Top Banner
12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped ions 12.6 Quantum jumps 12.7 The Penning trap and the Paul trap 12.8 Electron beam ion trap 12.9 Resolved sideband cooling
29

12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

Dec 28, 2015

Download

Documents

Dora Cook
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

12 Ion traps12.1 The force on ions in an electric field

12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped ions12.6 Quantum jumps 12.7 The Penning trap and the Paul trap12.8 Electron beam ion trap12.9 Resolved sideband cooling

Page 2: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

12.1 The force on ions in an electric field

An Ion

with a single charge:

An electric field :

Experiences a force:

191.6 10e C

5 110 Vm

1410ionF eE N

A Neutral Atom

with a magnetic moment of one Bohr magneton in a magnetic field gradient of

Experiences a force

110dB dz Tm

2210neutral B

dBF N

dz

Page 3: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

Ions feel a force 108 times greater than magneticlly-trapped neutrals.

In a trap operating with a voltage of 500v , single-charged ions have a maximum ‘binding’ energy at a temperature of 6106 K. In contrast, a magnetic trap for neutral has a maximum depth of only 0.07K.

These estimates show that neutral atoms must be cooled before trapping but ion trapping requires only moderate electric fields to capture the charged particles directly.

Page 4: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

12.2 Earnsha’s theorem

Earnshaw proved that: A charge acted on by electrostatic forces c

annot rest in stable equilibrium in an electric field.

带电粒子不能束缚在静电场中,也就是

说静电场中没有最大值和最小值,不能形成一个束缚的势阱。

Page 5: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

Fig. 12.1 The electric field lines between two equal positive charges. Mid-way between the charges at the point p the electric fields from the two charges cancel. At this position the ion experiences no force but it is not in stable equilibrium. At all other positions the resultant electric field accelerates the ion.

+

+

p

Page 6: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

Fig.12.2 A ball on a saddle-shaped surface has a gravitational potential energy that resembles the electrostatic potential energy of an ion in a Paul trap. Rotation of the surface about a vertical axis , at a suitable speed, prevents the ball rolling off the sides of the saddle and gives stable confinement .

Rotation

Page 7: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

The gravitational potential energy of the ball on the surface has the same form as the potential energy of an ion close to a saddle point of the electrostatic potential. we assume here a symmetric saddle whose curvature has the same magnitude, but opposite sign, along the principal axes:

(12.4)

Where and are coordinates in a frame rotating with respect to the laboratory frame of reference.

2 2' '

2

kz x y

12.3 The Paul trap

' cosx r t ' siny r t

Page 8: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

In the mechanical analogue, the rotation of the saddle at a suitable speed causes the ball to undergo a wobbling motion; the ball’s mean position only changes by a small amount during each rotation. the mean position of the object moves as if it is in an effective potential that keeps the ball near the centre of the saddle. We will find that an ion jiggling about in an a.c. field has a similar behaviour: a fast oscillation at a frequency close to that of the applied field and a slower change of its mean position.

12.3.1 Eqilibrium of a ball on a rotating saddle

Page 9: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

A a.c. electric field

An ion of charge e and mass M feels a force

Newton’s second law (12.5)

Two successive integrations give :

The velocity (12.6)

The displacement

It has been assumed that the initial velocity is zero and r0 is a constant of integration.

0 cos( )E E t

0 cos( )F eE t

0 cos( )Mr eE t

0 sin( )eE

r tM

00 2

cos( )eE

r r tM

12.3.2 The effective potential in an a.c. field

Page 10: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

Vac

(a) (b)

Fig. 12 . 3 A linear Paul trap used to store a string of ions. (a) A view looking along the four rods with the end-cap electrode and ions in the centre. Each of the rods is connected to the one diagonally opposite so that a voltage between the pairs gives a quadrupole field. (b) A side view of the rod and end-rap electrodes which have a.c. and positive d.c. voltages, respectively. A string of trapped ions is indicated.

+ +…..

y

x

Page 11: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

From the gradient of potential we find the electric field

According

Any place potential

The equation of motion in the x-direction is

If

02

00 ( ) cos( ) cos( )( )V

x yrE E r t t x e y e

E 02

0

2 20 2

cos( )( )V

rt x y

20

2 20

cos( )eVd xdt r

M t x

/ 2t 02 2

0

2x

eVq

Mr

0

2 20

4x

eV

Mr

Page 12: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

This is a simplified form of the Mathieu equation:

At the same way,we can

This question only and take some numerical,it have stability equations.

2

2( 2 cos 2 ) 0x x

d xa q x

d

2

2( 2 cos 2 ) 0y y

d ya q y

d

q a

Page 13: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

Trapping of ions requires a vacuum, but the presence of a small background of helium gas at a pressure (10-4mbar) gives very effective cooling of hot ions. The ions dissipate their kinetic energy through collisions with the buffer gas atoms and this quickly brings the ions into thermal equilibrium with the gas at room temperature. For ions that start off above room temperature the buffer gas cooling actually reduces the perturbations on the ions. Any slight broadening and shift of the ions’ micromotion-the ions stay closer to the trap centre where they see smaller a.c. fields. Buffer gas cooling can be compared to having a vacuum flask cools down because the low pressure of gas between the walls provides much less thermal insulation than a good vacuum.

12.4 Buffer gas cooling

Page 14: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

12.5 Laser cooling of trapped ions

The cooling of ions uses the same scattering force as the laser cooling of neutral atoms

A. This Doppler cooling works in much the same way as in optical molasses but there is no need for a counter -propagating laser beam because the velocity reverses direction in a bound system .

B. Each trapped ion behaves as a three-dimensional simple harmonic oscillator but a single laser beam damps the motion in all directions.

Differences

Laser cooling of trapped ions and the laser cooling of neutral atoms

Same

Page 15: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

Fig. 12. 4 A string of calcium ions in a linear Paul trap.The ion have an average separation of 10μm and the strong fluorescence enables each ion to be detected individually. The minimum size of the image for each ion is determined by the spatial resolution of the imaging system.

Page 16: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

0 1 2 3 4 5

500

8

100

0

400

200

300

976

Time (S)

Con

uts

per2

0 m

s

Fig. 12. 5 The fluorescence signal from a single calcium ion undergoing quantum jumps . The ion gives a strong signal when it is in the ground state and it is ‘dark’ while the ion is shelved in the long-lived metastable state.

Page 17: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

12.6 Quantum jumps

In addition to the strong resonance transition of natural

width used for laser cooling , ions have many other transitions and we now consider excitation of a weak optical transition with a natural width , where .

Figure 12 . 6 shows both of the transitions and the relevant energy levels . The first application described here simply uses a narrow transition to measure the temperature accurately.

' '

Page 18: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

︱ 2〉

︱ 3〉

︱ 1〉

l 'l

'

Fig. 12. 6 Three energy levels of an ion . The allowed transition between levels 1 and 2 gives a strong fluorescence signal when excited by laser light. The weak transition between 1 and 3 means that level 3 has a long lifetime and (a metastable state).'

Page 19: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

Fig. 12. 7 The electrode configuration of (a) the Paul trap and (b) the Penning trap, shown in cross-section .The lines between the end caps and ring electrode indicate the electric field lines; the Paul trap has an oscillating electric field but the Penning trap has static electric and magnetic fields. The electrodes shown have a hyberbolic shape, but for a small cloud of ions confined near to the centre any reasonable shape with cylindrical symmetry will do. Small ion traps with dimensions ~ 1mm generally have simple electrodes with cylindrical or spherical surfaces

Vdc

B

(a) (b)

Vac

End cap

End cap

Ring

z0

r0

12.7 The Penning trap and the Paul trap

Page 20: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

12.7.1 The Penning trap

The Penning trap has the same electrode shape as the Paul trap,

but uses static fields . In a Penning trap for positive ions , both end

caps have the same positive voltage to repel the ions and prevent

them escaping along the axis. With only a d.c electric field the ions

fly off in the radial direction , as expected from Earnshaw’s

theorem , but a strong magnetic field along the z-axis confines the

ions .

Page 21: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

E

x

y(a)

x

y

(b)

Fig. 12. 8

(a) A uniform electric field along the x-direction accelerates the ion in that direction. (b) A uniform magnetic flux density B along the z-direction leads to a circular motion in the plane perpendicular to B, at the cyclotron frequency c

Page 22: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

(c) In a region of crossed electric and magnetic fields the motion described by eqn12.25 is drift at velocity E/B perpendicular to the uniform electric field in addition to the cyclotron orbits.

(d) In a Penning trap the combination of a radial electric field and axial magnetic field causes the ion to move around in a circle at the magnetron frequency.

x

y

(c) (d)

Page 23: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

' '

'c

c

eB M M

eB M M

This assumes the simplest case with two species of equal charge , but the ratio of the charges is always known exactly .

12.7.2 Mass spectroscopy of ions

Page 24: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

12.8 Electron beam ion trap

The electron beam ion trap ( EBIT ) was developed to confine ions that have lost many electrons and which have energies much higher than those in typical experiments with Paul and Penning traps.

Page 25: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

Fig.12.9 A cross-section of an electron beam ion trap that has cylindrical symmetry. The high-energy electron beam along the axis of the trap attracts positive ions to give radial confinement and ionizes them further. The electrodes give confinement along the axis, i.e. the top and bottom drift tubes act like end caps as in a Penning trap but with much higher positive voltage. To the right is an enlarged view of the ions in the electrostatic potentials along the radial and axial directions.

middle drifttube

Top drifttube

bottom drifttube

Electronbeam

Radialpotential

Electronbeam Axial

potential

Fig.12.9

Page 26: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

12.9 Resolved sideband cooling

The vibrational energy levels have the same spacing in bot

h the ground and excited states of the ion .The trapped ion a

bsorbs light at the angular frequency ωo of the narrow tran

sition for a free ion ,and also at the frequencies ωo±ωv, ωo±

2ωv,etc.that correspond to transitions in which the vibration

al motion of the ion charges.

Page 27: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

(a) Excitation by light of

frequency ,

followed by spontaneous

emission, leads to a decrease

in the vibrational quantum

number, until the ion

reaches the lowest level with

U=0, from whence there is

no transition, as indicated by

the dotted line at this

frequency.

0L V U′=0

2ωL=ωO-ωV

U=0

1

1

2

Fig.12.10

Page 28: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

SL

SU

Frequency of laser radiation, ωL′

Sig

na

l (a

rbitr

ary

u

nits

)

ω 0-ωV

ω 0+ωV

(b) The spectrum of a trapped ion shows sidebands on either side of the main transition. this asymmetry indicates that the ion is mainly in the lowest vibrational state. The vertical axis gives the transition probability, or the probability of a quantum jump during the excitation of the narrow transition.

Fig.12.10

Page 29: 12 Ion traps 12.1 The force on ions in an electric field 12.2 Earnsha’s theorem 12.3 The Paul trap 12.4 Buffer gas cooling 12.5 Laser cooling of trapped.

Summary of ion traps

• This chapter explored some of the diverse physics of ion trapping , ranging from the cooling of ions to temperatures of only 10-3 K in small ion traps to the production of highly -charged ions in the EBIT. In the future it will be possible to do anti-atomic physics ,This high-energy trapping work has developed from accelerator-based experiments and probes similar physics.

• At the opposite pole lies the work on the laser cooling of ions to extremely low energies . We have seen that the fundamental limit to the cooling of a bound system is quite different to the laser cooling of free atoms. Experimenters have developed powerful techniques to manipulate single ions and make frequency standards of extreme precision. Such experimental techniques give exquisite control over the state of the whole quantum system in a way that the founders of quantum mechanics could only dream about.