Top Banner
1.Any all-zero rows are at the bottom. 2.Correct ‘step pattern’ of first non-zero row entries. 4.4.1 Generalised Row Echelon Form
38

1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

Mar 28, 2015

Download

Documents

Lucas Schwartz
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

1. Any all-zero rows are at the bottom.

2. Correct ‘step pattern’ of first non-zero row entries.

4.4.1 Generalised Row Echelon Form

Page 2: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

2

0

0

1 3

0 1

0 0

4.4.1 Generalised Row Echelon Form

• Any all-zero row at the bottom

• Correct ‘step pattern’ of first non-zero row entries

ROW 1

ROW 2

Page 3: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

2

0

0

1 3

1 1

0 2

4.4.1 Generalised Row Echelon Form

• Any all-zero row at the bottom

• Correct ‘step pattern’ of first non-zero row entries

ROW 1

ROW 2

ROW 3

Page 4: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

2

0

0

1 3

1 1

2 2

4.4.1 Generalised Row Echelon Form

• Any all-zero row at the bottom

• Correct ‘step pattern’ of first non-zero row entries

ROW 1

ROW 2

ROW 3

Page 5: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

2

0

0

1 3

0

10

0

4.4.1 Generalised Row Echelon Form

• Any all-zero row at the bottom

• Correct ‘step pattern’ of first non-zero row entries

ROW 1

ROW 3

2

0

0

0 0 1 0

ROW 2

ROW 4

Page 6: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

a11

a22

a33

ann

a12 a13

a21

a31

a23

a32

an1

a1n

a2n

an2

4.4.1 Formal process (Handout 3)

Create zeros

Page 7: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

a11

a'22

a33

ann

a12 a13

0a31

a'23

a32

an1

a1n

a'2n

an2

4.4.1 Formal process (Handout 3)

Create zeros

Page 8: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

a11

a'22

a'33

ann

a12 a13

0 0

a'23

a'32

an1

a1n

a'2n

an2

4.4.1 Formal process (Handout 3)

Create zeros

Page 9: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

a11

a'22

a'33

a'nn

a12 a13

0 0

a'23

a'32

0

a1n

a'2n

a'n2

4.4.1 Formal process

Create zeros

Page 10: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

a11

a'22

a'33

a'nn

a12 a13

0 0

a'23

a'32

0

a1n

a'2n

a'n2

4.4.1 Formal process (Handout 3)

Create zeros

Page 11: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

a11

a'22

a''33

a'nn

a12 a13

0 0

a'23

0

0

a1n

a'2n

a'n2

4.4.1 Formal process (Handout 3)

Create zeros

Page 12: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

a11

a'22

a''33

a''nn

a12 a13

0 0

a'23

0

0

a1n

a'2n

0

4.4.1 Formal process (Handout 3)

Create zeros

Page 13: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

a11

a'22

a''33

a''nn

a12 a13

0 0

a'23

0

0

a1n

a'2n

0

4.4.1 Formal process (Handout 3)

Create zeros

Page 14: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.4.2 Augmented Matrix notation

• We perform row operations on the matrix and the opposite row:

1 2 1

1 1 1 -1

-1 2

x y z

6 1 5

=

• Combine both of these into one matrix called the augmented matrix:

1 2 1

1 1 1 -1

-1 2

6 1 5

Page 15: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.4.3 Row sums

• A way to check calculations:

1 2 1

1 1 1 -1

-1 2

6 1 5

1. Add up rows2. Write totals on right

9 3 7

ROW SUMS

• Do a row operation: e.g.

r2 r2 - 2r1 3-2x9 1

1

1 1

-1 2

6

5

9

7

Page 16: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

0 -1 -3 -11

4.4.3 Row sums

• A way to check calculations:

1 2 1

1 1 1 -1

-1 2

6 1 5

9 3 7

ROW SUMS

• Do a row operation: e.g.

r2 r2 - 2r1

1

1

1 1

-1 2

6

5

9 -15 7

• Check row sums: e.g. 0 + (-1) – 3 – 11 = -15

1. Add up rows2. Write totals on right

Page 17: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.5 Examples

1 4 3

2 3 8 6

1 -2

x y z

9 18 4

=

1. Matrix-vector system2. Write in augmented

form

Page 18: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.5 Examples – EXAMPLE 1

-2

1 4 3

2 3 8 6

1

9 18 4

1. Matrix-vector system2. Write in augmented

form3. Write on row sums

15 36 6

• Use the top left entry to create zeros below it

r2 r2 - 4r1

-2

1

3

2 3

1

9

4

1536 – 4x15 6

• First get a zero in the second row:

Page 19: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.5 Examples – EXAMPLE 1

-2

1 4 3

2 3 8 6

1

9 18 4

1. Matrix-vector system2. Write in augmented

form3. Write on row sums

15 36 6

• Use the top left entry to create zeros below it

r2 r2 - 4r1

-2

1

3

2 3

1

9

4

15-24 6

• First get a zero in the second row:

Page 20: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

0 0 -6 -18

4.5 Examples – EXAMPLE 1

-2

1 4 3

2 3 8 6

1

9 18 4

1. Matrix-vector system2. Write in augmented

form3. Write on row sums

15 36 6

• Use the top left entry to create zeros below it

r2 r2 - 4r1

-2

1

3

2 3

1

9

4

15-24 6

• First get a zero in the second row:

Page 21: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

-2

1 4 3

2 3 8 6

1

9 18 4

15 36 6

r2 r2 - 4r1

-2

1 0 3

2 3 0 -6 1

9-18 4

15-24 6

• Check row sums before continuing...

1 + 2 + 3 + 9 = 15 ... OK!0 + 0 - 6 – 18 = -24 ... OK!3 + 1 - 2 + 4 = 6 ... OK!

4.5 Examples – EXAMPLE 1

Page 22: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

-2

1 4 3

2 3 8 6

1

9 18 4

15 36 6

r2 r2 - 4r1

-2

1 0 3

2 3 0 -6 1

9-18 4

15-24 6

• Now get a zero in the third row:

r3 r3 - 3r1

-11

1 0 0

2 3 0 -6 -5

9-18

-23

15-24

-39• Want upper triangular form so swap rows 2 and 3

r2 r3

1

0

2 3

0 -6

9

-18

15

-24-11 0 -5 -23 -39

4.5 Examples – EXAMPLE 1

Page 23: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

1

0

2 3

0 -6

9

-18

15

-24-11 0 -5 -23 -39

• Now solve by backwards substitution:

r3 : -6z = -18 z = 3

r2 : -5y – 11z = -23

• Hence: x = 4, y = -2, z = 3 is the unique solution.

4.5 Examples – EXAMPLE 1

-5y -33 =-23 y = -2

r1 : x + 2y +3z = 9 x - 4 + 9 = 9 x = 4

Page 24: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.5 Examples

1 0 1

-1 0 1 -1

0 1

x y z

16

-1 =

1. Matrix-vector system2. Write in augmented

form

Page 25: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.5 Examples – EXAMPLE 2

1

1 0 1

-1 0 1 -1

0

16

-1

1. Matrix-vector system2. Write in augmented

form3. Write on row sums

1 6 1

• Use the top left entry to create zeros below it

r3 r3 - r1

• First get a zero in the third row:

1

1 0 0

-1 0 1 -11

16

-2

1 6 0

Page 26: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

• Use second row to get a zero in the third row:

r3 r3 – r2

2

1 0 0

-1 0 1 -1 0

16

-8

16

-6

4.5 Examples – EXAMPLE 2

r3 r3 - r1

1

1 0 1

-1 0 1 -1

0

16

-1

1 6 1 1

1 0 0

-1 0 1 -11

16

-2

1 6 0

Page 27: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

• Solve by backwards substitution:

r3 : 2z = -8

r2 : y - z = 6

r1 : x - y = 1

UNIQUE SOLUTION

2

1 0 0

-1 0 1 -1 0

16

-8

16

-6

4.5 Examples – EXAMPLE 2

z = -4

y + 4 = 6 y = 2

x - 2 = 1 x = 3

Page 28: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.6 Determinants

Question: During the elimination process, what has changed about the determinant of the matrix?

• Swapping rows multiplies the determinant by (-1)

• Adding or subtracting multiples of rows does not change the determinant

Page 29: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.6 Determinants

• In EXAMPLE 1 we used one swap operation to get from

1

0

2 3

0 -6-11 0 -5

1 4 3

2 3 8 6

1 -2

|A|= (-1) |B|

• Calculating the determinant:

• Non-zero, so we got a unique solution

= (-1)x(1)(-5)(-6) = -30

A = = B

Page 30: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.6 Determinants

• In EXAMPLE 2 we used no swaps to get from

1

0

-1 0

0 2 -1 0 1

1 0 1

-1 0 1 -10 1

• Calculating the determinant:

• Non-zero, so got a unique solution

= (1)(1)(2) = 2

A = = B

|A|= |B|

Page 31: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.6 Non-Standard Gaussian Elimination

• In standard Gaussian Elimination the following operation were allowed: • Swap two rows;

• Add or Subtract a multiple of a row from another row.

• In Non-Standard Gaussian Elimination we are also allowed to do the following:

• Multiply a row by a constant. E.g.

r3 2r3

Page 32: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.6 Non-Standard Gaussian Elimination

• Quick Example: In Standard G.E.

3 15 -1

44

88

r2 r2 - 5r1/3 3 10 -8/3

4 8-16/3-8/3

• This is a bit messy with the fractions. However, in Non-Standard G.E.

3 15 -1

44

88

r2 3r2 - 5r1 3 10 -8

4 8-16-8

• However, in doing this we have multiplied the determinant by 3.

Page 33: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.7 Backwards substitution: more general case

• Two cases after elimination process:

1. All diagonal entries non-zero, then determinant is non-zero. Hence, get answer by backwards substitution.

2. Is a zero on the diagonal, then determinant is zero. Either get infinite solutions or no solutions.

Page 34: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.7.1 Case of No Solutions

3 0 0

1 2 0 -1

0 0

x y z

11 -3 9

= 3 0 0

1 2 0 -1

0 0

11 -3 9

• Suppose we followed the elimination process and got to:

• Zeros on the diagonal, so determinant is zero.

• ROW 3 gives the equation

• This is impossible. Hence there are no solutions.

0x + 0y + 0z = 9

Page 35: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.7.1 Case of Infinite solutions

• Suppose instead that

3 0 0

1 2 0 -1

0 0

x y z

11 -3 0

= 3 0 0

1 2 0 -1

0 0

11 -3 0

• ROW 3 now OK: 0x + 0y + 0z = 0

• Have two equations in three unknowns

• Get infinitely many solutions

Page 36: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.7.1 Case of Infinite solutions

• Three steps:

1. In the final (echelon-form) of the matrix, circle the first non-zero entry in each row

2. Find the columns that have no circles in. Each column corresponds to a variable.

3. Assign a new name to each of the chosen variables, then use back substitution on the non-zero rows.

Page 37: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.7.1 Case of Infinite solutions

3 0 0

1 2 0 -1

0 0

11 -3 0

1. Circle first non-zero row entries2. Find column with no circles in

3 0 0

1 2 0 -1

0 0

x y z

11 -3 0

=

Column 2 corresponds to the y variable

3. Assign a name to y: let y = α

Page 38: 1.Any all-zero rows are at the bottom. 2.Correct step pattern of first non-zero row entries. 4.4.1 Generalised Row Echelon Form.

4.7.1 Case of Infinite solutions

3 0 0

1 2 0 -1

0 0

11 -3 0

3 0 0

1 2 0 -1

0 0

x y z

11 -3 0

=

r3 : Tells us nothing

r2 : -z = -3 z = 3 r1 : 3x + y + 2z = 11

• Solve by back substitution:

• So, solution is x = (5 – α)/3, y = α, z = 3 for any α

3x + α + 6 = 11 x = (5 – α)/3