Top Banner
Institute of Solid State Physics Technische Universität Graz 17. Superconductivity / Linear Response Dec. 2, 2019
33

17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Mar 12, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Institute of Solid State PhysicsTechnische Universität Graz

17. Superconductivity/ Linear Response

Dec. 2, 2019

Page 2: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Vortices in Superconductors

F q E v B

1F j Bn

j nqv

dVdt

Lorentz force

Faraday's law

j

Defects are used to pin the vortices

Page 3: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Superconducting Magnets

Whole body MRI

Page 4: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Magnets and cables

Maglev trains

Page 5: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

ITER

Magnet wire

Nb3Sn Magnet

Page 6: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Superconducting magnets

Largest superconducting magnet, CERN21000 Amps

Page 7: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

ac - Josephson effect

10 V standard

Brian Josephson

http://www.nist.gov/pml/history-volt/superconductivity_2000s.cfm

DOI: 10.1140/epjst/e2009-01050-6

http

://w

ww

.lne.

eu/e

n/r_

and_

d/el

ectri

cal_

met

rolo

gy/jo

seph

son-

effe

ct-e

j.asp

0 2d nhfV n fdt e

Page 8: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

SQUID

Superconducting quantum interference device

10-6 0 / (Hz)1/2

10-20 m/ (Hz)1/2

Gravity wave detectorSensitive detectors

Page 9: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Institute of Solid State PhysicsTechnische Universität Graz

Linear Response Theory

Page 10: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Fourier transformsImpulse response functions (Green's functions)Generalized susceptibilityCausalityKramers-Kronig relationsFluctuation - dissipation theoremDielectric functionOptical properties of solids

Institute of Solid State Physics

Classical linear response theory

Technische Universität Graz

Page 11: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

http://lampx.tugraz.at/~hadley/num/ch3/3.3a.php

Page 12: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Notations for Fourier Transforms

f(r) is built of plane waves

Page 13: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

http://lamp.tu-graz.ac.at/~hadley/ss1/crystaldiffraction/ft/ft.php

Page 14: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Properties of Fourier transforms

Page 15: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Convolution (Faltung)

( )* ( ) ( ) ( )f r g r f r g r r dr

Page 16: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Impulse response function (Green's functions)

21 4( ) exp sin 02 2

bt mk bg t t tm m m

A Green's function is the solution to a linear differential equation for a -function driving force

has the solution

For instance,2

2 ( )d g dgm b kg tdt dt

Page 17: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Green's functions

( )f t t t f t dt

A driving force f can be thought of a being built up of many delta functions after each other.

By superposition, the response to this driving function is superposition,

( ) ( ) ( )u t g t t f t dt

21 4( ) exp sin ( )

2 2b t t mk bu t t t f t dt

m m m

has the solution

For instance,2

2 ( )d u dum b ku f tdt dt

Green's function converts a differential equation into an integral equation

Page 18: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Generalized susceptibility

A driving function f causes a response u

If the driving force is sinusoidal,

0( ) ( ) ( ) ( ) i tu t g t t f t dt g t t F e dt

( )( )

i t

i t

g t t e dtuf e

0( ) i tf t F e

The response will also be sinusoidal.

The generalized susceptibility at frequency is

Page 19: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Generalized susceptibility

( ) uf

http://lampx.tugraz.at/~hadley/physikm

/apps/resonance.en.php

Page 20: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Generalized susceptibility

Since the integral is over t', the factor with t can be put in the integral.

( )( )

i t

i t

g t t e dtuf e

Change variables to = t - t', d = -dt', reverse the limits of integration

The susceptibility is the Fourier transform of the Green's function.

( )( ) ( ) i t tg t t e dt

( ) ( ) ig e d

1( ) ( )2

i tg t e d

F1,-1

Page 21: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

First order differential equation

1( ) ( ) exp 0bt bg t H tm m m

The Fourier transform of a decaying exponential is a Lorentzian

( ) ( ) i tg t e dt

22

1( )

b im

m bm

( )dgm bg tdt

Page 22: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Susceptibility

00 2 2 2

F b i mA Fb i m b m

0i mA bA F

( )dum bu F tdt

22

1b iu m

F m bm

Assume that u and F are sinusoidal 0 i t i tu Ae F F e

The sign of the imaginary part depends on whether you use eit or e-it.

Page 23: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Susceptibility

1i m b

( )dgm bg tdt

22

1b im

m bm

Fourier transform the differential equation

1b i m

Page 24: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

2

2 ( )d g dgm b kg tdt dt

2 42

b b mkm

Damped mass-spring system

21 4( ) ( ) exp sin 2 2

bt mk bg t H t tm m m

2 1m i b k

2

2 22

1k bim m

m k bm m

Fourier transform pair

tg e

Page 25: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

dx Mxdt

More complex linear systems

Any coupled system of linear differential equations can be written as a set of first order equations

The solutions have the form itix e

where are the eigenvectors and i are the eigenvalues of matrix M.

ix

Re(i) < 0 for stable systems

i is either real and negative (overdamped) or comes in complex conjugate pairs with a negative real part (underdamped).

Page 26: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

More complex linear systems

Low frequency "1/f noise"resonances

frequency

ampl

itude

Page 27: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Any function f(t) can be written in terms of its odd and even components

Odd and even components

The Fourier transform of E(t) is real and evenThe Fourier transform of O(t) is imaginary and odd

E(t) = ½[f(t) + f(-t)]

f(t) = E(t) + O(t)

f(t) = ½[f(t) + f(-t)] + ½[f(t) - f(-t)]

O(t) =½[f(t) - f(-t)]

( ) cos ( ) sinE t tdt i O t tdt

( ) ( ) ( ) cos sini tf t e dt E t O t t i t dt

Page 28: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

( ) sgn( ) ( )( ) sgn( ) ( )

O t t E tE t t O t

odd component

even component exp( )t

sgn( )exp( )t t

22

1( )

b im

m bm

Page 29: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Causality and the Kramers-Kronig relations (I)

The real and imaginary parts of the susceptibility are related.

If you know ', inverse Fourier transform to find E(t). Knowing E(t) you can determine O(t) = sgn(t)E(t). Fourier transform O(t) to find ".

( ) ( ) ( ) cos( ) ( ) sin( )ig e d E d i O d i

Page 30: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Kramers-Kronig relations

https://en.wikipedia.org/wiki/Kramers%E2%80%93Kronig_relations

If you know any of these for just positive frequencies, you can calculate all the others.

Page 31: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Causality and the Kramers-Kronig relation (II)

( ) sgn( ) ( )O t t E t

( ) sgn( ) ( )E t t O t

* ,i i *ii

Take the Fourier transform, use the convolution theorem.

1 ( )( ) P d

1 ( )( ) P d

Singularity makes a numerical evaluation more difficult.

P: Cauchy principle value (go around the singularity and take the limit as you pass by arbitrarily close)

Real space Reciprocal space

http://lamp.tu-graz.ac.at/~hadley/ss2/linearresponse/causality.php

Page 32: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Kramers-Kronig relations (III)

1 ( )( ) P d

1 ( )( ) P d

Kramers-Kronig relations II

( ) ( )( ) ( )

Real part is evenImaginary part is odd

0

0

1 ( ) 1 ( )( ) P d P d

change variables '-'(4 minus signs)

Page 33: 17. Superconductivity / Linear Responselampx.tugraz.at/~hadley/ss2/lectures19/dec2.pdfImpulse response function (Green's functions) 142 exp sin 0 22 bt mk b gt t t mm m A Green's function

Kramers-Kronig relations (III)

0 0

1 ( ) 1 ( )( ) P d P d

2 20

2 ( )( ) P d

2 2

1 1 2

2 20

2 ( )( ) P d

Singularity is stronger in this form.