Top Banner
15 1 Grossberg Network
32

15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

Jan 01, 2016

Download

Documents

Dennis Robinson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

1

Grossberg Network

Page 2: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

2

Biological Motivation: Vision

Eyeball and Retina

Page 3: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

3

Layers of Retina

The retina is a part of the brain that covers the back innerwall of the eye and consists of three layers of neurons:

Outer Layer:Photoreceptors - convert light into electrical signals

Rods - allow us to see in dim lightCones - fine detail and color

Middle LayerBipolar Cells - link photoreceptors to third layerHorizontal Cells - link receptors with bipolar cellsAmacrine Cells - link bipolar cells with ganglion cells

Final LayerGanglion Cells - link retina to brain through optic nerve

Page 4: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

4

Visual Pathway

Page 5: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

5

Photograph of the Retina

Blind Spot (Optic Disk)

Vein

Fovea

Page 6: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

6

Imperfections in Retinal Uptake

Page 7: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

7

Compensatory Processing

Emergent Segmentation:Complete missing boundaries.

Featural Filling-In:Fill in color and brightness.

Page 8: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

8

Visual Illusions

Illusions demostrate the compensatory processing of thevisual system. Here we see a bright white triangle and a circle which do not actually exist in the figures.

Page 9: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

9

Vision Normalization

The vision systems normalize scenes so that we are onlyaware of relative differences in brightness, not absolutebrightness.

Page 10: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

10

Brightness Contrast

If you look at a point between the two circles, the smallinner circle on the left will appear lighter than the smallinner circle on the right, although they have the samebrightness. It is relatively lighter than its surroundings.

The visual system normalizes the scene. We see relativeintensities.

Page 11: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

11

Leaky Integrator

dn t( )dt

------------ n t( )– p t( )+=

(Building block for basic nonlinear model.)

Page 12: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

12

Leaky Integrator Response

0 1 2 3 4 50

0.25

0.5

0.75

1

n t( ) et –n 0( )

1--- e

t – –p t –( ) d

0

t

+=

n t( ) p 1 et –

– =

For a constant input and zero initial conditions:

Page 13: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

13

Shunting Model

Gain Control(Sets lower limit)

Gain Control(Sets upper limit)

ExcitatoryInput

InhibitoryInput

Page 14: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

14

Shunting Model Response

0 1 2 3 4 50

0.25

0.5

0.75

1

0 1 2 3 4 50

0.25

0.5

0.75

1

dn t( )dt

------------ n t( )– b+n t( )– p+

n t( ) b-

+ p-–+=

b+

1= b-

0= 1= p-

0=

p+

1= p+

5=

Upper limit will be 1, and lower limit will be 0.

Page 15: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

15

Grossberg Network

LTM - Long Term Memory (Network Weights)STM - Short Term Memory (Network Outputs)

Page 16: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

16

Layer 1

Page 17: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

17

Operation of Layer 1

dn1

t( )dt

--------------- n1t( )– b

+ 1n

1t( )– W

+ 1 p n

1t( ) b

- 1+ W

- 1 p–+=

Excitatory Input

W+ 1

1 0 0

0 1 0

0 0 1

=W+ 1

p

Inhibitory Input W

- 1

0 1 1

1 0 1

1 1 0

=W- 1

p

On-Center/Off-SurroundConnectionPattern

Normalizes the input while maintaining relative intensities.

b- 1 0=

b+ 1i b

+ 1=

Page 18: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

18

Analysis of Normalization

dni

1t( )

dt-------------- ni

1t( )– b

+ 1ni

1t( )– pi ni

1t( ) p jj i–+=

Neuron i response:

At steady state:

0 ni1

– b+ 1

ni1

– pi ni1

p jj i–+=

ni1 b

+ 1pi

1 p jj 1=

S1

+

-------------------------=

pipiP----= P pj

j 1=

S1

=

Define relative intensity:

Steady state neuron activity:

ni1 b

+ 1P

1 P+-------------

pi= nj1

j 1=

S1

b+ 1P1 P+-------------

p jj 1=

S1

b+ 1P1 P+-------------

b+ 1

= =

where

Total activity:

Page 19: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

19

Layer 1 Example

0 0.05 0.1 0.15 0.20

0.25

0.5

0.75

1

0 0.05 0.1 0.15 0.20

0.25

0.5

0.75

1

0.1 dn1

1t( )

dt-------------- n1

1t( )– 1 n1

1t( )– p1 n1

1t( )p2–+=

0.1 dn2

1t( )

dt-------------- n2

1t( )– 1 n2

1t( )– p2 n2

1t( )p1–+=

t

n11

n21

p128

=

t

n11

n21

p21040

=

Page 20: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

20

Characteristics of Layer 1

• The network is sensitive to relative intensities of the input pattern, rather than absolute intensities.

• The output of Layer 1 is a normalized version of the input pattern.

• The on-center/off-surround connection pattern and the nonlinear gain control of the shunting model produce the normalization effect.

• The operation of Layer 1 explains the brightness constancy and brightness contrast characteristics of the human visual system.

Page 21: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

21

Layer 2

Page 22: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

22

Layer 2 Operation

dn2t( )

dt--------------- n2

t( )– b+ 2 n2t( )– W+ 2 f2 n2

t( )( ) W2a1+ +=

n2t( ) b

- 2+ W

- 2 f

2n

2t( )( )–

W+ 2 f

2n

2t( )( ) W

2a

1+

Excitatory Input:

W+ 2

W+ 1

= (On-center connections)

Inhibitory Input:

W2

(Adaptive weights)

W- 2 f

2n

2t( )( )

W- 2

W- 1

= (Off-surround connections)

Page 23: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

23

Layer 2 Example

0.1= b+ 2 1

1= b- 2 0

0= W2 w

21

T

w2

2 T

0.9 0.45

0.45 0.9= =f

2n( )

10 n 2

1 n 2+-------------------=

0.1 dn1

2t( )

dt-------------- n1

2t( )– 1 n1

2t( )– f

2n1

2t( )( ) w

21

Ta

1+

n12t( ) f

2n2

2t( )( )–+=

0.1 d n2

2t( )

dt-------------- n2

2t( )– 1 n2

2t( )– f 2

n22t( )( ) w

22

Ta1

+

n22t( ) f

2n1

2t( )( ) .–+=

Correlation betweenprototype 1 and input.

Correlation betweenprototype 2 and input.

Page 24: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

24

Layer 2 Response

a1 0.2

0.8=

w2

1 Ta

10.9 0.45

0.20.8

0.54= =

0 0.1 0.2 0.3 0.4 0.50

0.25

0.5

0.75

1

t

w21

Ta1

w2

2 Ta1

n12t( )

n22t( )

w2

2 Ta

10.45 0.9

0.20.8

0.81= =

ContrastEnhancement

andStorage

Input to neuron 1: Input to neuron 2:

Page 25: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

25

Characteristics of Layer 2

• As in the Hamming and Kohonen networks, the inputs to Layer 2 are the inner products between the prototype patterns (rows of the weight matrix W2) and the output of Layer 1 (normalized input pattern).

• The nonlinear feedback enables the network to store the output pattern (pattern remains after input is removed).

• The on-center/off-surround connection pattern causes contrast enhancement (large inputs are maintained, while small inputs are attenuated).

Page 26: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

26

Oriented Receptive Field

When an oriented receptive field is used, instead of an on-center/off-surroundreceptive field, the emergent segmentation problem can be understood.

Page 27: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

27

Choice of Transfer Function

Page 28: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

28

Adaptive Weights

dw i j2t( )

dt------------------ wi j

2t( )– ni

2t( )nj

1t( )+ =

dw i j2t( )

dt------------------ ni

2t( ) wi j

2t( )– nj

1t( )+ =

d w2

i t( ) dt

---------------------- ni2t( ) w

2i t( ) – n

1t( )+ =

Hebb Rule with Decay

Instar Rule(Gated Learning)

Vector Instar Rule

Learn whenni2(t) is active.

Page 29: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

29

Example

dw1 12t( )

dt-------------------- n1

2t( ) w1 1

2t( )– n1

1t( )+ =

dw1 22t( )

dt-------------------- n1

2t( ) w1 2

2t( )– n2

1t( )+ =

dw2 12t( )

dt-------------------- n2

2t( ) w2 1

2t( )– n1

1t( )+ =

dw2 22t( )

dt-------------------- n2

2t( ) w2 2

2t( )– n2

1t( )+ =

Page 30: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

30

Response of Adaptive Weights

n1 0.90.45

= n2 10

=

n1 0.450.9

= n2 01

=

For Pattern 1:

For Pattern 2:

0 0.5 1 1.5 2 2.5 30

0.25

0.5

0.75

1

w1 12

t( )

w1 22

t( )

w2 12

t( )

w2 22

t( )

The first row of the weight matrix is updated when n1

2(t) is active, and

the second row of the weight matrix is updated when n2

2(t) is active.

Two different input patterns are alternately presented to the network for periods of 0.2 seconds at a time.

Page 31: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

31

Relation to Kohonen Law

d w2i t( ) dt

---------------------- ni2t( ) w2

i t( ) – n1t( )+ =

d w2i t( ) dt

----------------------w2i t t+( ) w2

i t( )–

t----------------------------------------------

w2i t t+( ) w2

i t( ) t ni2t( ) w2

i t( )– n1t( )+ +=

Grossberg Learning (Continuous-Time)

Euler Approximation for the Derivative

Discrete-Time Approximation to Grossberg Learning

Page 32: 15 1 Grossberg Network. 15 2 Biological Motivation: Vision Eyeball and Retina.

15

32

Relation to Kohonen Law

w2

i t t+( ) 1 '– w2

i t( ) 'n1t( )+= ' t ni

2t( )=

w2

i t t+( ) 1 t ni2t( )– w

2i t( ) t ni

2t( ) n

1t( ) +=

Rearrange Terms

Assume Winner-Take-All Competition

where

Compare to Kohonen Rule

wi q 1 – w

i q 1– p q +=