Top Banner
15: Transients (A) 15: Transients (A) Differential Equation Piecewise steady state inputs Step Input Negative exponentials Exponential Time Delays Inductor Transients Linearity Transient Amplitude Capacitor Voltage Continuity Summary E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 1 / 11
108

15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Feb 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

15: Transients (A)

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 1 / 11

Page 2: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):

Page 3: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysis

Page 4: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysis

Page 5: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysisx(t) anything else: Differential equation

Page 6: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysisx(t) anything else: Differential equation

i(t) = C dydt

Page 7: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysisx(t) anything else: Differential equation

i(t) = C dydt =

x−yR

Page 8: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysisx(t) anything else: Differential equation

i(t) = C dydt =

x−yR ⇒ RC dy

dt + y = x

Page 9: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysisx(t) anything else: Differential equation

i(t) = C dydt =

x−yR ⇒ RC dy

dt + y = x

General Solution: Particular Integral + Complementary Function

Page 10: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysisx(t) anything else: Differential equation

i(t) = C dydt =

x−yR ⇒ RC dy

dt + y = x

General Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to RC dydt + y = x

Page 11: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysisx(t) anything else: Differential equation

i(t) = C dydt =

x−yR ⇒ RC dy

dt + y = x

General Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to RC dydt + y = x

If x(t) is piecewise constant or sinusoidal, we will usenodal/phasor analysis to find the steady state solution for y(t).

Page 12: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysisx(t) anything else: Differential equation

i(t) = C dydt =

x−yR ⇒ RC dy

dt + y = x

General Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to RC dydt + y = x

If x(t) is piecewise constant or sinusoidal, we will usenodal/phasor analysis to find the steady state solution for y(t).

Complementary Function: Solution to RC dydt + y = 0

Page 13: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysisx(t) anything else: Differential equation

i(t) = C dydt =

x−yR ⇒ RC dy

dt + y = x

General Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to RC dydt + y = x

If x(t) is piecewise constant or sinusoidal, we will usenodal/phasor analysis to find the steady state solution for y(t).

Complementary Function: Solution to RC dydt + y = 0

Does not depend on x(t), only on the circuit.

Page 14: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysisx(t) anything else: Differential equation

i(t) = C dydt =

x−yR ⇒ RC dy

dt + y = x

General Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to RC dydt + y = x

If x(t) is piecewise constant or sinusoidal, we will usenodal/phasor analysis to find the steady state solution for y(t).

Complementary Function: Solution to RC dydt + y = 0

Does not depend on x(t), only on the circuit.Solution is y(t) = Ae−

t/τ

where τ = RC is the time constant of the circuit.

Page 15: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Differential Equation

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 2 / 11

To find y(t):x(t) constant: Nodal analysisx(t) sinusoidal: Phasors + nodal analysisx(t) anything else: Differential equation

i(t) = C dydt =

x−yR ⇒ RC dy

dt + y = x

General Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to RC dydt + y = x

If x(t) is piecewise constant or sinusoidal, we will usenodal/phasor analysis to find the steady state solution for y(t).

Complementary Function: Solution to RC dydt + y = 0

Does not depend on x(t), only on the circuit.Solution is y(t) = Ae−

t/τ

where τ = RC is the time constant of the circuit.

The amplitude, A, is determined by the initial conditions at t = 0.

Page 16: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Piecewise steady state inputs

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 3 / 11

We will consider input signals that are sinusoidal or constant for a particulartime interval and then suddenly change in amplitude, phase or frequency.

Page 17: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Piecewise steady state inputs

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 3 / 11

We will consider input signals that are sinusoidal or constant for a particulartime interval and then suddenly change in amplitude, phase or frequency.

Output is the sum of the steady state and a transient:y(t) = ySS(t) + yTr(t)

Page 18: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Piecewise steady state inputs

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 3 / 11

We will consider input signals that are sinusoidal or constant for a particulartime interval and then suddenly change in amplitude, phase or frequency.

Output is the sum of the steady state and a transient:y(t) = ySS(t) + yTr(t)

Steady state, ySS(t), is the same frequency as theinput; use phasors + nodal analysis.

Page 19: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Piecewise steady state inputs

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 3 / 11

We will consider input signals that are sinusoidal or constant for a particulartime interval and then suddenly change in amplitude, phase or frequency.

Output is the sum of the steady state and a transient:y(t) = ySS(t) + yTr(t)

Steady state, ySS(t), is the same frequency as theinput; use phasors + nodal analysis.

Transient is always yTr(t) = Ae−t

τ at each change.

Page 20: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Piecewise steady state inputs

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 3 / 11

We will consider input signals that are sinusoidal or constant for a particulartime interval and then suddenly change in amplitude, phase or frequency.

Output is the sum of the steady state and a transient:y(t) = ySS(t) + yTr(t)

Steady state, ySS(t), is the same frequency as theinput; use phasors + nodal analysis.

Transient is always yTr(t) = Ae−t

τ at each change.

Page 21: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Step Input

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 4 / 11

For t < 0, y(t) = x(t) = 1For t ≥ 0, RC dy

dt + y = x= 4Time Const: τ = RC = 1ms

-1 0 1 2 3

-2

0

2

4

t (ms)

Page 22: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Step Input

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 4 / 11

For t < 0, y(t) = x(t) = 1For t ≥ 0, RC dy

dt + y = x= 4Time Const: τ = RC = 1ms

Steady State (Particular Integral)ySS(t) = x(t) = 4 for t ≥ 0

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

ySS

Page 23: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Step Input

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 4 / 11

For t < 0, y(t) = x(t) = 1For t ≥ 0, RC dy

dt + y = x= 4Time Const: τ = RC = 1ms

Steady State (Particular Integral)ySS(t) = x(t) = 4 for t ≥ 0

Transient (Complementary Function)yTr(t) = Ae−

t/τ

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

ySS

Page 24: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Step Input

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 4 / 11

For t < 0, y(t) = x(t) = 1For t ≥ 0, RC dy

dt + y = x= 4Time Const: τ = RC = 1ms

Steady State (Particular Integral)ySS(t) = x(t) = 4 for t ≥ 0

Transient (Complementary Function)yTr(t) = Ae−

t/τ

Steady State + Transienty(t) = ySS + yTr = 4 +Ae−

t/τ

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

ySS

Page 25: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Step Input

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 4 / 11

For t < 0, y(t) = x(t) = 1For t ≥ 0, RC dy

dt + y = x= 4Time Const: τ = RC = 1ms

Steady State (Particular Integral)ySS(t) = x(t) = 4 for t ≥ 0

Transient (Complementary Function)yTr(t) = Ae−

t/τ

Steady State + Transienty(t) = ySS + yTr = 4 +Ae−

t/τ

To find A, use capacitor property:Capacitor voltage never changes abruptly

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

ySS

Page 26: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Step Input

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 4 / 11

For t < 0, y(t) = x(t) = 1For t ≥ 0, RC dy

dt + y = x= 4Time Const: τ = RC = 1ms

Steady State (Particular Integral)ySS(t) = x(t) = 4 for t ≥ 0

Transient (Complementary Function)yTr(t) = Ae−

t/τ

Steady State + Transienty(t) = ySS + yTr = 4 +Ae−

t/τ

To find A, use capacitor property:Capacitor voltage never changes abruptly

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

ySS

y(0+) = 4 +A and y(0−) = 1

Page 27: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Step Input

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 4 / 11

For t < 0, y(t) = x(t) = 1For t ≥ 0, RC dy

dt + y = x= 4Time Const: τ = RC = 1ms

Steady State (Particular Integral)ySS(t) = x(t) = 4 for t ≥ 0

Transient (Complementary Function)yTr(t) = Ae−

t/τ

Steady State + Transienty(t) = ySS + yTr = 4 +Ae−

t/τ

To find A, use capacitor property:Capacitor voltage never changes abruptly

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

ySS

y(0+) = 4 +A and y(0−) = 1⇒ 4 +A = 1

Page 28: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Step Input

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 4 / 11

For t < 0, y(t) = x(t) = 1For t ≥ 0, RC dy

dt + y = x= 4Time Const: τ = RC = 1ms

Steady State (Particular Integral)ySS(t) = x(t) = 4 for t ≥ 0

Transient (Complementary Function)yTr(t) = Ae−

t/τ

Steady State + Transienty(t) = ySS + yTr = 4 +Ae−

t/τ

To find A, use capacitor property:Capacitor voltage never changes abruptly

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

ySS

y(0+) = 4 +A and y(0−) = 1⇒ 4 +A = 1⇒ A = −3

Page 29: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Step Input

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 4 / 11

For t < 0, y(t) = x(t) = 1For t ≥ 0, RC dy

dt + y = x= 4Time Const: τ = RC = 1ms

Steady State (Particular Integral)ySS(t) = x(t) = 4 for t ≥ 0

Transient (Complementary Function)yTr(t) = Ae−

t/τ

Steady State + Transienty(t) = ySS + yTr = 4 +Ae−

t/τ

To find A, use capacitor property:Capacitor voltage never changes abruptly

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

ySS

yTr

y(0+) = 4 +A and y(0−) = 1⇒ 4 +A = 1⇒ A = −3

So transient: yTr(t) = −3e−t/τ

Page 30: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Step Input

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 4 / 11

For t < 0, y(t) = x(t) = 1For t ≥ 0, RC dy

dt + y = x= 4Time Const: τ = RC = 1ms

Steady State (Particular Integral)ySS(t) = x(t) = 4 for t ≥ 0

Transient (Complementary Function)yTr(t) = Ae−

t/τ

Steady State + Transienty(t) = ySS + yTr = 4 +Ae−

t/τ

To find A, use capacitor property:Capacitor voltage never changes abruptly

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

ySS

yTr

y

y(0+) = 4 +A and y(0−) = 1⇒ 4 +A = 1⇒ A = −3

So transient: yTr(t) = −3e−t/τ and total y(t) = 4− 3e−t/τ

Page 31: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Step Input

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 4 / 11

For t < 0, y(t) = x(t) = 1For t ≥ 0, RC dy

dt + y = x= 4Time Const: τ = RC = 1ms

Steady State (Particular Integral)ySS(t) = x(t) = 4 for t ≥ 0

Transient (Complementary Function)yTr(t) = Ae−

t/τ

Steady State + Transienty(t) = ySS + yTr = 4 +Ae−

t/τ

To find A, use capacitor property:Capacitor voltage never changes abruptly

-1 0 1 2 3

-2

0

2

4

t (ms)

-1 0 1 2 3

-2

0

2

4

t (ms)

ySS

yTr

y

y(0+) = 4 +A and y(0−) = 1⇒ 4 +A = 1⇒ A = −3

So transient: yTr(t) = −3e−t/τ and total y(t) = 4− 3e−t/τ

Transient amplitude ⇐ capacitor voltage continuity: vC(0+) = vC(0−)

Page 32: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et

0 1 2 3 4 5

-10

0

10 et

t

Page 33: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4

0 1 2 3 4 5

-10

0

10 et3e¼t

t

Page 34: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et3e¼t

-2e½t

t

Page 35: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et3e¼t

-2e½t

t

Negative exponentials decay to 0:2e−t

0 2 4 6 8-2

0

22e-t

t

Page 36: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et3e¼t

-2e½t

t

Negative exponentials decay to 0:2e−t, e

−t/4

0 2 4 6 8-2

0

22e-t

e-¼t

t

Page 37: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et3e¼t

-2e½t

t

Negative exponentials decay to 0:2e−t, e

−t/4, −2e−t/2

0 2 4 6 8-2

0

22e-t

e-¼t

-2e-½t

t

Page 38: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et3e¼t

-2e½t

t

Negative exponentials decay to 0:2e−t, e

−t/4, −2e−t/2

Transients are negative exponentials.

0 2 4 6 8-2

0

22e-t

e-¼t

-2e-½t

t

Page 39: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et3e¼t

-2e½t

t

Negative exponentials decay to 0:2e−t, e

−t/4, −2e−t/2

Transients are negative exponentials.

0 2 4 6 8-2

0

22e-t

e-¼t

-2e-½t

t

Decay rate of e−t/a

a 2a 3a 4a 5a0

0.5

1

t

Page 40: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et3e¼t

-2e½t

t

Negative exponentials decay to 0:2e−t, e

−t/4, −2e−t/2

Transients are negative exponentials.

0 2 4 6 8-2

0

22e-t

e-¼t

-2e-½t

t

Decay rate of e−t/a

37% after 1 time constant

a 2a 3a 4a 5a0

0.5

1

0.37

t

Page 41: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et3e¼t

-2e½t

t

Negative exponentials decay to 0:2e−t, e

−t/4, −2e−t/2

Transients are negative exponentials.

0 2 4 6 8-2

0

22e-t

e-¼t

-2e-½t

t

Decay rate of e−t/a

37% after 1 time constant5% after 3

a 2a 3a 4a 5a0

0.5

1

0.37

0.05

t

Page 42: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et3e¼t

-2e½t

t

Negative exponentials decay to 0:2e−t, e

−t/4, −2e−t/2

Transients are negative exponentials.

0 2 4 6 8-2

0

22e-t

e-¼t

-2e-½t

t

Decay rate of e−t/a

37% after 1 time constant5% after 3, <1% after 5

a 2a 3a 4a 5a0

0.5

1

0.37

0.05 0.01

t

Page 43: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et3e¼t

-2e½t

t

Negative exponentials decay to 0:2e−t, e

−t/4, −2e−t/2

Transients are negative exponentials.

0 2 4 6 8-2

0

22e-t

e-¼t

-2e-½t

t

Decay rate of e−t/a

37% after 1 time constant5% after 3, <1% after 5

a 2a 3a 4a 5a0

0.5

1

0.37

0.05 0.01

t

Gradient of e−t/a

Gradient at t hits zero at t+ a.

a 2a 3a0

0.5

1

t

Page 44: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Negative exponentials

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 5 / 11

Positive exponentials grow to ±∞:et, 3et/4, −2et/2

0 1 2 3 4 5

-10

0

10 et3e¼t

-2e½t

t

Negative exponentials decay to 0:2e−t, e

−t/4, −2e−t/2

Transients are negative exponentials.

0 2 4 6 8-2

0

22e-t

e-¼t

-2e-½t

t

Decay rate of e−t/a

37% after 1 time constant5% after 3, <1% after 5

a 2a 3a 4a 5a0

0.5

1

0.37

0.05 0.01

t

Gradient of e−t/a

Gradient at t hits zero at t+ a.True for any t.

a 2a 3a0

0.5

1

t

Page 45: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Exponential Time Delays

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 6 / 11

Negative exponential with a finalvalue of F .

y(t) = F + (A− F ) e−(t−TA)/τ

Page 46: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Exponential Time Delays

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 6 / 11

Negative exponential with a finalvalue of F .

y(t) = F + (A− F ) e−(t−TA)/τ

How long does it take to go from A to B ?

Page 47: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Exponential Time Delays

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 6 / 11

Negative exponential with a finalvalue of F .

y(t) = F + (A− F ) e−(t−TA)/τ

How long does it take to go from A to B ?

At t = TB :y(TB) = B = F + (A− F ) e−(TB−TA)/τ

Page 48: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Exponential Time Delays

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 6 / 11

Negative exponential with a finalvalue of F .

y(t) = F + (A− F ) e−(t−TA)/τ

How long does it take to go from A to B ?

At t = TB :y(TB) = B = F + (A− F ) e−(TB−TA)/τ

B−FA−F = e

−(TB−TA)/τ

Page 49: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Exponential Time Delays

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 6 / 11

Negative exponential with a finalvalue of F .

y(t) = F + (A− F ) e−(t−TA)/τ

How long does it take to go from A to B ?

At t = TB :y(TB) = B = F + (A− F ) e−(TB−TA)/τ

B−FA−F = e

−(TB−TA)/τ

Hence TB − TA = τ ln(

A−FB−F

)

= τ ln(

initial distance toFfinal distance toF

)

Page 50: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Exponential Time Delays

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 6 / 11

Negative exponential with a finalvalue of F .

y(t) = F + (A− F ) e−(t−TA)/τ

How long does it take to go from A to B ?

At t = TB :y(TB) = B = F + (A− F ) e−(TB−TA)/τ

B−FA−F = e

−(TB−TA)/τ

Hence TB − TA = τ ln(

A−FB−F

)

= τ ln(

initial distance toFfinal distance toF

)

Useful formula - worth remembering.

Page 51: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

Page 52: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt

Page 53: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt =

LR ×

d(x−y)dt

Page 54: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt =

LR ×

d(x−y)dt = L

Rdxdt − L

Rdydt

Page 55: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt =

LR ×

d(x−y)dt = L

Rdxdt − L

Rdydt

⇒ LR

dydt + y = L

Rdxdt

Page 56: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt =

LR ×

d(x−y)dt = L

Rdxdt − L

Rdydt

⇒ LR

dydt + y = L

Rdxdt

Solution: Particular Integral + Complementary Function

Page 57: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt =

LR ×

d(x−y)dt = L

Rdxdt − L

Rdydt

⇒ LR

dydt + y = L

Rdxdt

Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to LR

dydt + y = L

Rdxdt

Page 58: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt =

LR ×

d(x−y)dt = L

Rdxdt − L

Rdydt

⇒ LR

dydt + y = L

Rdxdt

Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to LR

dydt + y = L

Rdxdt

If x(t) is piecewise constant or sinusoidal, we will usenodal/phasor analysis to find the steady state solution, ySS(t).

Page 59: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt =

LR ×

d(x−y)dt = L

Rdxdt − L

Rdydt

⇒ LR

dydt + y = L

Rdxdt

Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to LR

dydt + y = L

Rdxdt

If x(t) is piecewise constant or sinusoidal, we will usenodal/phasor analysis to find the steady state solution, ySS(t).

Complementary Function: Solution to LR

dydt + y = 0

Page 60: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt =

LR ×

d(x−y)dt = L

Rdxdt − L

Rdydt

⇒ LR

dydt + y = L

Rdxdt

Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to LR

dydt + y = L

Rdxdt

If x(t) is piecewise constant or sinusoidal, we will usenodal/phasor analysis to find the steady state solution, ySS(t).

Complementary Function: Solution to LR

dydt + y = 0

Does not depend on x(t), only on the circuit.

Page 61: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt =

LR ×

d(x−y)dt = L

Rdxdt − L

Rdydt

⇒ LR

dydt + y = L

Rdxdt

Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to LR

dydt + y = L

Rdxdt

If x(t) is piecewise constant or sinusoidal, we will usenodal/phasor analysis to find the steady state solution, ySS(t).

Complementary Function: Solution to LR

dydt + y = 0

Does not depend on x(t), only on the circuit.Solution is yTr(t) = Ae−

t/τ

where τ = LR is the time constant of the circuit.

Page 62: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt =

LR ×

d(x−y)dt = L

Rdxdt − L

Rdydt

⇒ LR

dydt + y = L

Rdxdt

Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to LR

dydt + y = L

Rdxdt

If x(t) is piecewise constant or sinusoidal, we will usenodal/phasor analysis to find the steady state solution, ySS(t).

Complementary Function: Solution to LR

dydt + y = 0

Does not depend on x(t), only on the circuit.Solution is yTr(t) = Ae−

t/τ

where τ = LR is the time constant of the circuit.

1st order transient is always yTr(t) = Ae−t/τ where τ = RC or L

R

Page 63: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Inductor Transients

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 7 / 11

We know i = x−yR

y(t) = L didt =

LR ×

d(x−y)dt = L

Rdxdt − L

Rdydt

⇒ LR

dydt + y = L

Rdxdt

Solution: Particular Integral + Complementary Function

Particular Integral: Any solution to LR

dydt + y = L

Rdxdt

If x(t) is piecewise constant or sinusoidal, we will usenodal/phasor analysis to find the steady state solution, ySS(t).

Complementary Function: Solution to LR

dydt + y = 0

Does not depend on x(t), only on the circuit.Solution is yTr(t) = Ae−

t/τ

where τ = LR is the time constant of the circuit.

1st order transient is always yTr(t) = Ae−t/τ where τ = RC or L

RAmplitude A ⇐ no abrupt change in capacitor voltage or inductor current.

Page 64: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Linearity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 8 / 11

1st order circuit has only one C or L.

Page 65: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Linearity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 8 / 11

1st order circuit has only one C or L.Make a Thévenin equivalent of the networkconnected to the terminals of C .

Page 66: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Linearity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 8 / 11

1st order circuit has only one C or L.Make a Thévenin equivalent of the networkconnected to the terminals of C . Rememberx is a voltage source but y is not.

Page 67: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Linearity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 8 / 11

1st order circuit has only one C or L.Make a Thévenin equivalent of the networkconnected to the terminals of C . Rememberx is a voltage source but y is not.

Page 68: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Linearity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 8 / 11

1st order circuit has only one C or L.Make a Thévenin equivalent of the networkconnected to the terminals of C . Rememberx is a voltage source but y is not.

Now v(t) = vSS(t) + vTr(t)= vSS(t) +Ae

−t/τ

Page 69: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Linearity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 8 / 11

1st order circuit has only one C or L.Make a Thévenin equivalent of the networkconnected to the terminals of C . Rememberx is a voltage source but y is not.

Now v(t) = vSS(t) + vTr(t)= vSS(t) +Ae

−t/τ

Time constant is τ = RThC

where RTh is the Thévenin resistance.

Page 70: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Linearity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 8 / 11

1st order circuit has only one C or L.Make a Thévenin equivalent of the networkconnected to the terminals of C . Rememberx is a voltage source but y is not.

Now v(t) = vSS(t) + vTr(t)= vSS(t) +Ae

−t/τ

Time constant is τ = RThC

where RTh is the Thévenin resistance.

Replace the capacitor with a voltage sourcev(t); all voltages and currents in the circuitwill remain unchanged.

Page 71: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Linearity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 8 / 11

1st order circuit has only one C or L.Make a Thévenin equivalent of the networkconnected to the terminals of C . Rememberx is a voltage source but y is not.

Now v(t) = vSS(t) + vTr(t)= vSS(t) +Ae

−t/τ

Time constant is τ = RThC

where RTh is the Thévenin resistance.

Replace the capacitor with a voltage sourcev(t); all voltages and currents in the circuitwill remain unchanged.

Linearity: y = ax+ bv = ax+ bvSS + bvTr

Page 72: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Linearity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 8 / 11

1st order circuit has only one C or L.Make a Thévenin equivalent of the networkconnected to the terminals of C . Rememberx is a voltage source but y is not.

Now v(t) = vSS(t) + vTr(t)= vSS(t) +Ae

−t/τ

Time constant is τ = RThC

where RTh is the Thévenin resistance.

Replace the capacitor with a voltage sourcev(t); all voltages and currents in the circuitwill remain unchanged.

Linearity: y = ax+ bv = ax+ bvSS + bvTr = ySS + bvTr

Page 73: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Linearity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 8 / 11

1st order circuit has only one C or L.Make a Thévenin equivalent of the networkconnected to the terminals of C . Rememberx is a voltage source but y is not.

Now v(t) = vSS(t) + vTr(t)= vSS(t) +Ae

−t/τ

Time constant is τ = RThC

where RTh is the Thévenin resistance.

Replace the capacitor with a voltage sourcev(t); all voltages and currents in the circuitwill remain unchanged.

Linearity: y = ax+ bv = ax+ bvSS + bvTr = ySS + bvTr

All voltages and currents in a circuit have the same transient (but scaled).

Page 74: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Linearity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 8 / 11

1st order circuit has only one C or L.Make a Thévenin equivalent of the networkconnected to the terminals of C . Rememberx is a voltage source but y is not.

Now v(t) = vSS(t) + vTr(t)= vSS(t) +Ae

−t/τ

Time constant is τ = RThC

where RTh is the Thévenin resistance.

Replace the capacitor with a voltage sourcev(t); all voltages and currents in the circuitwill remain unchanged.

Linearity: y = ax+ bv = ax+ bvSS + bvTr = ySS + bvTr

All voltages and currents in a circuit have the same transient (but scaled).

The circuit’s time constant is τ = RThC or LRTh

where RTh is theThévenin resistance of the network connected to C or L.

Page 75: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)

Page 76: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

Page 77: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Page 78: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

Page 79: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+

Page 80: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+x− y = 1mA× 1 k = 1

Page 81: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+x− y = 1mA× 1 k = 1y(0+) = x(0+)− 1 = 5

Page 82: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+x− y = 1mA× 1 k = 1y(0+) = x(0+)− 1 = 5

Time Constant

Page 83: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+x− y = 1mA× 1 k = 1y(0+) = x(0+)− 1 = 5

Time ConstantSet x ≡ 0 → RTh = 2k

Page 84: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+x− y = 1mA× 1 k = 1y(0+) = x(0+)− 1 = 5

Time ConstantSet x ≡ 0 → RTh = 2kτ = L

RTh= 2µs

Page 85: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+x− y = 1mA× 1 k = 1y(0+) = x(0+)− 1 = 5

Time ConstantSet x ≡ 0 → RTh = 2kτ = L

RTh= 2µs

Result

Page 86: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+x− y = 1mA× 1 k = 1y(0+) = x(0+)− 1 = 5

Time ConstantSet x ≡ 0 → RTh = 2kτ = L

RTh= 2µs

Resulty = ySS + (y (0+)− ySS (0+)) e−t/τ

Page 87: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+x− y = 1mA× 1 k = 1y(0+) = x(0+)− 1 = 5

Time ConstantSet x ≡ 0 → RTh = 2kτ = L

RTh= 2µs

Resulty = ySS + (y (0+)− ySS (0+)) e−t/τ

= 3 + (5− 3) e−t/τ

Page 88: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+x− y = 1mA× 1 k = 1y(0+) = x(0+)− 1 = 5

Time ConstantSet x ≡ 0 → RTh = 2kτ = L

RTh= 2µs

Resulty = ySS + (y (0+)− ySS (0+)) e−t/τ

= 3 + (5− 3) e−t/τ

= 3 + 2e−t/τ

Page 89: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Transient Amplitude

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 9 / 11

Find Steady State (DC ⇒ ZL = 0)Potential divider: ySS = 1

2x

ySS(0−) = 1, ySS(0+) = 3

Inductor Current ContinuityiSS(0−) = 1mA ⇒ iL(0+) = 1mA

At t = 0+x− y = 1mA× 1 k = 1y(0+) = x(0+)− 1 = 5

Time ConstantSet x ≡ 0 → RTh = 2kτ = L

RTh= 2µs

Resulty = ySS + (y (0+)− ySS (0+)) e−t/τ

= 3 + (5− 3) e−t/τ

= 3 + 2e−t/τ

Page 90: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

Page 91: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

Page 92: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

KCL @ Y: y−v2R + y−x

6R = 0

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

Page 93: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

KCL @ Y: y−v2R + y−x

6R = 0

vSS = 34x, ySS = 13

16x

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

ySS

Page 94: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

KCL @ Y: y−v2R + y−x

6R = 0

vSS = 34x, ySS = 13

16x

Capacitor Voltage ContinuityvSS(0−) = −3 ⇒ v(0+) = −3

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

ySS

Page 95: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

KCL @ Y: y−v2R + y−x

6R = 0

vSS = 34x, ySS = 13

16x

Capacitor Voltage ContinuityvSS(0−) = −3 ⇒ v(0+) = −3

At t = 0+: x = 4 and v = −3

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

ySS

Page 96: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

KCL @ Y: y−v2R + y−x

6R = 0

vSS = 34x, ySS = 13

16x

Capacitor Voltage ContinuityvSS(0−) = −3 ⇒ v(0+) = −3

At t = 0+: x = 4 and v = −3KCL @ Y: y−(−3)

2R + y−46R = 0 -RC 0 RC 2RC 3RC

-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

ySS

Page 97: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

KCL @ Y: y−v2R + y−x

6R = 0

vSS = 34x, ySS = 13

16x

Capacitor Voltage ContinuityvSS(0−) = −3 ⇒ v(0+) = −3

At t = 0+: x = 4 and v = −3KCL @ Y: y−(−3)

2R + y−46R = 0

y(0+) = −9+44 = − 5

4

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

ySS

Page 98: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

KCL @ Y: y−v2R + y−x

6R = 0

vSS = 34x, ySS = 13

16x

Capacitor Voltage ContinuityvSS(0−) = −3 ⇒ v(0+) = −3

At t = 0+: x = 4 and v = −3KCL @ Y: y−(−3)

2R + y−46R = 0

y(0+) = −9+44 = − 5

4

Time Constantτ = RThC = 2RC (from earlier slide)

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

ySS

Page 99: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

KCL @ Y: y−v2R + y−x

6R = 0

vSS = 34x, ySS = 13

16x

Capacitor Voltage ContinuityvSS(0−) = −3 ⇒ v(0+) = −3

At t = 0+: x = 4 and v = −3KCL @ Y: y−(−3)

2R + y−46R = 0

y(0+) = −9+44 = − 5

4

Time Constantτ = RThC = 2RC (from earlier slide)

Resulty = ySS + (y (0+)− ySS (0+)) e−t/τ

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

ySS

Page 100: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

KCL @ Y: y−v2R + y−x

6R = 0

vSS = 34x, ySS = 13

16x

Capacitor Voltage ContinuityvSS(0−) = −3 ⇒ v(0+) = −3

At t = 0+: x = 4 and v = −3KCL @ Y: y−(−3)

2R + y−46R = 0

y(0+) = −9+44 = − 5

4

Time Constantτ = RThC = 2RC (from earlier slide)

Resulty = ySS + (y (0+)− ySS (0+)) e−t/τ

= 134 +

(

− 54 − 13

4

)

e−t/τ

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

ySS

Page 101: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

KCL @ Y: y−v2R + y−x

6R = 0

vSS = 34x, ySS = 13

16x

Capacitor Voltage ContinuityvSS(0−) = −3 ⇒ v(0+) = −3

At t = 0+: x = 4 and v = −3KCL @ Y: y−(−3)

2R + y−46R = 0

y(0+) = −9+44 = − 5

4

Time Constantτ = RThC = 2RC (from earlier slide)

Resulty = ySS + (y (0+)− ySS (0+)) e−t/τ

= 134 +

(

− 54 − 13

4

)

e−t/τ

= 134 − 18

4 e−t/τ = 3 1

4 − 4 12e

−t/2RC

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

yTr

ySS

Page 102: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Capacitor Voltage Continuity

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 10 / 11

Find Steady State (DC ⇒ ZC = ∞)KCL @ V: v−x

4R + v8R + v−y

2R = 0

KCL @ Y: y−v2R + y−x

6R = 0

vSS = 34x, ySS = 13

16x

Capacitor Voltage ContinuityvSS(0−) = −3 ⇒ v(0+) = −3

At t = 0+: x = 4 and v = −3KCL @ Y: y−(−3)

2R + y−46R = 0

y(0+) = −9+44 = − 5

4

Time Constantτ = RThC = 2RC (from earlier slide)

Resulty = ySS + (y (0+)− ySS (0+)) e−t/τ

= 134 +

(

− 54 − 13

4

)

e−t/τ

= 134 − 18

4 e−t/τ = 3 1

4 − 4 12e

−t/2RC

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

-RC 0 RC 2RC 3RC-4

-2

0

2

4

t

yTr

ySS

y

Page 103: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Summary

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 11 / 11

• 1st order circuits: include one C or one L.◦ vC or iL never change abruptly. The output, y, is not necessarily

continuous unless it equals vC .

Page 104: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Summary

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 11 / 11

• 1st order circuits: include one C or one L.◦ vC or iL never change abruptly. The output, y, is not necessarily

continuous unless it equals vC .

• Circuit time constant: τ = RThC or LRTh

◦ RTh is the Thévenin resistance seen by C or L.◦ Same τ for all voltages and currents.

Page 105: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Summary

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 11 / 11

• 1st order circuits: include one C or one L.◦ vC or iL never change abruptly. The output, y, is not necessarily

continuous unless it equals vC .

• Circuit time constant: τ = RThC or LRTh

◦ RTh is the Thévenin resistance seen by C or L.◦ Same τ for all voltages and currents.

• Output = Steady State + Transient◦ Steady State: use nodal/Phasor analysis when input is piecewise

constant or piecewise sinusoidal. The steady state has the samefrequency as the input signal.

Page 106: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Summary

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 11 / 11

• 1st order circuits: include one C or one L.◦ vC or iL never change abruptly. The output, y, is not necessarily

continuous unless it equals vC .

• Circuit time constant: τ = RThC or LRTh

◦ RTh is the Thévenin resistance seen by C or L.◦ Same τ for all voltages and currents.

• Output = Steady State + Transient◦ Steady State: use nodal/Phasor analysis when input is piecewise

constant or piecewise sinusoidal. The steady state has the samefrequency as the input signal.

◦ Transient: Find vC(0−) or iL(0−): unchanged at t = 0+Find y(0+) assuming source of vC(0+) or iL(0+)Amplitude never complex, never depends on t.

Page 107: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Summary

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 11 / 11

• 1st order circuits: include one C or one L.◦ vC or iL never change abruptly. The output, y, is not necessarily

continuous unless it equals vC .

• Circuit time constant: τ = RThC or LRTh

◦ RTh is the Thévenin resistance seen by C or L.◦ Same τ for all voltages and currents.

• Output = Steady State + Transient◦ Steady State: use nodal/Phasor analysis when input is piecewise

constant or piecewise sinusoidal. The steady state has the samefrequency as the input signal.

◦ Transient: Find vC(0−) or iL(0−): unchanged at t = 0+Find y(0+) assuming source of vC(0+) or iL(0+)Amplitude never complex, never depends on t.

◦ y(t) = ySS(t) + (y(0+)− ySS(0+)) e−t/τ

Page 108: 15: Transients (A) - Imperial College London · 2017-09-13 · 15: Transients (A) 15: Transients (A) •Differential Equation •Piecewise steady state inputs •Step Input •Negative

Summary

15: Transients (A)

• Differential Equation

• Piecewise steady stateinputs

• Step Input

• Negative exponentials

• Exponential Time Delays

• Inductor Transients

• Linearity

• Transient Amplitude

• Capacitor VoltageContinuity

• Summary

E1.1 Analysis of Circuits (2017-10110) Transients (A): 15 – 11 / 11

• 1st order circuits: include one C or one L.◦ vC or iL never change abruptly. The output, y, is not necessarily

continuous unless it equals vC .

• Circuit time constant: τ = RThC or LRTh

◦ RTh is the Thévenin resistance seen by C or L.◦ Same τ for all voltages and currents.

• Output = Steady State + Transient◦ Steady State: use nodal/Phasor analysis when input is piecewise

constant or piecewise sinusoidal. The steady state has the samefrequency as the input signal.

◦ Transient: Find vC(0−) or iL(0−): unchanged at t = 0+Find y(0+) assuming source of vC(0+) or iL(0+)Amplitude never complex, never depends on t.

◦ y(t) = ySS(t) + (y(0+)− ySS(0+)) e−t/τ

See Hayt Ch 8 or Irwin Ch 7.