Top Banner
19 September, 20 06 1 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit Eindhoven
38

1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

Dec 18, 2015

Download

Documents

Kristian Wade
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

1

Numerical simulation of particle-laden

channel flow

Hans Kuerten

Department of Mechanical EngineeringTechnische Universiteit Eindhoven

Page 2: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

2

Contents:

1. DNS of particle-laden flow

2. Large-eddy simulation (LES)

3. LES of particle-laden flow

4. Reynolds-averaged Navier-Stokes

5. Conclusions

Page 3: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

3

1. DNS of particle-laden flow

• Turbulent channel flow

• Particles

• Only drag force:

• Elastic collisions with walls

p

tt

dt

ddt

d

vxuv

vx

)),((

Page 4: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

4

150Re

xy z

• Spectral method: Fourier-Chebyshev• 128 x 129 x 128 points• Second-order accurate time integration• Fourth-order interpolation for fluid velocity at particle position

Page 5: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

5

Wall concentration:

t+

cwall

101

102

103

104

5

10

15

20

St=1St=5St=25

Page 6: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

6

Explanation for turbophoresis:

2yp

pyy u

dy

duv

)1()(

1if

vvv 0p

rmsp

H

u

-1 0 10

0.2

0.4

0.6

y

<uy2>

2yp

pyy u

dy

duv

Page 7: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

7

Comparison with expansion:

y+

<vy+-u

yp+> St=1

0 50 100 150-0.03

-0.02

-0.01

0

0.01

theoryDNS

Page 8: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

8

2. Large-eddy Simulation:

• Filter with typical size

• Top-hat filter

yduGu 3)();()( yyxx

x

Page 9: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

9

Effect on energy spectrum:

100

101

10210

-10

10-5

100

kz

E

resolvedscales

subgridscales

DNSfilteredDNS

Page 10: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

10

Effect on velocity fluctuations:

-1 -0.5 0 0.5 10

0.2

0.4

0.6DNSfilteredDNS<u

y2>

y

Page 11: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

11

A priori simulations:

• Filter fluid velocity as calculated in DNS with top-hat filter.

• Solve particle equation of motion with filtered fluid velocity:

p

tt

dt

d

vxuv

)),((

Page 12: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

12

101

102

103

104

5

10

15

20

St=1St=5St=25

Effect on turbophoresis:

t+

cwall

A priori

Page 13: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

13

3. Real LES of particle-laden flow:

• Subgrid model in Navier-Stokes– Smagorinsky eddy viscosity– Dynamic eddy viscosity– LES grid 32 x 33 x 64

Page 14: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

14

Subgrid model in particle equation• Retrieve unfiltered velocity from filtered• Only possible for scales present in LES grid

k

)(ˆ kG

0 10 20 30-0.5

0

0.5

1

0 10 20 30-0.5

0

0.5

1

LESh2

0 10 20 30-0.5

0

0.5

1

LESh

Page 15: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

15

LES velocity fluctuations:

y

<uy2>

-1 -0.5 0 0.5 10

0.2

0.4

0.6

DNS

filtered DNS

dynamic

Smagorinsky

Page 16: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

16

Wall concentration:

t+

cwall St=5

102

103

1040

2

4

6

8

10DNSa prioridynamicdynamic inverseSmagorinskySmag. inverse

Page 17: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

17

1000

20

40

60

80

y+

c

DNSdynamicdynamic inverseSmag.Smag. inverse

Concentration in steady state (St=5):

Page 18: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

18

Dispersion (St=25):

0 50 100 1500

1

2

3

4

y+

vx,rms

DNSdynamicdynamic inverseSmag.Smag. inverse

Page 19: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

19

Linear velocity interpolation:

t+

cwall St=5

102

103

1040

2

4

6

8

10DNSa priori4th order4th order inverse2nd order2nd order inverse

Page 20: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

20

Linear velocity interpolation:

0 50 100 1500

0.2

0.4

0.6

0.8

DNSfourth orderfourth order inverse2nd order2nd order inverse

y+

vz,rms

Page 21: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

21

First conclusions:• Dynamic model performs better than

Smagorinsky.• Linear interpolation is inaccurate.• Inverse filtering improves results of

dynamic model.• Still discrepancy with DNS results:

– A priori results do not agree well with LES.– Inverse filter is arbitrary.

Page 22: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

22

Approximate Deconvolution Model (Stolz et al., 2001):

• Approximate unfiltered velocity in LES:

• Add relaxation term for dissipation.

• Deconvolution also in particle equation.

ii

N

i

j

ji

j

ji

uuu

x

uu

x

uu

1

0

*

**

)(

GGI

Page 23: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

23

Dispersion (St=25):

y+

vx,rms

0 50 100 1500

1

2

3

4DNSdynamicdynamic inverse

ADMADM inverse

Page 24: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

24

Concentration (St=5):

1000

20

40

60

80

y+

c

DNSdynamicdynamic inverse

ADMADM inverse

Page 25: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

25

Drift velocity (St=1):

0 50 100 150-20

-15

-10

-5

0

5 x 10-3

y+

<vy-u

yp>

DNSdynamicdynamic inverse

ADMADM inverseSmag.Smag. inverse

Page 26: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

26

High Reynolds number simulations:

• No DNS of particle-laden flow.

• DNS data of channel flow is available (Moser, Kim & Mansour) at Re=590.

• Particle velocity rms should be close to fluid velocity rms at low Stokes number.

Page 27: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

27

Dispersion (Re=590, St=1):

y+

vx,rms

0 200 400 6000

1

2

3

4DNS (fluid)dynamicdynamic inverseADMADM inverse

Page 28: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

28

y+

vy,rms

0 200 400 6000

0.5

1

1.5

DNS (fluid)dynamicdynamic inverseADMADM inverse

Page 29: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

29

y+

vz,rms

0 200 400 6000

0.5

1

1.5

DNS (fluid)dynamicdynamic inverseADMADM inverse

Page 30: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

30

4. Reynolds-averaged Navier-Stokes

• Often used in CFD packages

• Only mean velocity is known and some information about turbulence

pp

ttttt

dt

d

vxuxuvxuv

)),(('))(()),((

Page 31: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

31

k-ε model• k and ε are known• • isotropic

Reynolds-stress model• all Reynolds stresses and ε

are known• anisotropic

wku 3/2'

For both models:

• w is constant during time interval

• eddy-turnover time, te=ck/ ε

• crossing trajectories, tc depends on τp

Page 32: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

32

Results:

• a priori: obtain RANS quantities from DNS

• a posteriori: real RANS simulations performed with fluent on fine grid

• same test case as in DNS and LES

Page 33: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

33

Velocity fluctuations (St=1):

0 50 100 1500

0.5

1

1.5

2DNSreal k-real RSM

a priori k- a priori RSM

y+

vy,rms

Page 34: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

34

Velocity fluctuations (St=1):

y+

vx,rms

0 50 100 1500

1

2

3DNSreal k-real RSM

a priori k- a priori RSM

Page 35: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

35

Particle concentration (St=1):

0 0.5 1 1.5 2

x 104

0

5

10

15DNS

real k-real RSMa priori k- a priori RSM

t+

cwall

Page 36: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

36

5. Conclusions (LES):

• A priori: turbophoresis is changed if eqs of motion are solved with .

• Real LES confirms this.

• Inverse filtering improves results.

• Similar results for particle dispersion.

• Inverse ADM gives best results for concentration and dispersion.

• Also applicable at higher Reynolds number.

u

Page 37: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

37

Conclusions (cont.)

• Linear interpolation of fluid velocity is inaccurate.

• Smagorinsky model is inaccurate.

• Inverse filtering hardly improves Smagorinsky results.

Page 38: 1212 19 September, 20061 Numerical simulation of particle-laden channel flow Hans Kuerten Department of Mechanical Engineering Technische Universiteit.

19 September, 2006

38

Conclusions (RANS)• Reynolds-stress model gives accurate

results for particle dispersion if stress tensor is accurately predicted.

• k-ε model is not accurate because of isotropy of velocity fluctuations.

• Turbophoresis is not well predicted since preferential concentration cannot be taken into account.