Top Banner
Chapter 14 Thermochemistry
161

14 Thermochemistry

Apr 07, 2018

Download

Documents

siewkiat
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 1/161

Chapter 14

Thermochemistry

Page 2: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 2/161

Introduction

• Every chemical change is accompanied byenergy change, principally in the form of 

HEAT ENERGY .

• i.e: The evolution or the absorption of heat

• Exothermic reaction: Eheat is liberated  

Temperature of rxn mixture increases • Endothermic reaction: Eheat is absorbed  

Temperature of rxn mixture decreases

Page 3: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 3/161

GENERALLY (For stable compounds)

• Bond breaking is an endothermicprocess.

• Bond making/ formation is an

exothermic process.

Page 4: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 4/161

•ENTHALPHY CHANGES:

 –enthalpy of reaction, formation,

combustion, solution,neutralisation, atomisation, andlattice energy

•Molar heat capacity

•Specific heat capacity 

TERMS & DEFINITION:

Page 5: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 5/161

14.1 Entalphy changes

of reactions

Page 6: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 6/161

Enthalpy Changes

• Entalphy = Total energy content of 

reacting materials. Symbol: H   

• We cannot measure entalphy, we can

only measure the entalphy change.

Page 7: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 7/161

• Enthalpy change for a reaction, Δ H  

= The total heat energy absorbed or

liberated in a chemical reaction= The energy exchange with the

surroundings where a reaction takes place

• Enthalpy change is measured in kJ mol –1 

Page 8: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 8/161

Let’s start with something you

know… •Symbol: Δ H  

HΔ HΔ = HΔ  tstanacReoductsPr

Page 9: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 9/161

Endothermic Rxn - Energy Diagram

• Heat is absorbed from the surroundings,temp. decreases

• ∆H has a positive value 

   E  n  e  r  g  y

Reactants

Products

 ∆H= +ve 

Page 10: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 10/161

If ΔHproducts > Δ Hreactants 

then ∆H is positive Process is ENDOTHERMIC

ENTHALPY CHANGE, ΔH

∆Hrxn = ∆HProducts - ∆HReactants

Page 11: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 11/161

11

• Heat is given out to the surroundings, temp.increases

• ∆H has a negative value 

   E  n  e  r  g  y

Reactants

Products

 ∆H= -ve

Exothermic Rxn – Energy Diagram

Page 12: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 12/161

If ΔHproducts < Δ Hreactants 

then ∆H is negative 

Process is EXOTHERMIC

ENTHALPY CHANGE, ΔH

∆Hrxn = ∆HProducts - ∆HReactants

Page 13: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 13/161

13

THERMOCHEMICAL EQUATION:

E.g.:

CH4

(g) + 2O2

(g) CO2

(g) + 2H2

O(l)

ΔHθ = -890 kJ mol–1 

Standard conditions:• 25 °C/ 298 K 

• 1 atm

• [aq] = 1.0 mol dm –3 

Page 14: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 14/161

14

2 Basic Rules in usingThermochemical

equations in calculations

Page 15: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 15/161

15

Rule 1:

Enthalpy change/

Total amount ofenergy releasedor absorbed

The number

of moles ofthe reactantsused

 

 Δ H is directly proportional to thequantity of reactants and products.

Page 16: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 16/161

16

Reactants   Products ……ΔH

2(Reactants)  2(Products)…(∆H x 2) 

Page 17: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 17/161

17

E.g:

• H2(g) + 0.5 O2(g) H2O(l)

 Δ H = -285.8 kJ

• 2H2(g) + O2(g) 2H2O(l) Δ H = -571.6 kJ

Page 18: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 18/161

18

A B ΔH

B A -(ΔH)

Rule 2:

 Δ H for a reaction is equal in magnitude but opposite in sign to Δ H for the

reverse reaction.

Page 19: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 19/161

19

E.g.:• HgO(s) Hg(l) + ½O2(g)

 Δ H =+90.7 kJ

• Hg(l) + ½O2(g)

HgO(s) Δ H =-90.7 kJ

Page 20: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 20/161

20

Example 1:

CH4(g) + 2O2(g) CO2(g) + 2H2O(l)ΔHθ = -890 kJ mol–1 

(a) Is the rxn endothermic orexothermic?

(b) Is the total entalphy for the

reactants larger or smaller than thetotal entalphy for the products?

Page 21: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 21/161

21

Example 1:

CH4(g) + 2O2(g) CO2(g) + 2H2O(l)

ΔHθ = -890 kJ mol–1 (c) What is the value of ΔHθ for the

reaction:i. 2CH4(g) + 4O2(g) 2CO2(g) + 4H2O(l)

ii. ½CH4(g) + O2(g) ½CO2(g) + H2O(l)

iii. CO2(g) + 2H2O(l) CH4(g) + 2O2(g)iv. 3CO2(g) + 6H2O(l) 3CH4(g) + 6O2(g)

Page 22: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 22/161

Five factors that affect the

value of the entalphy change:1. temp. of the experiment being carried

out2. Physical states of the reactants

3. Allotropic forms of the reactants

4. Pressure of the gaseous reactants

5. Concentration of the reactants

Page 23: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 23/161

The Standard Conditions ForCalculating Enthalpy Changes

- T = 25°C or 298 K 

- P = 101 kPa or 1 atm- [Reactant] = 1.0 mol dm-3

- For Allotropic reactants, the most stableallotrope at 298 K and 1 atm is used

Page 24: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 24/161

Entalphy change measured

under standard conditionsis described as StandardEntalphy change of

reaction, ∆Hθ

Page 25: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 25/161

25

14.2 Hess’s Law 

• Hess’s Law states that the heat

liberated or absorbed during a chemicalreaction is independent of the route by

which the chemical change occurs.

Page 26: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 26/161

26

• The Hess’s Law can be illustrated byenergy diagram/ entalphy diagram.

   E  n  e  r  g  y

Reactants

Products

 ∆H1

Intermediate

 ∆H2

 ∆H3

∆H2  + ∆H3  = ∆H1

Page 27: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 27/161

27

• Another way to draw the energy diagram/

entalphy diagram.

Reactants

Products

 ∆H1

Intermediate

 ∆H2

 ∆H3

∆H2  + ∆H3  = ∆H1

Page 28: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 28/161

14.3 Standard Entalphy changeof Formation, ∆Hf 

θ • Definition: the enthalpy change when one

mole of compound is formed from its

elements under standard condition.

H2(g) + ½O2(g) H2O(l)

 ∆Hf Φ = -241 kJ mol-1

2H2(g) + O2(g) 2H2O(l)

 ∆Hf Φ =2 x -241 kJ 

 

X

E le of the o he i l

Page 29: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 29/161

Examples of thermochemicalequations for some compounds:

• The formation of Carbon dioxide:C(s) + O2(g) CO2(g)  ∆Hf 

θ= -394 kJ mol –1

• The formation of Urea:C(s) + 2H2(g) + N2(g) + ½O2(g) CO(NH2) 2 (s)

 ∆Hf θ= -333.5 kJ mol –1 

• The formation of Potassium nitrate:

K(s) + N2(g) + O2(g) KNO3(s)

 ∆Hf 

θ= -x kJ mol –1

12

32

Page 30: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 30/161

30

• ∆Hf Φ of elements = 0

 –Eg: H2 (g) H2 (g)

Na (s) Na (s) Ne (g) Ne (g)

He (g)

He (g)

Page 31: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 31/161

31

Some typical Standard Entalphy change

of formation, ∆Hfθ  (kJ mol  –1)

Substance/ Compound ∆Hfθ  (kJ mol  –1) * 298 KC (s), Graphite 0

C (s), Diamond +1.90

CH4 (g), methane  – 74.81C3H6 (g), propene + 20.42

CO (g), carbon monoxide  – 110.92

CO2 (g), carbon dioxide  – 395.01

HCOOH (l), methanoic acid  – 424.72

CH3COOH (l), ethanoic acid  – 484.5

C6H12O6 (s), glucose  – 1268

Page 32: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 32/161

• Most compounds have negative

standard enthalpies of formation

• They are called exothermic compounds

 – VERY EXOTHERMIC compounds are stable

 –Formation is spontaneous

• The more negative the ∆Hf Φ, the morestable is the product.

Page 33: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 33/161

33

• Few compounds have positive standardenthalpies of formation

• They are called endothermic compounds – VERY ENDOTHERMIC Compounds are

unstable

Page 34: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 34/161

34

ΔHfθ and Stability of

a compound

Page 35: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 35/161

35

ΔHfθ and Stability of a compound

Example 1 (At room conditions):C (diamond) → C (graphite)  ∆Hf 

θ  = -2 kJ mol  –1 

• The –ve ∆Hf θ shows that graphite is more

stable than diamond. I.e. graphite is more

stable energetically.

• Diamond tends to change to graphite.

• But this reaction (diamond → graphite) is

very slow. Hence, diamond is energetically

unstable, but kinetically stable.

Example 2 (At room conditions):

Page 36: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 36/161

36

Example 2 (At room conditions):

H2 (g) + O2 (g) → H2O2 (l)  ∆Hf θ  = -188

1. Is H2O2 (l) stable energetically?

2. Does the above reaction occur spontaneously?

3. Given:

H2(g) + ½O2(g) → H2O(l) … ∆Hf θ = –286 kJ mol –

a) Which substance is more stable energetically,H2O2 (l) or H2O (l)? Explain.

b) Find the value of the ∆Hf θ of:

H2O2 (l) → H2O (l) + ½O2 (g)kJ mol –1

ΔH θ and the energetic stability of

Page 37: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 37/161

37

ΔHfθ and the energetic stability of

hydrogen halides (Page 462):

Hydrogenhalides

HF (g) HCl (g) HBr(g) HI (g)

∆Hfθ

(kJ mol –1

)

-271 -92 -36 +26.5

H  F  H  Cl  Br H 

The size of halogen atoms increasesThe bond length of H – X increasesThe strength of H – X bonds decreases

HF is a very exothermic compound.It is energetically stable. It does not

decompose easily upon heating.

Page 38: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 38/161

38

ΔHfθ and Reactivity

of halogens(Page 461)

Page 39: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 39/161

39

Using ΔHfθ to

calculate ΔHθreaction

Page 40: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 40/161

40

)tstanac(ReHΔmΣ )oducts(PrHΔnΣ=

HΔ reaction, of  changeentalphyStandard

θ

θ

θrxn

• Example 14.6 (Pg 462)

• Example 14.7 (Pg 463)

Page 41: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 41/161

41

Page 42: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 42/161

42

Page 43: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 43/161

43

Page 44: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 44/161

44

E l

Page 45: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 45/161

45

Example:

Given, 1

1

22

394

)()()(

kJmol H 

gCOgOsC 

 

1

2

222

286

)()(2

1

)(

kJmol H 

lO H gOg H  

1

3

22222

1300

)()(2)(2

5)(

kJmol H 

lO H gCOgOg H C 

 

Page 46: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 46/161

46

Calculate ∆H for the following reaction: 

2 methods:• Algebraic method

• Entalphy diagram

)()()(2 222 g H C g H sC 

Page 47: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 47/161

47

 Answer :

 ∆H = +226kJ 

M th d 1 Al b i th d

Page 48: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 48/161

48

Method 1: Algebraic method

2C + 2O2  2CO2 -394 kJ x 2

H2 + O2  H2O -286 kJ

2C + H2 + 2 O2  2CO2 + H2O -1074kJ

Given,

C2H2 + 2 O2  2CO2 + H2O -

1300 kJ

2CO2 + H2O C2H2 + 2 O2 +1300 kJ

12

12

+

12

12

1

2

Page 49: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 49/161

49

2C + H2 + 2 O2  2CO2 + H2O -1074 kJ

2CO2 + H2O C2H2 + 2 O2 +1300 kJ

+ :

2C + H2  C2H2 +226 kJ

Hence, the entalphy change for the reaction:2C + H2  C2H2 is +226 kJ.

12

12

1

22

Method 2: Entalphy cycle

Page 50: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 50/161

50

 Δ H= y 

-1300 kJ 

Method 2: Entalphy cycle

C2H2 + 2 O22C + H2 + 2 O2

2CO2+H2O

-(394 x 2) +(-286) kJ 

1

2

1

2

Using Hess’s Law, y = [-(394 x 2) + (-286)] – (-1300)

y = + 266 kJ

+1300 kJ 

et o : s ng ormu a

Page 51: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 51/161

51

et o : s ng ormu aGiven, ∆Hf 

θ (CO2) = – 394 kJ mol – 1

∆Hf θ (H2O) = – 286 kJ mol – 1 

Let: ∆Hf θ (C2H2) =  x kJ mol – 1 

Thermochemical equation:

C2H2(g) + O2(g) 2CO2(g) + H2O (l) …∆Hθ = –1300 kJ mol –1

Solution:

C2H2(g) + O2(g) 2CO2(g) + H2O (l)

∆Hf θ(kJ mol – 1):   x 0 2( – 394) ( – 286)

∆Hθ = Σ∆Hf θ(products)  –   Σ∆Hf 

θ(reactants)

[2( – 394) + ( – 286)]  – [ x + 0] =  – 1300

 x

= +266 kJ mol

 – 1

52

52

Page 52: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 52/161

52

•Quick check 14.2 (Pg 463)

14 4 St d d M l E th l

Page 53: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 53/161

14.4 Standard Molar EnthalpyChange of Combustion, ∆Hc

θ 

• Definition: The enthalpy change when onemole of substance is completely burned in

excess oxygen under standard conditions\ 

• E.g. 1:

CH4(g) + 2O2(g) CO2(g) + 2H2O(l) 

 ∆Hc

Φ

= -890 kJmol

-1

 ● When one mole of methane, CH4 (g) is completely

burnt in excess oxygen under standard conditions,

890 kJ of heat energy is released.

b f b

Page 54: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 54/161

54

• E.g. 2: Combustion of carbon:

C (s) + O2(g) CO2(g)  ∆HcΦ = -394 kJmol-1 

● When one mole of carbon, C (s) is completely burnt

in excess oxygen under standard conditions, 394 kJ

of heat energy is released.

• E.g. 3: Combustion of carbon:

H2(g) + ½O2(g) H2O(l)   ∆HcΦ = -242 kJmol-1 

● When one mole of hydrogen gas, H2 (g) is

completely burnt in excess oxygen under standard

conditions, 242 kJ of heat energy is released.

●Sometimes, ∆HcΦ = ∆Hf 

Φ 

Page 55: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 55/161

55

Page 56: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 56/161

● ∆HcΦ is always exothermic

● ∆HcΦ can be determined by using a

bomb calorimeter

Page 57: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 57/161

57

Which of the following are equations for

ΔHcθ?

1. CH4 (g) + 2O2(g) CO2(g) + 2H2O(l)

2. CH4 (g) + 2O2(g) CO2(g) + 2H2O(g)

3. 3CH4 (g) + 6O2(g) 3CO2(g) + 6H2O(l)

4. Mg (s) + ½O2 (g) MgO (s)

5. C2H5OH (l) + 2[O] CH3COOH (l) + H2O(l)

6. C2H5OH (l) + 3O2(g) 2CO2(g) + 3H2O(l)

Page 58: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 58/161

58

7. 2Fe (s) + O2(g) Fe2O3(s)

8. Fe (s) + ¾O2(g)   ½Fe2O3(s)

9. 2H2 (g) + O2 (g) 2H2O (l)

10. H2 (g) + ½O2 (g) H2O (g)

11. H2 (g) + ½O2 (g) H2O (l)

12. ½N2 (g) + O2 (g) NO2 (g)

13. N2 (g) + 2O2 (g) 2NO2 (g)

32

Page 59: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 59/161

59

 ∆Hcθ and molecular structure

• Isomers usually have similar ∆HcΦ.

• Chemical reactions occurs in two steps:

1. Energy is absorbed to break bonds

between atoms in reactants.

2. Energy is liberated when the atomsform new bonds to form the products.

• E.g.: For the combustion of methane

Page 60: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 60/161

60

gCH4(g) + 2O2(g) CO2(g) + 2H2O(l)

 ∆HcΦ = -890 kJmol-1 

O O

H HC

H

H

O O

Energy

CH4 + 2O2 

C + 4H + 4O

Heat is absorbed

• E.g.: For the combustion of methane

Page 61: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 61/161

61

E.g.: For the combustion of methane

CH4(g) + 2O2(g) CO2(g) + 2H2O(l)

 ∆Hc

Φ

= -890 kJmol-1

O

HC

H

O

O

H

O

H

CO2 + 2H2O

C + 4H + 4O

EnergyHeat is released

Page 62: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 62/161

62

• Hence, ∆HΦreaction 

= Total of heat change

= +(Heat absorbed) – (Heat released)

CO2 + 2H2O

C + 4H + 4O

Energy

CH4 + 2O2 

Page 63: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 63/161

63

• If the quantity of absorbed heat >

released heat, the reaction becomes

endothermic.

• If the quantity of absorbed heat <

released heat, the reaction becomes

exothermic.

Page 64: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 64/161

64

 ∆HcΦ and bond strength:

• Alkanes

• Butane VS methyl propane

• 1-butene VS cyclobutane

Standard entalphies of combustion of the first ten

Page 65: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 65/161

65

∆HcΦ 

(kJmol-1)

1 2 3 4 5 6 7 8 9 10Number of carbon atoms

(straight chain) alkanes

CH4C2H6

C3H8

C4H10

C5H12

C6H14

C7H16

C8H18

C9H20C10H22

 Alkane  ∆HcΦ (kJmol-1) Difference in ∆Hc

Φ 

CH4

C2H6 

C3H8 

C4H10

 – 890 – 1560

 – 2220

 – 2877

670

660

657

CH2

CH2

CH2

• Each alkane is different from the next alkane

Page 66: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 66/161

66

• Each alkane is different from the next alkaneby the addition of a –CH2 – group.

• The difference in the ∆HcΦ

between eachsuccessive member of the series is about 650kJ mol –1.

• This 650 kJ mol –1

corresponds to thebreaking and forming of bonds when onemole of  –CH2 – group undergoes combustionto form CO2 and H2O.

 –CH2 – + O2 CO2(g) + H2O(l)32

 –650 kJ mol –1

E.g. 1: ∆HcΦ of butane & methyl propane

Page 67: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 67/161

67

E.g. 1: ∆Hc of butane & methyl propane

Hydrocarbon Butane, C4H10 Methylpropane,

C4H10 

Structural

formula

 ∆HcΦ

 (kJmol-1)

 – 2877  – 2870

Type of 

bonds

Three C –C bonds and

ten C –H bonds

Three C –C bonds

& ten C –H bonds

H H H H

H H H H

H C C C C H

H H H

H H

H C C C H

H C H

H

e.g. 2: ∆HcΦ of 1-butene & cyclobutane

Page 68: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 68/161

68

e.g. 2: ∆Hc of 1 butene & cyclobutane

Hydrocarbon 1-butene, C4H8 Cyclobutane, C4H8 

Structural

formula

 ∆HcΦ 

(kJmol-1)  – 2717  – 2800

Type of 

bonds

Two C –C bonds, oneC=C bond & eight C –

H bonds

Four C –C bonds & eight C –H bonds

H H H H

H H

H C C C C H C

C

C

C

H

H

H

H

H

H

H

H

E.g. 1: ∆HcΦ of butane & methyl propane

Page 69: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 69/161

69

E.g. 1: ∆Hc of butane & methyl propane

Hydrocarbon Butane, C4H10 Methylpropane,

C4H10 

Structural

formula

 ∆HcΦ

 (kJmol-1)

 – 2877  – 2870

Type of 

bonds

Three C –C bonds and

ten C –H bonds

Three C –C bonds

& ten C –H bonds

H H H H

H H H H

H C C C C H

H H H

H H

H C C C H

H C H

H

Page 70: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 70/161

70

• Both butane and methylpropane contain

the same number of atoms and the same

type of chemical bonds.

• Their ∆Hc

Φ

are similar.• This suggests that when each type of 

bond is broken or formed, a fixed value

of energy is absorbed/ liberated.

e.g. 2: ∆HcΦ of 1-butene & cyclobutane

Page 71: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 71/161

71

e.g. 2: ∆Hc of 1 butene & cyclobutane

Hydrocarbon 1-butene, C4H8 Cyclobutane, C4H8 

Structural

formula

 ∆HcΦ 

(kJmol-1)  – 2717  – 2800

Type of 

bonds

Two C –C bonds, oneC=C bond & eight C –

H bonds

Four C –C bonds & eight C –H bonds

H H H H

H H

H C C C C H C

C

C

C

H

H

H

H

H

H

H

H

Page 72: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 72/161

72

• The ∆Hc

Φ for 1-butene and cyclobutane

are different.

• This is because different type of bonds inreactants (1-butene and cyclobutane) are

broken to form 4 moles of CO2

and 4

moles of H2O.

Page 73: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 73/161

73

• C=C bond is shorter and stronger than C –Cbond.

• More heat is absorbed to break/ dissociate

a C=C bond.

• Hence, the combustion of but-1-ene

releases less heat than cyclobutane.

∆H Φ of 1-butene & cyclobutane

Page 74: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 74/161

74

 ∆Hc of 1 butene & cyclobutane

4CO2 + 4H2O

4C + 8H + 12O

Energy

1-butene +6O2 

4CO2 + 4H2O

4C + 8H + 12O

Energy

cyclobutane+ 6O2 

 ∆HcΦ   ∆Hc

Φ 

Your turn…

Page 75: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 75/161

75

• Which bond is stronger, the C –C bond or

C=C bond?

• The formation of a stronger bond releases

energy. Hence, the formation of 

bond is more exothermic.

• The breaking of a stronger bond also

requires energy. Hence, thedissociation of a bond is more

endothermic than a bond.

more

C=C

moreC=C

C –C

Your turn… 

Example:

Page 76: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 76/161

pWhen 0.540 g of benzoic acid is completely burnt in

a bomb calorimeter, it causes the temperature of 

water in the calorimeter to increase by 1.38 K. Thecombustion of 0.148g of butan-1-ol in the same

bomb calorimeter causes an increase of 0.51 K.

a. Calculate the calorimeter constant (heatcapacity of the calorimeter), in kJ K–1.

b. Calculate the standard enthalpy change of 

combustion of butan-1-ol.

[The standard heat combustion of benzoic acid is

-3230 kJmol-1. The Mr of benzoic acid and butan-1-

ol are 122 and 74 respectively]

Solution:

Page 77: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 77/161

a. Heat liberated from the combustion of 0.540 gbenzoic acid

= (0.540/122) x 3230= 14.30 kJ

Calorimeter constant = 14.30/1.38

= 10.36 kJ K -1

b. Number of moles of butan-1-ol

= 0.148/74 = 0.002 mole

Heat liberated from the combustion of butan-1-ol= 10.36 x 0.51 = 5.2836 kJ

Standard enthalpy change of combustion

= 5.2836/0.002 = 2641.8 kJ mol-1 

Page 78: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 78/161

Exercise :

Quick check 14.3

Page 79: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 79/161

14.5 Standard Molar

Enthalpy Change of Neutralisation, ∆Hneut

Φ 

∆H Φ

Page 80: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 80/161

 ∆Hneut  

•The enthalpy change when 1 mole of H+(aq)ions from an acid reacts with 1 mole of OH-

(aq) ions from an alkali to form one mole of water molecules under standard conditions.

• OR: The entalphy change when 1 mole of water is formed from the reaction betweenan acid and a base under standard

conditions.• H+(aq) + OH-(aq) H2O(l)… ∆Hneut

θ • ∆Hneut

Φ is always negative

 ∆HneutΦ for some acid-base rxns:

Page 81: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 81/161

81

neut

Acid Base∆Hneut

Φ 

(kJmol –1

)

Type of

neutralisation

HCl NaOH  – 57.3Strong acid - Strong

base

HNO3 KOH  – 57.3

Strong acid - Strong

base

CH3COOH NaOH  – 55.6Weak acid - Strong

base

CH3COOH NH3   – 50.4 Weak acid - Weakbase

Write the thermochemical equations for the

neutralisation reactions.

Strong acid + Strong base

Page 82: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 82/161

Strong acid + Strong base

• Strong acids and alkalis dissociate completely inaqueous solution.

• ∆HneutΦ is constant, i.e. -57.3 kJ mol-1 

• E.g.:

NaOH(aq)+ HCl(aq) NaCl(aq) + H2O(l)

   ∆HneutΦ = -57.3 kJ mol-1

• What are “Spectator ions”? 

Wh HCl ( ) [St id] d N OH ( )

Page 83: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 83/161

83

• When HCl (aq) [Strong acid] and NaOH (aq)

[Strong alkali] react,

Na+(aq) + Cl-(aq) + Na+(aq) + Cl-(aq) + H2O(l)

H+(aq) + OH-(aq) ∆HneutΦ = -57.3 kJ mol-1

• Na+(aq) & Cl-(aq) do not take part in

neutralisation.

• Hence, for strong acid-strong base reaction:

H+(aq) + OH-(aq) → H2O(l) ∆HneutΦ = -57.3 kJmol-1 

Example:

Page 84: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 84/161

84

Example:

Find the standard entalphy for the followingreaction:

1. KOH(aq) + HNO3(aq) KNO3(aq) +

H2O (l) ∆H1Φ 

2. Ca(OH)2(aq) + 2HNO3(aq) Ca(NO3)2

(aq) + 2H2O (l) ∆H2Φ

 

Refer to example 14.14 on page 470.

Neutralisation involving Weak acids/

Page 85: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 85/161

• ∆HneutΦ 

for a weak acid and a strong alkali orvice versa is lower (less negative) than

-57.3 kJ mol-1 

● Less heat energy is liberated in this reaction.● E.g.:

CH3COOH(aq) + NaOH(aq) CH3COONa(aq) +

H2O(l)   ∆HneutΦ = -55.6 kJ mol-1

gWeak bases

Page 86: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 86/161

●Weak acids and alkalis do not dissociatecompletely

●Part of the heat energy liberated during

neutralisation is reabsorbed to cause

dissociation of the weak acid/ base.

●CH3COOH H+

+ CH3COO – 

Endothermic

Neutralisation involving HF

Page 87: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 87/161

• Neutralisation between HF (weak acid) & 

NaOH, ∆HneutΦ is more negative than -57.3 kJ

mol-1 (ie. -68.6 kJ mol-1) 

• When HF dissociates, the process is highly

exothermic.

• The small F- (high charge density) are

hydrated, releasing high amount of energy.• I.e.: HF (aq) H+ (aq) + F- (aq)

 highly exothermic 

g

Hydration energy?

Page 88: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 88/161

Hydration energy?

• Hydration of X   Formation of bondingbetween particle X  with H2O.

• Formation of strong bonding liberates high

hydration energy.

• Formation of weak bonding liberates low

hydration energy.• When a substance is hydrated, it becomes

wet.

Hydration of anion

Page 89: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 89/161

-δ-

δ+

δ-

δ+

δ+

δ-

Water

 Anion

Hydration of anion

Hydration of cation

Page 90: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 90/161

90

+δ+

δ-

δ+

δ-

δ-

δ+

Water

Cation

Hydration of cation

Hydration of fluoride ion

Page 91: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 91/161

F– 

HO

H

Hydration of fluoride ion

Page 92: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 92/161

Hydration energy?

• The size of F – is very small.

• It has an extremely high charge

density.• Therefore, strong F –  – H2O bond isformed.

• Formation of strong bonding liberateshigh hydration energy.

 ∆HneutΦ of Strong Polyprotic Acid

Page 93: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 93/161

neut g yp

• More exothermic. 

• Eg:NaOH(aq) + H2SO4(aq) NaHSO4(aq) + H2O(l)

 ∆H1 = -61.95 kJ mol-1 

NaOH(aq) + NaHSO4(aq) Na2SO4(aq) + H2O(l)

 ∆H2 = -70.90 kJ mol-1

 ∆Hneut

Φ 

= (-61.95 + -70.90)/ 2 kJ mol-1

 = -66.4 kJ mol-1 (per mole H2O formed)> -57.2 kJ mol-1

Page 94: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 94/161

• Heat energy is also liberated whenpolyprotic acid is diluted as the alkali is

added to the strong diprotic acid.

Example

Page 95: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 95/161

Example

200 cm3 of 0.50 mol dm-3 hydrochloric acid is

mixed with the same volume of 0.50 mol dm-3 sodium hydroxide at the same temperature.

The temperature of the mixture is raised to

3.4 K. Calculate the enthalpy of neutralisation.[Specific heat capacity of solution

= 4.2 J g-1 K -1 ]

 Answer: -57.12 kJ mol-1

Page 96: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 96/161

96

•Quick check 14.4

14 10 S d d B d

Page 97: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 97/161

14.10 Standard Bond

Dissociation Enthalpy 

• Endothermic

• The energy absorbed to separate the

two atoms in a bond under standard

conditions

Energy

Page 98: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 98/161

A B

A–B bond is

broken ALL reactants &products are ingaseous state.

Energy

• E.g.:

Page 99: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 99/161

g

• (g) C (g) + 4H (g)

∆HΦ=+1662 kJ mol-1

• Four C–H bonds are broken.• i.e.: 1662 kJ is needed to break 4 (moles) ofC–H bonds.

• Then (1662 ÷ 4) = 416 kJ is needed to break1 (mole) of C–H bonds.

• The average bond entalphy of the C–H

bond = +416 kJ mol-1

H

H C H

H

State the bonds that have to be

Page 100: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 100/161

State the bonds that have to bebroken during a reaction:

 

Page 101: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 101/161

Page 102: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 102/161

• Example 12 & 13.

14.11 Entalphy Change of Fusion

Page 103: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 103/161

14.11 Entalphy Change of Fusion& Vaporisation:

• The standard entalphy change of fusion,

 Δ Hθfusion, is the entalphy change when one

mole of a solid changes to one mole of liquidat its melting point at standard pressure (1.0

atm).

• E.g.: H2O (s) H2O (l)

 Δ Hθfusion= +x kJmol –1

Page 104: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 104/161

• The standard entalphy change of 

vaporisation, Δ Hθvaporisation, is the entalphy

change when one mole of a liquid changesto one mole of gas at its boiling point at

standard pressure (1.0 atm).

• E.g.: H2O (l) H2O (g)

 Δ Hθvaporisation= +y kJmol –1 

14.12 Standard Molar Enthalpy

Page 105: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 105/161

Change of Atomisation, ∆HatΦ 

• Endothermic

• The heat energy absorbed when one mole of 

gaseous atoms (Product) are formed from itselement (Reactant) under standard conditions

Element Atom(At 298 K, 1.0 atm) (g)

Atomisation

Page 106: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 106/161

106

 AtomisationFor diatomic gaseous:

Gaseous atomsFor metals (solid):

Gaseous atomsElements at std

conditions

Gaseous atoms

• E.g.:

Page 107: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 107/161

• Na (s) Na (g)  ∆HatΦ=+107 kJ mol-1

• ½ H2 (g) H (g)  ∆HatΦ=+218 kJ mol-1

• ∆HatΦ for monoatomic gases (Noble gases) iszero because no chemical occurred.

• E.g.:

• He (g) He (g)  ∆HatΦ= 0 kJ mol-1

• Ne (g) Ne (g)  ∆Hat

Φ= 0 kJ mol-1

Φ

Page 108: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 108/161

• ∆HatΦ for liquids include the enthalpy

change of vapourisation

• ∆Hat

Φ 

for solids include the enthalpychange of fusion & the enthalpy change of 

vapourisation.

• ∆HatΦ for noble gases (monoatomic gas) is

always zero.

About ∆HatΦ 

Which of the following equations

Page 109: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 109/161

represent atomization?

1. Mg (s) Mg (g)

2. Na (s) Na (l)

3. ½Cl2 (g) Cl (g)

4. Cl2 (g) 2Cl (g)

5. C (s) C (g)

6. H2O(l) H2O(g)

7. NaCl (s) Na (g)

+ Cl (g)

8. ½N2 (g) N (g)

9. O2 (g) 2O (g)

10.H2O(l) H2(g) +

½O2 (g)

The First Electron Affinity

Page 110: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 110/161

• 1st EA = Enthalpy change when a moleof gaseous atom accepts a mole of electron to form a mole of gaseous

uninegative ions• i.e.

M(g) + e M-(g)1st EA

Page 111: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 111/161

• E.g:

• H (g) + e H- (g) ∆HΦ = -72.8 kJ mol-1 

• Cl (g) + e Cl- (g) ∆HΦ = -364.0 kJ mol-1 

• The more exothermic the EA, the more

stable the anion formed.

Second Electron Affinity

Page 112: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 112/161

• 2nd

EA = Enthalpy change when a mole of gaseous uninegative ions accepts a mole

of electron to form a mole of gaseous

dinegative ions.• i.e.

M-(g) + e M2-(g)

2nd EA

The Electron Affinity

Page 113: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 113/161

• E.g.:

1. O (g) + e O- (g) ∆HΦEA1=-142 kJ mol-1

2. O-

(g) + e

O2-

(g) ∆HΦ

EA2=+844 kJ mol-

1

• 2nd EA is endothermic, 1st EA isexothermic.

2nd EA is endothermic… 

Page 114: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 114/161

• A negatively charged ion will repel theaddition of 2nd electron

• Energy must be absorbed to overcome therepulsive forces between the 2 negativelycharged particles

S –   e –  Repulsion

14.13 Lattice Energy

Page 115: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 115/161

Definition:

• The enthalpy change/ energy liberatedwhen one mole of solid ionic crystalline is

formed from its gaseous constituent ions.

Ax+(g) + By-(g) AyBx(s)

Page 116: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 116/161

• Eg:

Page 117: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 117/161

• Eg:

•Na+

(g) + Cl-

(g) NaCl (s) ∆Hlat

Φ=-788 kJ mol-1

•K +(g) + Cl-(g) KCl (s) ∆Hlat

Φ=-701 kJ mol-1 

• Always -ve because the formation of chemical bond (ionic) is exothermic.

Lattice dissociation Energy

Page 118: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 118/161

• Opposite reaction, crystal lattice is broken.

• Eg:

• NaCl (s) Na+(g) + Cl-(g)

 ∆HΦ

lattice dissociation= +788 kJ mol-1

• KCl (s) K +(g) + Cl-(g) ∆HΦ

lattice dissociation= +701 kJ mol-1 

• Always +ve because the dissociation of 

chemical bond is endothermic

Factors affecting ∆HΦ

Page 119: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 119/161

lattice

The magnitude of  Δ Hlat depends on:• The charge on the ions (attractive forces

between anion & cation), and

• The distance between the ions

∆Hlat α  l Z+

x Z-

 l(r+ + r-)

• The greater the ionic charges,h h h

Page 120: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 120/161

the more exothermic the

lattice energy.Compound Z+ Z- ∆Hlat(kJ mol-1)

NaCl +1 -1 -770

Na2O +1 -2 -2478

MgO +2 -2 -3850

Al2O3 +3 -2 -15 920

Exo/ endo-thermic?

• The smaller the distance between

Page 121: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 121/161

h sma r th stanc tw nions, the more exothermic the

lattice energy.

Ionic

Compound

r+

(nm)

r-

(nm)

∆Hlat

(kJ mol-1)

NaCl 95 181 -770

NaBr 95 196 -731

NaI 95 216 -684

• The lattice energy give us some ideaabout the strength of ionic bonds

Page 122: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 122/161

about the strength of ionic bonds.

How?

• The more exothermic the latticeenergy, the stronger the ionic bond.

Compound Z+ Z- ∆Hlat(kJ mol-1)

NaCl +1 -1 -770

Na2O +1 -2 -2478MgO +2 -2 -3850

Al2O3 +3 -2 -15 920

14 14 The Born-Haber Cycle

Page 123: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 123/161

14.14 The Born-Haber Cycle

• A cycle of reactions used for calculating

the lattice energies of ionic crystalline

solids.

• An application of Hess’ s Law. 

Page 124: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 124/161

• It involves;- enthalpy of atomisation

- ionisation energy

- electron affinity

- lattice energy

- enthalpy of formation

Important formula:

Page 125: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 125/161

Important formula:

ΔH+

ΔH+

ΔH+

ΔH+ΔH

 =HΔ

lataffinitye.

ionization

atom(2)atom(1)

Page 126: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 126/161

Page 127: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 127/161

Na(s) + ½Cl2(g) NaCl(s)

Page 128: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 128/161

( ) 2(g) ( )

 ∆Hf 

Φ

=-411kJ mol-1

From the Born-Haber Cycle,

-411 = +107+122+496+(-349)+

lat. energy

Lattice energy = -787 kJ mol-1

Example:

Draw a Born-Haber cycle for rubidium

Page 129: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 129/161

Draw a Born Haber cycle for rubidium

iodide, RbI(s). Hence use the data below to

calculate the enthalpy change of formation

of RbI(s).

 Δ Hat of rubidium = +86 kJ mol-1

  Δ Hat of iodine = +107 kJ mol-1 

 Δ Hlattice of rubidium iodide = -609 kJ mol-1

IE of rubidium = +402 kJ mol-1

 AE of iodine = -314 kJ mol-1

Rb+(g) + I(g)

Energy (kJ mol-1)

Page 130: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 130/161

RbI(s)

Rb(s) + ½ I2(g)

Rb(g) + ½ I2(g)

Rb+(g) + ½ I2(g)

Rb+(g) + I-(g)

Hf 

+86

+402

+107 -314

-609

Example:

Draw a Born-Haber cycle for calcium oxide. Hence

Page 131: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 131/161

Draw a Born Haber cycle for calcium oxide. Hence

use the data below to calculate the enthalpy

change of formation of calcium oxide.

Enthalpy change of atomisation of calcium = +177 kJmol-1 

Enthalpy change of atomisation of oxygen = +249 kJmol-1 

Lattice energy of calcium oxide = -3409 kJ mol-1

1st Ionisation energy of calcium = +592 kJ mol-1

2nd Ionisation energy of calcium = +1100 kJ mol-1

Electron Affinity of oxygen = -140 kJ mol-1

Formation of O2- = +795 kJ mol-1

Answer

Page 132: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 132/161

 Answer

-636 kJ mol-1

Page 133: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 133/161

•The more exothermic theenthalpy change of

formation, the morestable the compound.

Test Yourself 16

Page 134: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 134/161

Test Yourself 16

14.15 Hydration Energies, ∆Hhyd

Page 135: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 135/161

y g hyd

• Enthalpy change of hydration, ∆Hhyd is

the heat liberated when one mole of free

gaseous ion dissolves in water to form

hydrated ions of infinite dilution under

standard conditions .

• An Exothermic process.

• Bonds are formed with water molecules.

∆Hhyd

Page 136: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 136/161

Mn+(g) + H2O Mn+(aq)

∆HhydΦ of the cation

Xn-

(g) + H2O

Xn-

(aq)∆Hhyd

Φ of the anion

What happens during hydration?

Page 137: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 137/161

pp g y

+δ+ δ-

δ+

δ-

δ-

δ+

Water

Cation

Page 138: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 138/161

-δ- δ+

δ-

δ+

δ+

δ-

Water

 Anion

Page 139: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 139/161

F– 

HO

H

Water-ion bonds are formed.

Energy is liberated.

The stronger the water-ion bonds, themore exothermic the hydration energy.

Hydration energies depends on:

Page 140: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 140/161

Hydration energies depends on:

1. Ionic radius, r

2. Ionic Charge, Z

The larger the chargedensity (=Z/r), the

stronger the water-ionbond.

And hence, the more

exothermic the hydrationenergy.Heh… heh…… 

Try these:M t h th i ΔH ith it i

Page 141: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 141/161

Match the given ΔHhyd with its ions:

Ion Li+ Na+ K+ Rb+

Radius

(pm) 78 98 133 149ΔHhyd 

(kJ mol–1)

-320 -410 -295 -520

Try these:M t h th i ΔH ith it i

Page 142: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 142/161

Match the given ΔHhyd with its ions:

Ion Na+ Mg2+ Al3+

Radius (pm) 78 98 133

ΔHhyd 

(kJ mol–1)

-410 -4680 -1930

Page 143: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 143/161

 

Page 144: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 144/161

Enthalpy Change ofSolution/ Solvation, ∆H l

Page 145: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 145/161

Solution/ Solvation , ∆Hsol

Enthalpy change when 1 mole of solidionic compound dissolves in water to

form a solution of infinite dilution under standard conditions

Mn+ X n-(s) + H2O Mn+(aq) + X n-(aq) ∆HΦ= Enthalpy change of solution

The process of Solution:

Page 146: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 146/161

Lattice (solid)

Hydrated ions(aq)

Separated ions(g)

Th ll f l ti

The process of solution

Page 147: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 147/161

The overall process of solution

can be divided into 2 stages:• The breaking down of the crystal

lattice into gaseous ions  Endothermic (= - ∆Hlat)

• The solvation (hydration of separated

gaseous ions by water molecules)

 Exothermic (Hydration energy of thecation and of the anion)

Stage 1: Breaking down thecrystal lattice into ions (g)

Page 148: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 148/161

  M+ X -(s) M+(g) + X -(g) ∆H1= Endothermic (- ∆Hlat )

y (g)

+

+ +

+

+ + +

+

 –  –   –  – 

 –   – 

 – Solid lattice structure

+ +

 –   – Free ions (g)

Stage 2: Hydration of ions(g)by water molecules

Page 149: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 149/161

Mn+(g) + water Mn+(aq) 

 ∆H2=exothermic

And:

 X n-(g) + water X n-(aq) 

 ∆H3=exothermic

Page 150: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 150/161

+

+

 – 

 – 

The enthalpy change of solution, ∆Hsol 

Page 151: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 151/161

= ∆H1 +  ∆H2 + ∆H3

= (-lattice energy) + (enthalpy changes of 

hydration of the cation and anion)

= (+ve) + (-ve + -ve)

= +ve (insoluble) or -ve (soluble) 

Is a compound soluble/insoluble in water?

Page 152: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 152/161

insoluble in water?

•If ∆Hhyd >  ∆Hlat Soluble

•If ∆Hhyd <  ∆Hlat INsoluble

Energy Solubility in water 

Page 153: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 153/161

 

Insoluble

Soluble Latticeenergy

Enthalpy of hydration

Compounds 

Solubility of the Group II Sulphates

- The solubility of the sulphates decreases

Page 154: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 154/161

The solubility of the sulphates decreases

down the group- Beryllium sulphate and magnesium

sulphates are soluble in water

- Calcium sulphate and strontium sulphateare sparingly soluble in water

- Barium sulphate is insoluble in water

- When a group 2 sulphate dissolves in waterMSO4 (s) + water M2+(aq) + SO4

2-(aq)

• The dissolution process take place in 2distinct stages

Page 155: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 155/161

distinct stages

(i) the breaking of ionic bondsMSO4 (s) M2+(g) + SO4

2-(g)

(ii) hydration of the gaseous ions bywater molecules

M2+

(g) + SO42-

(g) + aq

 M2+(aq) + SO4

2-(aq)

• Ionic radius increases

Going down Group 2:

Page 156: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 156/161

Ionic radius increases

•   Δ Hlat and Δ Hhyd decreases (becomes less exo)• The drop off in the Δ Hlat of Group 2 sulphates

is less rapid compared to the decrease in the

enthalpy change of hydration.• Ionic radius of SO4

2- is very large, thechanging size of the much smaller cations

makes very little difference to the value of (r+ + r-) No significant reduction in Δ Hlat downGroup 2 sulphate.

• But, the increasing size of the cations causes

id bl h i ΔH

Page 157: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 157/161

considerable changes in Δ Hhyd 

• In short, decrease in solubility in Group

2 sulphate is due to the decrease of 

enthalpy of hydration of the metal ions

• Enthalpy of hydration must be greater

than lattice energy in order for the

compound to dissolve in water

EnergyThe Variation of ∆Hlat and∆Hhyd: Group 2 sulphates

Page 158: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 158/161

 

Insoluble

Soluble Latticeenergy

Enthalpy of hydration

BeSO4 MgSO4 CaSO4 SrSO4 BaSO4

hyd

• The solubility of gr. 2 hydroxides and fluoridesincreases on going down the group

Page 159: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 159/161

•The presence of covalent character causes thecompounds to have higher ∆Hlat than expected

• Solubility of covalent compound is determinedby its polarity~ Like-dissolves-like Rule

• Non-polar compound dissolve in non-polarcovalent solvent, naphthalene dissolves inbenzene (v.d.w forces present in both comp.)

• Cannot dissolves in water because cannotovercome the strong attraction in watermolecules

• Polar compound dissolves in polar solvent

• Hydroxyl group ( OH) carboxylic acid

Page 160: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 160/161

• Hydroxyl group (-OH), carboxylic acid

group (COOH), amine group (NH2),sulphonic acid group (SO3H) promote thesolubility of the compound in water byforming H-bonding with water

• More hydrophilic groups, more soluble andmore H- bond formed in the water

• Hydrophobic groups, such as alkyl groups

decrease the solubilities of organiccompounds

Exercise: Checkpoint 15.6

Page 161: 14  Thermochemistry

8/3/2019 14 Thermochemistry

http://slidepdf.com/reader/full/14-thermochemistry 161/161

p

Examination Ques. 15:Objectives,Structural Questions

1,2,3,4 & 5