Top Banner

of 17

170685_1

Apr 14, 2018

Download

Documents

foush basha
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 170685_1

    1/17

    1,2,3,4

    (CB1, CB2&CB3)

    (CB8, CB9 and CB10)

  • 7/30/2019 170685_1

    2/17

    Group A

    DGroup

    (IDARC-4& ANSYS-10)

    Group Parametric study Specimen

    A Type of column reinforcement CB1,CB2&CB3CB8,CB9&CB10

    Size of column CB1&CB8

  • 7/30/2019 170685_1

    3/17

    AD

    ACI 318-95

    A

    CB2&CB9CB3&CB10

  • 7/30/2019 170685_1

    4/17

    D

  • 7/30/2019 170685_1

    5/17

    All

    in dimensions

    mm.Fusion Bonded Steel Bars (FS).

    Epoxy Coated Steel Bars (ES).

    Normal High Grade Steel Bars (NS).

    COLUMNBEAM

    SPECIMEN

    SERIAL

    ReinforcementsCross-sectionReinforcementsCross-

    section

    Typeofcoat

    Stir

    rups

    Stir

    rups

    Typeofcoat

    Longitudinal

    Longitudinal

    De

    pth

    Width

    Stirrups

    Typeofcoat

    Bottom

    Top

    De

    pth

    Width

    NS

    8mm

    FS

    4

    16mm

    300mm

    200mm

    8mm

    NS

    3

    16mm

    3

    16mm

    400mm

    200mm

    CB11

    NSESCB22

    NSNSCB33

    NSFS

    8

    16mm

    200

    mm

    200

    mm

    CB84

    NSESCB95

    NSNSCB106

    Cement Fine Aggregate

    (Sand)

    Coarse Aggregate

    (Gravel)

    Water/Cement

    Ratio

  • 7/30/2019 170685_1

    6/17

    Strain GaugesLinear Variable Displacement Transducer (L V D T)Data Acquisition

    1 1.75 3.5 0.55

  • 7/30/2019 170685_1

    7/17

    Fig (5): Theoritical Displacement History,

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    0 5 10 15 20 25 30 35 40

    Cycle No.

    Displacement(cm)

    (CB3)

  • 7/30/2019 170685_1

    8/17

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    -60 -40 -20 0 20 40 60

    Displacement(mm)

    Load(tons)

    Load versus

    Displacement Hysteresis loop,(CB2)

    Stiffness Degradation, (C B 1)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1 3 5 7 9 11 13 15 17

    Cycle No.

    Stiffness

    Energy Dissipation Capacity, (CB1)

    0

    200

    400

    600

    800

    1000

    1200

    1 3 5 7 9 11 13 15 17

    Cycle No.

    EnergyDissipation(ton.mm)

    Stiffness Degradation & Energy Capacity , (CB1)

    Specimens

    Groups

    Yield Displacement Displacement

    at Failure

    f(cm)

    y (cm)

    Compression

    y (cm)

    Tension

    y (cm)

    Considered

    Group

    (A)

    CB1 1.15 1.2 1.175 3.5

    CB2 1.0 0.9 0.95 3.8

    CB3 1.2 1.0 1.0 3.6

    Group CB8 1.5 1.1 1.1 4.5

  • 7/30/2019 170685_1

    9/17

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    -0.01 -0.005 0 0.005 0.01 0.015

    Joint Shear Deformation (Rad)

    Load(tons)

    *

    , (CB10)Applied Load Versus Joint Shear Deformation

    Strain in Beam Top Rft. of (CB1)

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    -10 -5 0 5 10 15 20 25 30

    Steel Strain,( )

    Load,

    (tons)

    Strain in Beam Transverse Rft. of (CB1)

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    -10 -5 0 5 10 15 20 25 30

    Steel Strain,( )

    Load,

    (tons)

    , (CB1)Strain in Beam Reinforcement

    ,

    (D) CB9 1.1 1.23 1.1 4.5

    CB10 1.1 1.0 1.05 5.2

    Groups Specimens

    DisplacementDuctility

    Factor

    ( f /y)

    Maximum

    Drift Ratio

    (f/L)

    Group

    (A)

    CB1 2.98 2.8

    CB2 4.0 3.04

  • 7/30/2019 170685_1

    10/17

    (Displacement Ductility Factor andDrift Ratios.)

    )(Yield and Ultimate Displacements.

    0

    1

    2

    3

    4

    5

    6

    7

    Load(tans)

    1 2 3 4 5 6 7 8 9 1 0

    Number of Specimens (CBN)

    Fig.(13):Comparison betwe en Ultimate Load and crack load for Different Specimens.

    Crack Load

    Ultimat load

    (Comparison between UltimateLoad and Crack Load).

    Ultimate Lateral Load for Compression and Tension.

    CB1,CB2&CB3

    (CB8,CB9&CB10CB3)(A

    CB3 3.6 2.88

    Group

    (D)

    CB8 4.09 3.6

    CB9 4.09 3.6

    CB10 4.95 4.16

    GroupsSpecime

    ns

    Ultimate Lateral

    Load(ton)Failure

    cycle

    Failure

    Load(ton)Compress

    ion

    side

    Tensio

    n side

    Group

    (A)

    CB1 6.557 6.846 15 4.338

    CB2 5.717 5.558 15 3.512

    CB3 6.56 6.85 15 3.204

    Group

    (D)

    CB8 4.323 4.07 15 2.95

    CB9 4.087 4.024 15 3.022

    CB10 3.812 4.027 17 3.153

  • 7/30/2019 170685_1

    11/17

    Hysteresis Loop Envelope Of Load

    Versus Displacement,

    for (Group-A),(CB1,CB2,CB3).

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    -60 -40 -20 0 20 40 60

    Displacement (mm)

    Load(tons)

    CB1 (F.S. Reinf.)

    CB2 (E.S. Reinf.)

    CB3 (N.S. Reinf.)

    Hysteresis Loop Envelope of Load

    Versus Displacement,

    for(Group-A),(CB8,CB9,CB10)

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    -80 -60 -40 -20 0 20 40 60 80

    Displacement (mm)

    Load(tons)

    CB8 (F.S. Reinf.)

    CB9 (E. S. Reinf.)

    CB10 (N. S. Reinf.)

    (Hysteresis Loop Envelope of Load Displacement, for (Group-A)).

    Stiffness Degradation for Different

    Specimens,

    for (Group-A), (CB1,CB2,CB3)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1 3 5 7 9 11 13 15 17

    Cycle No.

    Stiffness

    CB1(F. S. Reinf.)

    CB2 (E. S. Reinf.)

    CB3 (N. S. Reinf.)

    Stiffness Degradation for Different

    Specimens,

    for(Group-A),(CB8,CB9,CB10)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1 3 5 7 9 11 13 15 17

    Cycle No.

    Stiffness

    CB8 (F. S. Reinf. )

    CB9 (E. S. Reinf. )

    CB10 (N. S. Reinf.)

    (Stiffness Degradation for Different Specimens, for (Group-A))

    Energy Dissipation Capacity for Different

    Specimens,

    for(Group-A),(CB1,CB2,CB3).

    0

    200

    400

    600

    800

    1000

    1200

    1 3 5 7 9 11 13 15 17

    Cycle No.

    EnergyDissipation

    (ton.mm)

    CB1 (F. S. Reinf.)CB2(E. S. Reinf.)CB3(N. S. Reinf.)

    Energy Dissipation Capacity for Different

    Specimens,

    for(Group-A),(CB8,CB9,CB10)

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1 3 5 7 9 11 13 15 17 19

    Cycle No.

    EnergyDissipation

    (ton.mm)

    CB8 (F. S. Reinf. )

    CB9 (E. S. Reinf. )CB10 (N. S. Reinf. )

    (Energy Dissipation Capacity for Different Specimens, for (Group-A))

    CB1&CB8(CB2&CB9)

    (CB3&CB10(D

  • 7/30/2019 170685_1

    12/17

    Hysteresis Loop Envelope of Load Versus

    Displacement, (Group-D),

    (CB1,CB2,CB3,CB8,CB9 & CB10)

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    -80 -60 -40 -20 0 20 40 60 80

    Displacement (mm)

    Load(ton)

    CB1(F.S.Reinf.)(col.30*30)

    CB8(F.S.Reinf.)(col.20*20)

    CB2(E.S.Reinf.)(col.30*30)

    CB9(E.S.Reinf.)(col.20*20)

    CB3(N.S.Reinf.)(col30*30)

    CB10(N.S.Reinf.)(col.20*20)

    Energy Dissipation Capacity for Different

    Specimens, (Group-D).

    0

    200

    400

    600

    800

    1000

    1200

    1 3 5 7 9 11 13 15 17 19

    Cycle No.

    EnergyDissipation

    (ton.mm)

    CB1(F.S.Reinf.)(col.30*30)

    CB8(F.S.Reinf.)(col.20*20)

    CB2(E.S.Reinf.)(col.30*30)

    CB9(E.S.Reinf.)(col.20*20)

    CB3(N.S.Reinf)(col.30*30)

    CB10(N.S.Reinf.)(col.20*20)280

    Stiffness Degradation for Different

    Specimens, ( Group-D)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1 3 5 7 9 11 13 15 17

    Cycle No.

    Stiffness

    CB1(F.S.Reinf.)(col.30*30) CB8(F.S.Reinf.)(col.20*20)

    CB2(E.S.Reinf.)(col.30*30) CB9(E.S.Reinf.)(col.20*20)

    CB3(N.S.Reinf.)(col.30*30) CB10(N.S.Reinf.)(col.20*20)

    (Comparison between Hysteresis Loop Envelope of Load Displacement, StiffnessDegradation, and Energy Dissipation Capacity for Different Specimens, for (Group-D))

    IDARC

    IDARC

    Theoritical Hysteresis Loop Envelope

    of Load VersusDisplacement,(CB10)(by

    IDARC)

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    -100 -80 -60 -40 -20 0 20 40 60 80 100

    Displacement (mm)

    Load(tonS)

    Theoritical

    Experimental

    Theoritical Vertical Load-Displacement

    Hysteresis Loop,(CB10)(by IDARC).

    -60

    -40

    -20

    0

    20

    40

    60

    -80 -60 -40 -20 0 20 40 60 80

    Disblacement(mm)

    Load(tons)

    3

    2

    5

  • 7/30/2019 170685_1

    13/17

    (Analytical Hysteresis Loop Envelope of Load Versus Displacement, andComparison between Experimental and Analytical Results).

    (ANSYS)ANSYS10

    (Finite Element Mesh , and Overall Load of Specimens).

    (Comparison between Experimental and Analytical Results)

    Ana./Exp.

    Analytical

    Results

    Experimental

    ResultsSpecimens

    Pult (Ton)Pult (Ton)

    0.803.2254.03ve(CB10)

    Column

    (20x20) 0.823.1253.81ve

    (ANSYS) /AnalyticalAnalyticalSpecimens

  • 7/30/2019 170685_1

    14/17

    Analytical Load Versus Displacement

    Hysteresis Loop(CB10) (by ANSYS).

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    -60 -40 -20 0 20 40 60

    Displacement(mm)

    Load(tons)

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    -80 -60 -40 -20 0 20 40 60 80

    Displacement(mm)

    Load(tons)

    Experimental

    Theoritical

    3

    3

    6

    (Analytical Hysteresis Loop Envelope of Load Versus Displacement, and

    Comparison between Experimental and Analytical Results).

    (ANSYS)(IDARC)

    (Plastic

    Hingeslippage

    Fusion Bonded Steel Bars

    Epoxy Coated Steel Bars

    ( IDARC)

    Results

    (ANSYS)Results

    (IDARC)

    Pult (Ton)Pult (Ton)

    0.563.2255.75ve(CB10)

    Column

    (20x20) 0.5563.1255.62ve

    ( Comparison between Analytical Results (ANSYS and IDARC))

  • 7/30/2019 170685_1

    15/17

    (ANSYS)

    6. References:

    1- ACI-ASCE Committee 352, "Recommendations for Design of Beam- ColumnJoints in Monolithic Reinforced Concrete Structures.", ACI Journal, Vol.82, No.3, May-June 1995

    2- A. J. Kappos, "Dynamic Loading and Design of Structures" Published by SponPress , London, 2003.

    3- ASTM (1989),"Standard Specification for Epoxy-Coated Reinforcing SteelBars,"(ASTM A 775M-89a) 1989 Annual Book for ASTM Standards, Vol. 1.04,

    ASTM, Philadelphia , pp. 555-559.

    4-

    Belong, Z. and Yuzhou, C., "Behavior of Exterior Reinforced Concrete Beam-Column Joints Subjected to Bi-Directional Cyclic Loading" , ACI SP-123(3) : Design of

    Beam-Column Joints for Seismic Resistance, Special Publication of the American

    Concrete Institute Detroit, Michigan, 1991, pp. 69-96.

    5- ECP-1995 "Egyptian Code of Practice for Reinforced Concrete Structure",Housing and Building Research Center, Egypt 2006.

  • 7/30/2019 170685_1

    16/17

    6- Park, Y. J., Ang, A.-S., and Wen, Y.K., "Seismic Damage Analysis and Damage-Limiting Design of R/C Building" Civil Engineering Studies, Technical Report No. SRS

    516, University of Illinois, Urbana 1995.

    7- Park, Y. J., Reinhorn A. M., Kunnath S. k., "IDARC: Inelastic Damage Analysisof Reinforced Concrete Frame-Shear-Wall Structures" Technical Report NCEER-87-

    0008, State University of New York at Buffalo1998.

    "Effect of Column Characteristic on Seismic Behaviorof Beam-Column Connection with Different

    Types of Coated Steel Bars"

    M. TALAT MOSTAFA1, SHADIA NAGA ELIBIARI

    2,

    AHMED MOHAMED FARAHAT3ANDHOSSAM EL-DIN HASSAN FOUAD AHMED ADBEL-

    WAHID4

  • 7/30/2019 170685_1

    17/17

    1 Professor of Concrete Structures Faculty of Engineering, Cairo University.2

    Professor of Concrete Structures National Center of Housing and Building Research.3

    Professor of Concrete Structures Faculty of Engineering, Cairo University.

    4Doctor in civil Engineering, Housing and Development Bank, E- mail

    [email protected] :During the past few years the attention had increased to real estate

    wealth due to not doing the needed maintenance to reserve the

    hypothetical age of the structure .

    One of the most effective factors on the age of the structure and its

    safety is corrosion of reinforcing steel . Therefore, the is a need toresist this destructive factor. There are many factors to resist corrosion

    of reinforcing steel but the economic way that is recommended to used

    in codes but under special conditions which is covering the reinforcing

    steel through epoxy-coated bars between it and the factors causing the

    corrosion. Using the epoxy materials as a prevention between the

    reinforcing steel and concrete affects connection and to reduce this

    effect, the connection is increasing between them by mechanic

    connection by increasing the length of the skewers. It was common

    that before 1992 Earthquake , the lower-mid buildings highness are

    designed based on bearing the vertical loads regardless the horizontal

    loads. In the situation of Earthquake , cracks and collapses occur in

    many buildings and many of these cracks occur according to defects inthe joints between the column and the beam whether design defects or

    details defects , so its necessary to take the loads into consideration .

    Keywords : Corrosion of reinforcing steel , Beam-Column Connection

    , Seismic , Coated Steel Bars.

    mailto:[email protected]:[email protected]