Top Banner
Polariton spin transport in a microcavity channel: A mean-field modeling M.Yu.Petrov 1 and A.V.Kavokin 1,2 1 Spin Optics Laboratory, Saint Petersburg State University, Russia 2 Physics and Astronomy School, University of Southampton, UK SOLAB seminar, Apr. 17, 2012
14

17.04.2012 m.petrov

Jul 24, 2015

Download

Education

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 17.04.2012 m.petrov

Polariton spin transport in a microcavity channel: A mean-field modeling

M.Yu.Petrov1 and A.V.Kavokin1,2

1Spin Optics Laboratory, Saint Petersburg State University, Russia2Physics and Astronomy School, University of Southampton, UK

SOLAB seminar, Apr. 17, 2012

Page 2: 17.04.2012 m.petrov

Outline

• Motivation for experimentalists

• Mean-field model and its numerical implementation

• Results of modeling

• Interference of two flows in a channel

• Spin-polarized polariton transport in a channel

• Interpretation in terms of spin conductivity

• Summary and further steps

Page 3: 17.04.2012 m.petrov

Motivation for experimentalists

pump-L pump-R

BraggMirrors

Quantum Well

Page 4: 17.04.2012 m.petrov

Mean-field model

↵2 = �0.1↵1

⌧ ' 10ps

8<:iù @

@t +(x, t) =⇣� ù2

2mr2 +↵1| +(x, t)|2 +↵2| �(x, t)|2 � iù2⌧

⌘ +(x, t)+ p+(x, t)

iù @@t �(x, t) =

⇣� ù2

2mr2 +↵1| �(x, t)|2 +↵2| +(x, t)|2 � iù2⌧

⌘ �(x, t)+ p�(x, t)

m ' 3⇥ 10�5m0

p±(x, t) =pL±e�(x�x

L

)

2

�x

2e

iw

L

t+ikL

·x+

p

R

±e� (x�x

R

)

2

�x

2e

iw

R

t+ikR

·x

Page 5: 17.04.2012 m.petrov

Numerical implementation

• Spatial discretization by using Finite Element Method

• Quadratic elements

• Grid size: ∆x<0.25µm @ Lch~100µm

• Time discretization

• 5-step Backward Differentiation Formula

• Max time step: ∆t<100fs @ τ=10ps

• Implementation using Comsol (2D and 1D) and a private software (1D)

u0 = f(t,u), u(t0) = u0;sX

k=1

akun+k = h�f(tn+s , un+s);

tn = t0 +nh.

Page 6: 17.04.2012 m.petrov

Interference of two pump pulses

Page 7: 17.04.2012 m.petrov

Interference of two pump pulses (2)current density

j = � iù2m

( ⇤±r ± � ±r ⇤±)

Page 8: 17.04.2012 m.petrov

Interference of two pump pulses (2)current density

j = � iù2m

( ⇤±r ± � ±r ⇤±)

Page 9: 17.04.2012 m.petrov

Spin-polarized polariton transport

Page 10: 17.04.2012 m.petrov

Spin-polarized polariton transport

Page 11: 17.04.2012 m.petrov

Spin-polarized polariton transport

⇢c =| +|2 � | �|2| +|2 + | �|2

Page 12: 17.04.2012 m.petrov

Conductivity tensor

j = ùm

hn+r'+n�r'�

i=⇣�++ �+���+ ���

⌘hµ+R�µ+Lµ�R�µ�L

i

± =pn±ei'±

@n±@t

+ div j = 0

iù @@t ± =

⇣� ù

2

2mr2 +↵1| ±|2 +↵2| ⌥|2 �

iù2⌧

⌘ ± + P±

±(x, t) = ±(x)eiµ±t/ù P± = p0e�(x�x0)2

�2 ei!±t/ù+ik±·x

Imaginary part of GP eq. decomposition gives:

�µ± ±(x) =⇣� ù

2

2mr2 +↵1| ±|2 +↵2| ⌥|2 �

iù2⌧

⌘ ±(x)+ P 0±(x)

Page 13: 17.04.2012 m.petrov

Spin-current density with diferent pump-pulses

j = ùm

hn+r'+n�r'�

i=⇣�++ �+���+ ���

⌘hµ+R�µ+Lµ�R�µ�L

i

Page 14: 17.04.2012 m.petrov

Summary and further steps

• A mean-field model describing polariton spin transport based on coupled Gross-Pitaevskii equations is developed

• Numerical implementation of the model demonstrates interference of two flows stimulated by CW excitation near both boundaries of a channel

• If pumps are cross-polarized the effect can be emphasized by detection of circular polarization degree

• Further steps

• Possibility of experimental observation