatic pressure.

200 400 600 800 1000

Frequency [cm−1]

−2

0

2

Intensity

[arb

.units]

-1. 6 GPa

-1. 2 GPa

-0. 8 GPa

-0. 4 GPa

0 GPa

0. 4 GPa

0. 8 GPa

1. 2 GPa

1. 6 GPa(a)

−2 −1 0 1 2Pressure [GPa]

0

200

400

600

800

1000

Frequen

cy[cm−1]

(b)

Fig. S3 Dependence of (a) Raman spectra and (b) peak positions of β -Yb2Si2O7 on hydrostatic pressure.

2

Page 3: 1Dependence of Raman spectra on hydrostatic pressure

2 Vibrations of SixOy tetrahedral units in Yb2SiO5 and Yb2Si2O7The parameter used to measure maximum deviation in a bond length during vibration is defined in the manuscript as

∆li j =rrri j

2− rrr0i j

2

r0i jA

. (1)

Since expressing the interatomic vector by the atomic positions and vibrational displacement vectors leads to

rrri j = (rrr0j +uuu j)− (rrr0

i +uuui) = rrr0i j +uuu j−uuui, (2)

the parameter, ∆li j, can be rewritten as

∆li j = 2rrr0

i j · (uuu j−uuui)

r0i jA

+(uuu j−uuui)

2

r0i jA

. (3)

The second term on the right hand side of this equation vanishes when A is sufficiently smaller than r0i j (A/r0

i j → 0), leading to aconverged value of ∆li j in the limit of small A. To confirm this behaviour, the dependence of ∆li j on A is examined for a mode ofX2-Yb2SiO5 as shown in Fig. S4. From the figure, we can see that the ∆li j changes slightly for A < 10−2. In this study, we used A = 10−3

to calculate ∆li j. The bond lengths between Si and O atoms and vibrational amplitudes, u2i /A2 and ∆li j, for characteristic modes with

frequencies above 600 cm−1 are shown in Figs. S5 – S10, where the structural pictures of SixOy were drawn using VESTA1 and Ramanspectra which were broadened by 7.0 and 0.05 cm−1 wide Lorentzians are shown by blue and red lines, respectively. The bond lengthsin Si3O10 and SiO4 units in α-Yb2Si2O7 are summarised in Table S1.

10-4 10-3 10-2 10-1

A [Å]

8

9

10

11

12

13

14

15

16

∆l ij

Fig. S4 Dependence of maximum deviations in a bond length, ∆li j, on an amplitude, A, for the Si-O4 bond in X2-Yb2SiO5 for the 853 cm-1 peak,shown in Fig. S5 (f).

References1 K. Momma, F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272–1276.

3

Page 4: 1Dependence of Raman spectra on hydrostatic pressure

(c) 964 cm-1

(a)

(d) 919 cm-1

(e) 878 cm-1 (f) 853 cm-1

(b)

O1

O2 O3

O4Si

1.65

1.63

1.64

1.64

964919

878853

Fig. S5 (a) Structure of the SiO4 unit in X2-Yb2SiO5, (b) high frequency range of the calculated Raman spectrum of X2-Yb2SiO5, and (c-f) vibrationalamplitudes and ∆li j for the normal modes at 964, 919, 878, and 853 cm−1, respectively.

4

Page 5: 1Dependence of Raman spectra on hydrostatic pressure

(c) 931 cm-1

(a)

(d) 928 cm-1

(e) 880 cm-1 (f) 829 cm-1

(b)

O1

O2 O3

O4Si

1.68

1.63

1.64

1.68

928+931

880

829

Fig. S6 (a) Structure of the SiO4 unit in X1-Yb2SiO5, (b) high frequency range of the calculated Raman spectrum of X1-Yb2SiO5, and (c-f) vibrationalamplitudes and ∆li j for the normal modes at 931, 928, 880, and 829 cm−1, respectively.

5

Page 6: 1Dependence of Raman spectra on hydrostatic pressure

(c) 908 cm-1

(a)

(d) 886 cm-1

(e) 885 cm-1 (f) 643 cm-1

(b)

O1

O2

O3

O5

Si1

1.65

1.64

1.64

908885+886

643O4

O6

O7

Si2

1.65

Fig. S7 (a) Structure of the Si2O7 unit in β -Yb2Si2O7, (b) high frequency range of the calculated Raman spectrum of β -Yb2Si2O7, and (c-f) vibrationalamplitudes and ∆li j for the normal modes at 908, 886, 885, and 643 cm−1, respectively.

6

Page 7: 1Dependence of Raman spectra on hydrostatic pressure

(c) 906 cm-1

(a)

(d) 870 cm-1

(e) 643 cm-1

(b)

O1

O2

O3

O5

Si1

1.65

1.64

1.64

906

870

643O4

O6

O7

Si2

1.64

Fig. S8 (a) Structure of the Si2O7 unit in γ-Yb2Si2O7, (b) high frequency range of the calculated Raman spectrum of γ-Yb2Si2O7, and (c-e) vibrationalamplitudes and ∆li j for the normal modes at 906, 870, and 643 cm-1, respectively.

7

Page 8: 1Dependence of Raman spectra on hydrostatic pressure

(c) 957 cm-1

(a)

(d) 953 cm-1

(b)

O2

O1O3

O7

Si1

1.641.66

1.63

957+953

890674

O4O6

O5

Si21.68

(e) 890 cm-1 (f) 674 cm-1

Fig. S9 (a) Structure of the Si2O7 unit in X-Yb2Si2O7, (b) high frequency range of the calculated Raman spectrum of X-Yb2Si2O7, and (c-f) vibrationalamplitudes and ∆li j for the normal modes at 957, 953, 890, and 674 cm-1, respectively.

8

Page 9: 1Dependence of Raman spectra on hydrostatic pressure

(c) 975 cm-1

(a)

(b)

O1

O3

Si1

975700

Si4

Si2

Si3

O4

O5

O6

O7

O8 O9

O10

O11O12

O13

O14

898

O2

Yb

Fig. S10 (a) Structure of the Si2O7 unit in α-Yb2Si2O7, (b) high frequency range of the calculated Raman spectrum of α-Yb2Si2O7, and (c) vibrationalamplitudes and ∆li j for the normal mode at 975 cm-1.

9

Page 10: 1Dependence of Raman spectra on hydrostatic pressure

(e) 898 cm-1

(f) 700 cm-1

Fig. S10 (Continued) (d, e) normalized amplitudes and bond deviations for the normal modes at 898, and 700 cm-1, respectively.

10

Page 11: 1Dependence of Raman spectra on hydrostatic pressure

Table S1 Bond lengths between Si and O atoms in α-Yb2Si2O7.

Bonds Bond length [Å]Si1-O1 1.62Si1-O2 1.64Si1-O3 1.66Si1-O4 1.66Si2-O4 1.66Si2-O5 1.64Si2-O6 1.62Si2-O7 1.68Si3-O7 1.75Si3-O8 1.65Si3-O9 1.63Si3-O10 1.63Si4-O11 1.67Si4-O12 1.64Si4-O13 1.62Si4-O14 1.62

11