Top Banner
17 17 Photomorphogenesis: responding to light Fig. Fig. 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 Tab. Tab. 1 1 2 2 3 3 4 4
56

17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Dec 22, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

1717

Photomorphogenesis: responding to light

Fig.Fig. 11 22 33 44 55 66 77 88

99 1010 1111 1212 1313 1414 1515 1616 1717

1818

Tab.Tab. 11 22 33 44

Page 2: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Light perception in plants

• Because plants do not enjoy the luxury of being able to change their environment or seek shelter from adverse conditions by changing their location, they must be more sensitive to changes in their surrounding so they can adapt accordingly.

• Plants can sense light gradients and detect subtle differences in spectral composition.

Page 3: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Photomorphogenesis

• Photomorphogenesis is referring to the response of plant to light, which is the central theme in plant development.

Page 4: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Photoreceptors

• Most photomorphogenic responses in higher plants appear to be under control of one (or more) of four classes of photoreceptors:1. Phytochromes (red and far-red)2. Cryptochrome (blue and UV-A): seedling development and flowering3. Phototropin (blue and UV-A): differential growth in a light gradient4. UV-B receptors: unknown

Page 5: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Chapter outline

• Red and far-red responses

• Blue and UV-A responses

• Interactions between photoreceptorsUV-B responses

Page 6: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phytochromes

• Phytochromes are plants photoreceptors.

• Phytochromes are photochromic. They can absorb red (665nm) and far-red (730nm) light and they have two forms, red-absorbing form (Pr) and far red-absorbing form (Pfr).

Page 7: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Figure 17.1

Page 8: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phytochrome is photoreversible

• Pr and Pfr forms of phytochrome can change to the other form when expose to red or far-red light, respectively.

Page 9: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phytochrome is photoreversible

Page 10: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

The photoreversibility of phytochrome comes from its

chromophore, phytochromobilin (PΦB)

Page 11: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

PΦB is covalently linked with the N-terminal part of phytochrome

Page 12: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Conformational change of PΦB results in Pr Pfr change

Page 13: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Pfr form is the active from of phytochrome

Page 14: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phytochrome is down regulated after activation

• The down regulation of phytochrome involved mRNA and protein degradation.

• Also, the expression of phytochrome will be down regulated at transcriptional level after activation.

Page 15: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Figure 17.5

declines because Pfr is declining.

is relatively unstable, with a half life (t1/2) of 1~1.5hr

Page 16: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Figure 17.7Five seconds of red light causes

mRNA level declines

15 minutes of lag period follows

mRNA drops 50% within the first hour

mRNA drops 95% within first two hours

Page 17: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Pr and Pfr forms of phytochrome is always in a dynamic equilibrium

Page 18: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phytochrome responses can be grouped into three groups

10-6~10-3 mol/m2

1~1000 mol/m2

Page 19: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Very Low Fluence Responses (VLFRs)0.1nmol/m2 ~ 50 nmol/m2

only converts less than 0.01% of total phytochrome to Pfr form

Because far-red light can only convert 97% Pfr to Pr, which is more than what needed to induce VLFRs, so VLFRs are not reversible

Page 20: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Very Low Fluence Responses (VLFRs)the principle evidence that VLFRs is mediated

by phytochrome is the similarity of its action spectrum to the absorption spectrum of Pr.

Most VLFRs are related to germination.It obeys the law of reciprocity.It peaks at red and blue.

Page 21: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Low Fluence Responses (LFRs)1~1000 mol/m2

Seed germinationSeedling developmentBioelectric potentials and ion distributionPhotoreversibleExhibit reciprocity between duration of

irradiation and fluence ratePeaks at red and far-redLFR is induced by poising the system with a

maximum level of Pfr for a very brief period of time.

Page 22: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

LFRs in seed germinationpositively photoblastic – germination

stimulated by lightnegatively photoblastic – germination

inhibited by light

A one mm thickness of fine soil will block more than 99% of light. Only light with wavelength longer than 700nm will be able to pass.

Very little Pfr is required to stimulate germination.

Page 23: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Figure 18.10

LFRs in seedling development

de-etiolation of seedlings

Page 24: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Table 17.3

Page 25: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

LFRs in bioelectric potentials and ion distribution

phytochrome-induced changes in the surface potential of the dark-grown barley roots (T. Tanada)

red light root tip become positively charged

far-red light root tip restore its negative charge

Page 26: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Figure 18.11

Red light induces a depolarization of the membrane within 5-10s following a red light treatment.Subsequent far-red treatment causes a slow return to normal polarity or small hyperpolarization.

Page 27: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Nyctinastic (sleep) movement

Page 28: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Pulvinus (bulbous zone) at the base of leaf/leaflet will drive leaf movement by altering its shape as a result of differential changes in the volume of cells on the upper and lower side of the organ.

Page 29: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Pulvinus is osmotically driven by rapid redistribution of K+, Cl- and malate.

Page 30: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Pulvinus is osmotically driven by rapid redistribution of K+, Cl- and malate.

H+ efflux K+ channels open

Page 31: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

High Irradiance Responses (HIRs)-prolonged/continuous exposure to light (far-red or direct sunlight) of relatively high irradiance-Response is proportional to the irradiance within a certain range (That’s why they are called HIRs, not HFRs.)-Not photoreversible-Not obeying the law of reciprocity-Many of them are also LFRs

Example 1: anthocyanin synthesisExample 2: Inhibition of stem elongation

Page 32: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

The initiation of anthocyanin accumulation is classical LFR, peaks at red region. However, when the duration of irradiation lengthens, peak shifts from R FR.

Example 1: Anthocyanin synthesis

Page 33: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Example 2: Inhibition of stem elongation in white mustard

Only dark-grown tissue respond to far-red. Green tissue is more responsive to red light.During de-etiolation, HIR peak shifts from far-red to red.

Light-grown

Dark-grown

Page 34: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.
Page 35: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.
Page 36: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phytochrome under natural conditions

• Under natural conditions, phyA may just detect the presence/absence of light since it only accumulate under dark-grown conditions.

• Other phytochrome response observed under natural conditions is shade avoidance syndrome.

Page 37: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Light under canopy is far-red enriched

Page 38: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Shade avoidance is triggered by far-red light, which can be shown in end-of-day treatment

Far

-red

FR

+R

Page 39: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Shade-avoidance syndrome

Page 40: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Figure 17.14

Page 41: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.
Page 42: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phytochrome signal transduction

• Phytochrome is a protein kinase.• When activated, it will phosphorylate other

proteins and begin signal pathways.

Page 43: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Proteins that are phosphorylated by phytochrome

Page 44: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phytochrome regulates gene expression

• A lot of nuclear-encoded genes are regulated by phytochromes, including the small subunit of rubsico (RBCS) and the light-harvesting chlorophyll a/b binding proteins (CAB).

• Some proteins are positively regulated, like RBCS and CAB; others are negatively regulated, like phyA and NADPH-protochlorophyllide oxidoreductase.

Page 45: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Figure 17.17

Page 46: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phytochrome also regulates other transcription factor’s activities

• PIF3 (phytochrome interacting factor 3) is a transcription activator.

• When phytochrome activates (Pr Pfr), the Pfr form binds to PIF3 and activates it. Then activated PIF3 will activate transcription of a large variety of proteins containing G-box motifs.

Page 47: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Figure 17.18

Page 48: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Blue and UV-A light responses

Cryptochrome

Phototropin

Page 49: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Cryptochrome is a flavoprotein

5,10-methenyltetrahydrofolate

Page 50: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Cryptochromes

• Cryptochromes are blue/UV-A photoreceptors mediating seedling development/flowering responses in plants.

• In Arabidopsis, there are two cryptochromes, cry1 and cry2. The structure of cry2 is also similar to cry1 with two chromophores.

• Cry2 has a role in determining flowering time.

Page 51: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phototropin

• Phototropin was orginally isolated as nph1 (nonphototropic hypocotyl 1).

Page 52: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phototropin

• Phototropin is also a flavoprotein with two flavin mononucleotide (FMN) chromophores.

• FMN chromophores binds to domain called LOV (light, oxygen and voltage) domain.

Page 53: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Phototropin could be a blue-light dependent protein kinase

Page 54: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Interactions between Photoreceptors

100%

68%

20%

Page 55: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

Hook straightening and cotyledon unfolding are controlled by all three photoreceptors

Cotyledon expansion is controlled by phyB and cry1

phyB controls hypocotyl elongation

Page 56: 17 Photomorphogenesis: responding to light Fig. 1111 2222 3333 4444 5555 6666 7777 8888 9999 10 11 12 13 14 15 16 17 18 Tab. 1111 2222 3333 4444.

CAB genes can be induced by either phyA (VLFR) or phyB (LFR).