Top Banner
12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006
32
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

12.1 Exploring Solids

Geometry

Mrs. Spitz

Spring 2006

Page 2: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Objectives/Assignment

• Use properties of polyhedra.

• Use Euler’s Theorem in real-life situations, such as analyzing the molecular structure of salt.

• You can use properties of polyhedra to classify various crystals.

• Assignment: 12.1 Worksheet A

Page 3: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Using properties of polyhedra• A polyhedron is a

solid that is bounded by polygons called faces, that enclose a since region of space. An edge of a polyhedron is a line segment formed by the intersection of two faces.

Page 4: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Using properties of polyhedra• A vertex of a

polyhedron is a point where three or more edges meet. The plural of polyhedron is polyhedra or polyhedrons.

Page 5: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 1: Identifying Polyhedra

• Decide whether the solid is a polyhedron. If so, count the number of faces, vertices, and edges of the polyhedron.

Page 6: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

a. This is a polyhedron. It has 5 faces, 6 vertices, and 9 edges.

b. This is not a polyhedron. Some of its faces are not polygons.

c. This is a polyhedron. It has 7 faces, 7 vertices, and 12 edges.

Page 7: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Types of Solids

Page 8: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Regular/Convex/Concave

• A polyhedron is regular if all its faces are congruent regular polygons. A polyhedron is convex if any two points on its surface can be connected by a segment that lies entirely inside or on the polyhedron.

Page 9: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

continued . . .

• If this segment goes outside the polyhedron, then the polyhedron is said to be NON-CONVEX, OR CONCAVE.

Page 10: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 2: Classifying Polyhedra

• Is the octahedron convex? Is it regular?

It is convex and regular.

Page 11: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 2: Classifying Polyhedra

• Is the octahedron convex? Is it regular?

It is convex, but non- regular.

Page 12: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 2: Classifying Polyhedra

• Is the octahedron convex? Is it regular?

It is non-convex and non- regular.

Page 13: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Note:

• Imagine a plane slicing through a solid. The intersection of the plane and the solid is called a cross section. For instance, the diagram shows that the intersection of a plane and a sphere is a circle.

Page 14: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 3: Describing Cross Sections

• Describe the shape formed by the intersection of the plane and the cube.

This cross section is a square.

Page 15: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 3: Describing Cross Sections

• Describe the shape formed by the intersection of the plane and the cube.

This cross section is a pentagon.

Page 16: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 3: Describing Cross Sections

• Describe the shape formed by the intersection of the plane and the cube.

This cross section is a triangle.

Page 17: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Note . . . other shapes

The square, pentagon, and triangle cross sections of a cube are described in Ex. 3. Some other cross sections are the rectangle, trapezoid, and hexagon.

Page 18: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

• Polyhedron: a three-dimensional solid made up of plane faces. Poly=many Hedron=faces

• Prism: a polyhedron (geometric solid) with two parallel, same-size bases joined by 3 or more parallelogram-shaped sides.

• Tetrahedron: polyhedron with four faces (tetra=four, hedron=face).

Page 19: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Using Euler’s Theorem

• There are five (5) regular polyhedra called Platonic Solids after the Greek mathematician and philosopher Plato. The Platonic Solids are a regular tetrahedra;

Page 20: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Using Euler’s Theorem• A cube (6 faces)

• A regular octahedron (8 faces),

• dodecahedron

• icosahedron

Page 21: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Note . . .• Notice that the sum

of the number of faces and vertices is two more than the number of edges in the solids above. This result was proved by the Swiss mathematician Leonhard Euler. Leonard Euler

1707-1783

Page 22: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Euler’s Theorem

• The number of faces (F), vertices (V), and edges (E) of a polyhedron are related by the formula

F + V = E + 2

Page 23: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 4: Using Euler’s Theorem

• The solid has 14 faces; 8 triangles and 6 octagons. How many vertices does the solid have?

Page 24: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 4: Using Euler’s Theorem

• On their own, 8 triangles and 6 octagons have 8(3) + 6(8), or 72 edges. In the solid, each side is shared by exactly two polygons. So the number of edges is one half of 72, or 36. Use Euler’s Theorem to find the number of vertices.

Page 25: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 4: Using Euler’s Theorem

F + V = E + 2

14 + V = 36 + 2

14 + V = 38 V = 24

Write Euler’s Thm.

Substitute values.

Simplify.Solve for V.

The solid has 24 vertices.

Page 26: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 5: Finding the Number of Edges• Chemistry. In

molecules of sodium chloride commonly known as table salt, chloride atoms are arranged like the vertices of regular octahedrons. In the crystal structure, the molecules share edges. How many sodium chloride molecules share the edges of one sodium chloride molecule?

Page 27: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 5: Finding the Number of Edges

To find the # of molecules that share edges with a given molecule, you need to know the # of edges of the molecule. You know that the molecules are shaped like regular octahedrons. So they each have 8 faces and 6 vertices. You can use Euler’s Theorem to find the number of edges as shown on the next slide.

Page 28: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 5: Finding the Number of Edges

F + V = E + 2

8 + 6 = E + 2

14 = E + 2 12 = E

Write Euler’s Thm.

Substitute values.

Simplify.Solve for E.

So, 12 other molecules share the edges of the given molecule.

Page 29: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 6: Finding the # of Vertices• SPORTS. A

soccer ball resembles a polyhedron with 32 faces; 20 are regular hexagons and 12 are regular pentagons. How many vertices does this polyhedron have?

Page 30: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Ex. 6: Finding the # of Vertices• Each of the 20 hexagons has 6

sides and each of the 12 pentagons has 5 sides. Each edge of the soccer ball is shared by two polygons. Thus the total # of edges is as follows.

E = ½ (6 • 20 + 5 • 12)

= ½ (180)

= 90

Expression for # of edges.

Simplify inside parentheses.

Multiply.

Knowing the # of edges, 90, and the # of faces, 32, you can then apply Euler’s Theorem to determine the # of vertices.

Page 31: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Apply Euler’s Theorem

F + V = E + 2

32 + V = 90 + 2

32 + V = 92 V = 60

Write Euler’s Thm.

Substitute values.

Simplify.Solve for V.

So, the polyhedron has 60 vertices.

Page 32: 12.1 Exploring Solids Geometry Mrs. Spitz Spring 2006.

Upcoming• There is a quiz after 12.3. There are no

other quizzes or tests for Chapter 12• Review for final exam.• Final Exams: Scheduled for Wednesday,

May 24. You must take and pass the final exam to pass the course!

• Book return: You will turn in books/CD’s this date. No book returned = F for semester! Book is $75 to replace.

• Absences: More than 10 in a semester from January 9 to May 26, and I will fail you. Tardies count!!!