Top Banner
7/23/2019 11455 TANK 36000L http://slidepdf.com/reader/full/11455-tank-36000l 1/144 Codeware, Inc. Sarasota, FL, USA www.codeware.com COMPRESS Pressure Vessel Design Calculations Item: Split Stream Dearator Vessel No: V-1234 Customer: Magaladon Oil Venture Contract: C-45490-R56 Designer: John Doe Date: April 1, 2001 You can edit this page by selecting Cover Page settings... in the report  menu.
144

11455 TANK 36000L

Feb 18, 2018

Download

Documents

grincheu70
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 1/144

Codeware, Inc.

Sarasota, FL, USA

www.codeware.com

COMPRESS Pressure Vessel Design Calculations

Item: Split Stream Dearator

Vessel No: V-1234

Customer: Magaladon Oil Venture

Contract: C-45490-R56

Designer: John Doe

Date: April 1, 2001

You can edit this page by selecting Cover Page settings... in the report  menu.

Page 2: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 2/144

Table of Contents

General Arrangement Drawing..............................................................................................................................1/142

Deficiencies Summary............................................................................................................................................2/142

Nozzle Schedule......................................................................................................................................................3/142

Nozzle Summary.....................................................................................................................................................4/142

Pressure Summary.................................................................................................................................................5/142

Revision History......................................................................................................................................................6/142

Settings Summary...................................................................................................................................................7/142

Radiography Summary...........................................................................................................................................9/142

Thickness Summary.............................................................................................................................................10/142

Weight Summary...................................................................................................................................................11/142

Long Seam Summary...........................................................................................................................................12/142

Hydrostatic Test....................................................................................................................................................14/142

Vacuum Summary.................................................................................................................................................15/142

Liquid Level bounded by Welded Cover #1........................................................................................................16/142

F&D Head #1..........................................................................................................................................................17/142

Straight Flange on F&D Head #1..........................................................................................................................24/142

Cylinder #1.............................................................................................................................................................36/142

Cylinder #2.............................................................................................................................................................49/142

Cylinder #3.............................................................................................................................................................62/142

Cylinder #4.............................................................................................................................................................75/142

Nozzle #1 (N1)........................................................................................................................................................97/142

Support Skirt #1..................................................................................................................................................113/142

Skirt Base Ring #1...............................................................................................................................................119/142

Welded Cover #1.................................................................................................................................................131/142

Seismic Code.......................................................................................................................................................133/142

Wind Code...........................................................................................................................................................138/142

Page 3: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 3/144

General Arrangement Drawing

1/142

Page 4: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 4/144

Deficiencies Summary

Deficiencies for Welded Cover #1UW-11(a): Full radiography required on longitudinal seam.

Warnings Summary

Warnings for Cylinder #1Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)

Warnings for Cylinder #2Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)

Warnings for Cylinder #3Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)

Warnings for Cylinder #4Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)

Warnings for Nozzle #1 (N1)Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)

The limits of reinforcement of Nozzle #1 (N1) fall off of Cylinder #4 on to Welded Cover #1. You may address this

issue by relocating the nozzle or specifying a user defined radial limit of reinforcement by clicking on the CalculationOptions button in the Detailed Nozzle Design dialog. (warning)

Warnings for Straight Flange on F&D Head #1Do/t > 1000 which is outside of ASME code range. U-2(g) analysis performed. (warning)

ASME B16.5 / B16.47 Flange Warnings Summary

FlangeApplicableWarnings

Nozzle #1 (N1) 1

No. Warning

1For Class 150 flanges, ASME B16.5 para. 5.4.3 recommends gaskets to be in accordance with Nonmandatory

Appendix B, Table B1, Group No. I.

2/142

Page 5: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 5/144

Nozzle Schedule

Specifications

Nozzlemark

Identifier Size MaterialsImpactTested

Normalized Fine Grain Flange Blind

N1 Nozzle #1 24 OD x 0,375

Nozzle SA-240 316L No No NoNPS 24 Class 150

WN A105

NPS 24

Class 150A105Pad SA-240 316L No No No

3/142

Page 6: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 6/144

Nozzle Summary

Dimensions

Nozzle

mark

OD

(in)

tn(in)

Req tn(in)

A1? A2?

ShellReinforcement

Pad Corr

(in)

Aa/Ar

(%)Nom t

(in)

Design t

(in)

User t

(in)

Width

(in)

tpad

(in)

N1 24 0,375 0,0625 Yes Yes 0,105 0,0577 0,125 0,105 0 100,0

Definitions

tn Nozzle thickness

Req tn Nozzle thickness required per UG-45/UG-16

Nom t Vessel wall thickness

Design t Required vessel wall thickness due to pressure + corrosion allowance per UG-37

User t Local vessel wall thickness (near opening)

Aa Area available per UG-37, governing condition

Ar Area required per UG-37, governing condition

Corr Corrosion allowance on nozzle wall

4/142

Page 7: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 7/144

Pressure Summary

Component Summary

Identifier

P

Design

(psi)

T

Design

(°F)

MAWP

(psi)

MAP

(psi)

MAEP

(psi)

Te

external

(°F)

MDMT

(°F)

MDMT

Exemption

Impact

Tested

F&D Head #1 0,01 100 10,12 11,34 1,34 100 -320 Note 1 No

Straight Flange on F&D Head #1 0,01 100 19,17 20,44 0,32 100 -320 Note 2 No

Cylinder #1 0,01 100 16,41 20,44 0,32 100 -320 Note 3 No

Cylinder #2 0,01 100 13,81 20,44 0,32 100 -320 Note 4 No

Cylinder #3 0,01 100 11,21 20,44 0,32 100 -320 Note 5 No

Cylinder #4 0,01 100 8,61 20,44 0,32 100 -320 Note 5 No

Welded Cover #1 0,01 100 0,56 12,61 12,61 100 -320 Note 5 No

Nozzle #1 (N1) 0,01 100 4,58 16,06 0,15 100 -55Nozzle Note 6 No

Pad Note 5 No

Chamber Summary

Design MDMT -20 °F

Rated MDMT-55 °F @ 0,56

psi

MAWP hot & corroded0,56 psi @ 100

°F

MAP cold & new11,34 psi @ 70

°F

MAEP0,15 psi @ 100

°F

Notes for MDMT Rating

Note # Exemption Details

1. Impact test exempt per UHA-51(g) (coincident ratio = 0,3144)

2. Impact test exempt per UHA-51(g) (coincident ratio = 0,0715)

3. Impact test exempt per UHA-51(g) (coincident ratio = 0,1795)

4. Impact test exempt per UHA-51(g) (coincident ratio = 0,2812)

5. Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320°F

6.

Flange rating governs:

Flange rated MDMT per UCS-66(b)(3) = -155°F (Coincident ratio = 0,04)Bolts rated MDMT per Fig UCS-66 note (c) = -55°F

5/142

Page 8: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 8/144

Revision History

Revisions

No. Date Operator Notes

0 9/22/2015 mnmeil New vessel created ASME Section VIII Division 1 [COMPRESS 2015 Build 7500]

6/142

Page 9: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 9/144

Settings Summary

COMPRESS 2015 Build 7500

ASME Section VIII Division 1, 2013 Edition

Units U.S. Customary

Datum Line Location 0,00" from bottom seam

Vessel Design Mode Get Thickness from Pressure

Minimum thickness 0,0625" per UG-16(b)

Design for cold shut down only No

Design for lethal service (full radiography required) No

Design nozzles forDesign P, find nozzle MAWP andMAP

Corrosion weight loss 100% of theoretical loss

UG-23 Stress Increase 1,20

Skirt/legs stress increase 1,0Minimum nozzle projection 6"

Juncture calculations for α > 30 only Yes

Preheat P-No 1 Materials > 1,25" and <= 1,50" thick No

UG-37(a) shell tr calculation considers longitudinal stress No

Cylindrical shells made from pipe are entered as minimum thickness No

Nozzles made from pipe are entered as minimum thickness No

Pipe caps are entered as minimum thickness No

Butt welds Tapered per Figure UCS-66.3(a)

Disallow Appendix 1-5, 1-8 calculations under 15 psi No

Hydro/Pneumatic Test

Shop Hydrotest Pressure 1,3 times vessel MAWP

Test liquid specific gravity 1,50

Maximum stress during test 90% of yield

Required Marking - UG-116

UG-116(e) Radiography RT4

UG-116(f) Postweld heat treatment None

Code Cases\Interpretations

Use Code Case 2547 No

Use Code Case 2695 No

Apply interpretation VIII-1-83-66 Yes

Apply interpretation VIII-1-86-175 Yes

7/142

Page 10: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 10/144

Apply interpretation VIII-1-01-37 Yes

Apply interpretation VIII-1-01-150 Yes

Apply interpretation VIII-1-07-50 Yes

No UCS-66.1 MDMT reduction No

No UCS-68(c) MDMT reduction No

Disallow UG-20(f) exemptions No

UG-22 Loadings

UG-22(a) Internal or External Design Pressure Yes

UG-22(b) Weight of the vessel and normal contents under operating or testconditions

Yes

UG-22(c) Superimposed static reactions from weight of attached equipment

(external loads)No

UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs Yes

UG-22(f) Wind reactions Yes

UG-22(f) Seismic reactions Yes

UG-22(j) Test pressure and coincident static head acting during the test: No

Note: UG-22(b),(c) and (f) loads only considered when supports are present.

8/142

Page 11: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 11/144

Radiography Summary

UG-116 Radiography

Component

Longitudinal Seam Top Circumferential Seam Bottom Circumferential Seam

MarkCategory(Fig

UW-3)

Radiography / JointType

Category(Fig

UW-3)

Radiography / JointType

Category(Fig

UW-3)

Radiography / JointType

F&D Head #1 ANone UW-11(c) / Type

1N/A N/A B

None UW-11(c) / Type

1None

Cylinder #1 A None UW-11(c) / Type1

B None UW-11(c) / Type1

B None UW-11(c) / Type1

None

Cylinder #2 ANone UW-11(c) / Type

1B

None UW-11(c) / Type

1B

None UW-11(c) / Type

1None

Cylinder #3 ANone UW-11(c) / Type

1B

None UW-11(c) / Type1

BNone UW-11(c) / Type

1None

Cylinder #4 ANone UW-11(c) / Type

1B

None UW-11(c) / Type1

BNone UW-11(c) / Type

1None

Welded Cover #1 ANone UW-11(c) / Type

1B

None UW-11(c) / Type1

N/A N/A None

Nozzle Longitudinal SeamNozzle to Vessel Circumferential

SeamNozzle free end Circumferential

Seam

Nozzle #1 (N1) AUser Defined (E =

1,00)D N/A / Type 7 C Full UW-11(a) / Type 1 RT1

Nozzle Flange Longitudinal Seam Flange FaceNozzle to Flange Circumferential

Seam

ASME B16.5/16.47 flange attached to

Nozzle #1 (N1)N/A Seamless No RT N/A N/A / Gasketed C Full UW-11(a) / Type 1 RT1

UG-116(e) Required Marking: RT4

9/142

Page 12: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 12/144

Thickness Summary

Component Data

Component

IdentifierMaterial Diameter

(in)

Length

(in)

Nominal t

(in)

Design t

(in)

Total Corrosion

(in)

Joint

ELoad

F&D Head #1 SA-240 316L 120 ID 21,5149 0,105* 0,0335 0 0,70 Internal

Straight Flange on F&D Head #1 SA-240 316L 120 ID 2 0,105 0,0264 0 0,70 External

Cylinder #1 SA-240 316L 120 ID 51 0,105 0,0264 0 0,70 External

Cylinder #2 SA-240 316L 120 ID 48 0,105 0,0341 0 0,70 Internal

Cylinder #3 SA-240 316L 120 ID 48 0,105 0,0475 0 0,70 Internal

Cylinder #4 SA-240 316L 120 ID 48 0,105 0,0608 0 0,70 Internal

Welded Cover #1 SA-240 316L 120 ID 5,75 1,625* 1,5891 0 0,70 Internal

Support Skirt #1 SA-240 304L 120,21 ID 40 0,25 0,0668 0 0,55 Seismic

*Head minimum thickness after forming

Definitions

Nominal t Vessel wall nominal thickness

Design t Required vessel thickness due to governing loading + corrosion

Joint E Longitudinal seam joint efficiency

Load

Internal Circumferential stress due to internal pressure governs

External External pressure governs

WindCombined longitudinal stress of pressure + weight + windgoverns

SeismicCombined longitudinal stress of pressure + weight + seismic

governs

10/142

Page 13: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 13/144

Weight Summary

Weight (lb) Contributed by Vessel Elements

Component Metal

New*Metal

CorrodedInsulation

InsulationSupports

LiningPiping

+ Liquid

Operating Liquid Test LiquidSurface Area

ft2New Corroded New Corroded

F&D Head #1 441,8 441,8 0 0 0 0 9 435 9 435 9 435 9 435 104

Cylinder #1 586 586 0 0 0 0 31 231 31 231 31 231 31 231 134

Cylinder #2 551,5 551,5 0 0 0 0 29 393,9 29 393,9 29 393,9 29 393,9 126

Cylinder #3 551,5 551,5 0 0 0 0 29 393,9 29 393,9 29 393,9 29 393,9 126

Cylinder #4 537,7 537,7 0 0 0 0 29 401,1 29 401,1 29 401,1 29 401,1 123

Welded Cover #1 5 093,2 5 093,2 0 0 0 0 2 452,6 2 452,6 2 452,6 2 452,6 94

Support Skirt #1 1 083,7 1 083,7 0 0 0 0 0 0 0 0 211

Skirt Base Ring #1 348 348 0 0 0 0 0 0 0 0 37

TOTAL: 9 193,4 9 193,4 0 0 0 0 131 307,5 131 307,5 131 307,6 131 307,6 954

*Shells with attached nozzles have weight reduced by material cut out for opening.

Weight (lb) Contributed by Attachments

ComponentBody Flanges

Nozzles &Flanges

PackedBeds

Ladders &

PlatformsTrays

TraySupports

Rings &Clips

VerticalLoads

Surface Areaft2

New Corroded New Corroded

F&D Head #1 0 0 0 0 0 0 0 0 0 0 0

Cylinder #1 0 0 0 0 0 0 0 0 0 0 0

Cylinder #2 0 0 0 0 0 0 0 0 0 0 0

Cylinder #3 0 0 0 0 0 0 0 0 0 0 0

Cylinder #4 0 0 753,4 753,4 0 0 0 0 0 0 14

Welded Cover #1 0 0 0 0 0 0 0 0 0 0 0

Support Skirt #1 0 0 0 0 0 0 0 0 0 0 0

TOTAL: 0 0 753,4 753,4 0 0 0 0 0 0 14

Vessel Totals

New Corroded

Operat ing Weight ( lb) 141 254 141 254Empty Weight (lb) 9 947 9 947

Test Weight (lb) 141 254 141 254

Surface Area (ft2) 969 -

Capacity** (US gal) 10 498 10 498

**The vessel capacity does not includevolume of nozzle, piping or other

attachments.

Vessel Lift Condition

Vessel Lift Weight, New (lb) 9 947

Center of Gravity from Datum (in) 26,9749

11/142

Page 14: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 14/144

Long Seam Summary

Shell Long Seam Angles

Component Seam 1 Seam 2

Cylinder #1 0° 228,9828°

Cylinder #2 30° 258,9828°

Cylinder #3 0° 228,9828°

Cylinder #4 30° 258,9828°

Support Skirt #1 0° 228,3079°

Shell Plate Lengths

ComponentStartingAngle

Plate 1 Plate 2

Cylinder #1 0° 240" 137,321"

Cylinder #2 30° 240" 137,321"

Cylinder #3 0° 240" 137,321"

Cylinder #4 30° 240" 137,321"

Support Skirt #1 0° 240" 138,4362"

Notes

1) Plate Lengths use the circumference of the vessel based on the mid diameter of the components.2) North is located at 0°

12/142

Page 15: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 15/144

Shell Rollout

13/142

Page 16: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 16/144

Hydrostatic Test

Horizontal shop hydrostatic test based on MAWP per UG-99(b)

Gauge pressure at 70°F=1,3*MAWP*LSR

= 1,3*0,56*1= 0,73 psi

Horizontal shop hydrostatic test

IdentifierLocal testpressure

(psi)

Test liquidstatic head

(psi)

UG-99(b)stressratio

UG-99(b)pressure

factor

F&D Head #1 (1) 7,574 6,845 1 1,30

Straight Flange on F&D Head #1 7,574 6,845 1 1,30

Cylinder #1 7,574 6,845 1 1,30

Cylinder #2 7,574 6,845 1 1,30

Cylinder #3 7,574 6,845 1 1,30

Cylinder #4 7,574 6,845 1 1,30

Welded Cover #1 7,574 6,845 1 1,30

Nozzle #1 (N1) 1,071 0,342 1 1,30

(1) F&D Head #1 limits the UG-99(b) stress ratio.(2) The zero degree angular position is assumed to be up, and the test

liquid height is assumed to the top-most flange.

The field test condition has not been investigated.

14/142

Page 17: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 17/144

Vacuum Summary

Largest Unsupported Length Le

Component Line of Support

Elevation

above Datum

(in)

Length Le

(in)

F&D Head #1 - 218,5149 N/A

- 1/3 depth of F&D Head #1 204,1366 N/A

Straight Flange on F&D Head #1 Top - 197 208,2616

Straight Flange on F&D Head #1 Bottom - 195 208,2616

Cylinder #1 Top - 195 208,2616

Cylinder #1 Bottom - 144 208,2616

Cylinder #2 Top - 144 208,2616

Cylinder #2 Bottom - 96 208,2616

Cylinder #3 Top - 96 208,2616

Cylinder #3 Bottom - 48 208,2616

Cylinder #4 Top - 48 208,2616

Cylinder #4 Bottom - 0 208,2616

- Welded Cover #1 -4,125 N/A

Welded Cover #1 - -5,75 N/A

15/142

Page 18: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 18/144

Liquid Level bounded by Welded Cover #1

ASME Section VIII Division 1, 2013 Edition

Location from Datum (in) 218,4099

Operating Liquid Specific Gravity 1,5

16/142

Page 19: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 19/144

F&D Head #1

ASME Section VIII Division 1, 2013 Edition

Component F&D Head

Material SA-240 316L (II-D p. 74, ln. 9)

Attached To Cylinder #1

ImpactTested

Normalized Fine GrainPractice

PWHT Optimize MDMT/Find MAWP

No No No No No

DesignPressure (psi)

DesignTemperature (°F)

DesignMDMT (°F)

Internal 0,01 100-20

External 0,01 100

Static Liquid Head

Condition Ps (psi) Hs (in) SG

Operating 1,16 21,4099 1,5

Test horizontal 6,85 126,4175 1,5

Dimensions

Inner Diameter 120"

Crown Radius L 120"

Knuckle Radius r 9"

Minimum Thickness 0,105"

CorrosionInner 0"

Outer 0"

Length Lsf 2"

Nominal Thickness tsf 0,105"

Weight and Capacity

Weight (lb)1 Capacity (US gal)1

New 441,77 754,34

Corroded 441,77 754,34

Radiography

Category A joints None UW-11(c) Type 1

Head to shell seam None UW-11(c) Type 11includes straight flange

17/142

Page 20: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 20/144

Results Summary

Governing condition UG-16

Minimum thickness per UG-16 0,0625" + 0" = 0,0625"

Design thickness due to internal pressure (t) 0,0335"

Design thickness due to external pressure (te) 0,0091"

Maximum allowable working pressure (MAWP) 10,12 psi

Maximum allowable pressure (MAP) 11,34 psi

Maximum allowable external pressure (MAEP) 1,34 psi

Rated MDMT -320°F

UHA-51 Material Toughness Requirements

Stress ratio = tr*E* / (tn - c) = 0,0413*0,8 / (0,105 - 0) = 0,3144

Impact test exempt per UHA-51(g) (coincident ratio = 0,3144)

Rated MDMT = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

Factor M

M = 1/4*[3 + (L / r)1/2]

Corroded M = 1/4*[3 + (120 / 9)1/2] 1,6629

New M = 1/4*[3 + (120 / 9)1/2] 1,6629

Design thickness for internal pressure, (Corroded at 100 °F) Appendix 1-4(d)

t = P*L*M / (2*S*E - 0,2*P) + Corrosion= 1,17*120*1,6629 / (2*16 700*0,7 - 0,2*1,17) + 0

= 0,01"

Design thickness for internal pressure, (Corroded at 100 °F) Appendix 1-4(f)(1)

0,0005 ≤ (tmin head - Corrosion) / L = 0,105 / 120 = 0,0009 < 0,002

r / D = 0,075 ≤ 0,08

C1

= 9,31*r / D - 0,086

= 9,31*0,075 - 0,086= 0,6123

Se = C1*ET*(t / r)

= 0,6123*28,12E+06*(0,0335 / 9)= 64 045 psi

C2 = 1,25

φ = (L*t)0,5 / r

18/142

Page 21: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 21/144

= (120*0,0335)0,5 / 9= 0,222729 radians

a = 0,5*D - r= 0,5*120 -9

= 51"

b = L - r= 120 - 9

= 111"

β = arc cos(a / b)

= arc cos(51 / 111)= 1,09341 radians

φ = 0,2227 < β = 1,0934

c = a / (cos(β - φ))= 51 / (cos(1,0934 - 0,2227))

= 79,154971"

Re = c + r

= 79,155 + 9= 88,154971"

Pe = Se*t / (C2*Re*[(0,5*Re / r) - 1])= 64 045*0,0335 / (1,25*88,155*[(0,5*88,155 / 9) - 1])= 4,99 psi

Py = Sy*t / (C2*Re*[(0,5*Re / r) - 1])

= 25 000*0,0335 / (1,25*88,155*[(0,5*88,155 / 9) - 1])= 1,95 psi

1 ≤ Pe / Py = 4,99 / 1,95 = 2,56 ≤ 8,29

Pck = 0,408*Py + 0,192*Pe

= 0,408*1,95 + 0,192*4,99

= 1,75 psi

Pck / 1,5 = 1,17 psi ≥ Internal design pressure P = 1,17 psi

t = tr + Corrosion

= 0,033485 + 0= 0,033485"

Design thickness is acceptable per Appendix 1-4(f) for a design pressure of 0,01 psi.

The head internal pressure design thickness is 0,0335".

Maximum allowable working pressure, (Corroded at 100 °F) Appendix 1-4(d)

P = 2*S*E*t / (L*M + 0,2*t) - Ps

= 2*16 700*0,7*0,105 / (120*1,6629 + 0,2*0,105) - 1,16= 11,14 psi

19/142

Page 22: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 22/144

Maximum allowable working pressure, (Corroded at 100 °F) Appendix 1-4(f)(1)

0,0005 ≤ (tmin head - Corrosion) / L = 0,105 / 120 = 0,0009 < 0,002

r / D = 0,075 ≤ 0,08

C1 = 9,31*r / D - 0,086= 9,31*0,075 - 0,086

= 0,6123

Se = C1*ET*(t / r)

= 0,6123*28,12E+06*(0,105 / 9)= 200 826 psi

C2 = 1,25

φ = (L*t)0,5 / r= (120*0,105)0,5 / 9

= 0,394405 radians

a = 0,5*D - r

= 0,5*120 -9= 51"

b = L - r= 120 - 9= 111"

β = arc cos(a / b)

= arc cos(51 / 111)= 1,09341 radians

φ = 0,3944 < β = 1,0934

c = a / (cos(β - φ))= 51 / (cos(1,0934 - 0,3944))

= 66,62459"

Re = c + r= 66,6246 + 9= 75,62459"

Pe = Se*t / (C2*Re*[(0,5*Re / r) - 1])

= 200 826*0,105 / (1,25*75,6246*[(0,5*75,6246 / 9) - 1])= 69,68 psi

Py = Sy*t / (C2*Re*[(0,5*Re / r) - 1])= 25 000*0,105 / (1,25*75,6246*[(0,5*75,6246 / 9) - 1])

= 8,67 psi

1 ≤ Pe / Py = 69,68 / 8,67 = 8,03 ≤ 8,29

Pck = 0,408*Py + 0,192*Pe

= 0,408*8,67 + 0,192*69,68= 16,92 psi

20/142

Page 23: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 23/144

Pck / 1,5 = 11,28 psi

P = Pck / 1,5 - Ps

= 16,92 / 1,5 - 1,16= 10,12 psi

The maximum allowable working pressure (MAWP) is 10,12 psi.

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(d)

P = 2*S*E*t / (L*M + 0,2*t) - Ps

= 2*16 700*0,7*0,105 / (120*1,6629 + 0,2*0,105) - 0= 12,3 psi

Maximum allowable pressure, (New at 70 °F) Appendix 1-4(f)(1)

0,0005 ≤ (tmin head - Corrosion) / L = 0,105 / 120 = 0,0009 < 0,002

r / D = 0,075 ≤ 0,08

C1 = 9,31*r / D - 0,086= 9,31*0,075 - 0,086= 0,6123

Se = C1*ET*(t / r)= 0,6123*28,3E+06*(0,105 / 9)

= 202 145 psi

C2 = 1,25

φ = (L*t)0,5 / r= (120*0,105)0,5 / 9= 0,394405 radians

a = 0,5*D - r

= 0,5*120 -9= 51"

b = L - r= 120 - 9

= 111"

β = arc cos(a / b)= arc cos(51 / 111)

= 1,09341 radians

φ = 0,3944 < β = 1,0934

c = a / (cos(β - φ))

= 51 / (cos(1,0934 - 0,3944))= 66,62459"

Re = c + r= 66,6246 + 9

= 75,62459"

21/142

Page 24: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 24/144

Pe = Se*t / (C2*Re*[(0,5*Re / r) - 1])

= 202 145*0,105 / (1,25*75,6246*[(0,5*75,6246 / 9) - 1])= 70,14 psi

Py = Sy*t / (C2*Re*[(0,5*Re / r) - 1])= 25 000*0,105 / (1,25*75,6246*[(0,5*75,6246 / 9) - 1])

= 8,67 psi

1 ≤ Pe / Py = 70,14 / 8,67 = 8,09 ≤ 8,29

Pck = 0,408*Py + 0,192*Pe

= 0,408*8,67 + 0,192*70,14= 17,01 psi

Pck / 1,5 = 11,34 psi

P = Pck / 1,5 - Ps

= 17,01 / 1,5 - 0

= 11,34 psi

The maximum allowable pressure (MAP) is 11,34 psi.

Design thickness for external pressure, (Corroded at 100 °F) UG-33(e)

Equivalent outside spherical radius (Ro)= Outside crown radius= 120,105 in

A = 0,125 / (Ro / t)

= 0,125 / (120,105 / 0,009076)= 0,000009

Pa

= 0,0625*E / (Ro

 / t)2

= 0,0625*2,8E+07 / (120,105 / 0,0091)2

= 0,01 psi

t = 0,0091" + Corrosion = 0,0091" + 0" = 0,0091"Check the external pressure per UG-33(a)(1) Appendix 1-4(d)

t = 1,67*Pe*L*M / (2*S*E - 0,2*1,67*Pe) + Corrosion

= 1,67*0,01*120*1,6629 / (2*16 700*1 - 0,2*1,67*0,01) + 0= 0,0001"

The head external pressure design thickness (te) is 0,0091".

Maximum Allowable External Pressure, (Corroded at 100 °F) UG-33(e)

Equivalent outside spherical radius (Ro)= Outside crown radius

= 120,105 in

A = 0,125 / (Ro / t)

= 0,125 / (120,105 / 0,105)

22/142

Page 25: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 25/144

= 0,000109

From TableHA-4:

B =1 529,2145psi

Pa = B / (Ro / t)= 1 529,2145 / (120,105 / 0,105)

= 1,3369 psi

Check the Maximum External Pressure, UG-33(a)(1) Appendix 1-4(d)

P = 2*S*E*t / ((L*M + 0,2*t)*1,67)

= 2*16 700*1*0,105 / ((120*1,6629 + 0,2*0,105)*1,67)= 10,52 psi

The maximum allowable external pressure (MAEP) is 1,34 psi.

% Forming strain - UHA-44(a)(2)

EFE = (75*t / Rf)*(1 - Rf / Ro)

= (75*0,105 / 9,0525)*(1 - 9,0525 / infinity)

= 0,8699%

23/142

Page 26: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 26/144

Straight Flange on F&D Head #1

ASME Section VIII Division 1, 2013 Edition

Component Cylinder

Material SA-240 316L (II-D p. 74, ln. 9)

ImpactTested

NormalizedFine GrainPractice

PWHTOptimize MDMT/

Find MAWP

No No No No No

DesignPressure (psi)

DesignTemperature (°F)

DesignMDMT (°F)

Internal 0,01 100-20

External 0,01 100

Static Liquid Head

Condition Ps (psi) Hs (in) SG

Operating 1,27 23,4099 1,5

Test horizontal 6,85 126,4175 1,5

Dimensions

Inner Diameter 120"

Length 2"

Nominal Thickness 0,105"

CorrosionInner 0"

Outer 0"

Weight and Capacity

Weight (lb) Capacity (US gal)

New 22,98 97,92

Corroded 22,98 97,92

Radiography

Longitudinal seam None UW-11(c) Type 1

Bottom Circumferentialseam

None UW-11(c) Type 1

24/142

Page 27: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 27/144

Results Summary

Governing condition UG-16

Minimum thickness per UG-16 0,0625" + 0" = 0,0625"

Design thickness due to internal pressure (t) 0,0066"

Design thickness due to external pressure (te) 0,0264"

Design thickness due to combined loadings + corrosion 0,0006"

Maximum allowable working pressure (MAWP) 19,17 psi

Maximum allowable pressure (MAP) 20,44 psi

Maximum allowable external pressure (MAEP) 0,32 psi

Rated MDMT -320 °F

UHA-51 Material Toughness Requirements

tr = 1,83*60 / (16 700*0,7 - 0.6*1,83) = 0,0094"

Stress ratio = tr*E* / (tn - c) = 0,0094*0,8 / (0,105 - 0) = 0,0715

Impact test exempt per UHA-51(g) (coincident ratio = 0,0715)

Rated MDMT = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

Design thickness, (at 100 °F) UG-27(c)(1)

t = P*R / (S*E - 0,60*P) + Corrosion= 1,28*60 / (16 700*0,70 - 0,60*1,28) + 0= 0,0066"

Maximum allowable working pressure, (at 100 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t) - Ps

= 16 700*0,70*0,105 / (60 + 0,60*0,105) - 1,27= 19,17 psi

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t)= 16 700*0,70*0,105 / (60 + 0,60*0,105)

= 20,44 psi

External Pressure, (Corroded & at 100 °F) UG-28(c)

L / Do = 208,2616 / 120,21 = 1,7325

Do / t = 120,21 / 0,0264 = 4547,1948

Experimental basin formula

Pa = [2,42*E / (1 - µ2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)

0,50)] / 3

= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0264 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,0264 / 120,21)0,50)] / 3= 0,01 psi

25/142

Page 28: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 28/144

Design thickness for external pressure Pa = 0,01 psi

ta = t + Corrosion = 0,0264 + 0 = 0,0264"

Maximum Allowable External Pressure, (Corroded & at 100 °F) UG-28(c)

L / Do = 208,2616 / 120,21 = 1,7325Do / t = 120,21 / 0,105 = 1144,8571

Experimental basin formula

Pa = [2,42*E / (1 - µ2

)0,75

]*[(t / Do)2,50

 / (L / Do - 0,45*(t / Do)0,50

)] / 3= [2,42*28000000 / (1 - 0,302)0,75]*[(0,105 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,105 / 120,21)0,50)] / 3= 0,32 psi

% Forming strain - UHA-44(a)(2)

EFE = (50*t / Rf)*(1 - Rf / Ro)

= (50*0,105 / 60,0525)*(1 - 60,0525 / infinity)

= 0,0874%

26/142

Page 29: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 29/144

Thickness Required Due to Pressure + External Loads

ConditionPressure P (

psi)

AllowableStress BeforeUG-23 StressIncrease ( psi)

Temperature (°F)

Corrosion C(in)

LoadReq'd Thk Due to

Tension (in)

Req'd Thk Dueto

Compression(in)

St Sc

Operating, Hot & Corroded 0,01 16 700 3 056 100 0Wind 0,0001 0,0003

Seismic 0 0,0004

Operating, Hot & New 0,01 16 700 3 056 100 0

Wind 0,0001 0,0003

Seismic 0 0,0004

Hot Shut Down, Corroded 0 16 700 3 056 100 0Wind 0,0002 0,0004

Seismic 0 0,0005

Hot Shut Down, New 0 16 700 3 056 100 0Wind 0,0002 0,0004

Seismic 0 0,0005

Empty, Corroded 0 16 700 3 056 70 0Wind 0,0002 0,0004

Seismic 0,0002 0,0003

Empty, New 0 16 700 3 056 70 0Wind 0,0002 0,0004

Seismic 0,0002 0,0003

Vacuum -0,01 16 700 3 056 100 0Wind 0,0002 0,0004

Seismic 0,0001 0,0006

Hot Shut Down, Corroded, Weight &Eccentric Moments Only

0 16 700 3 056 100 0 Weight 0,0004 0,0004

Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScHC = min(B, S) = 3 056 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 3 056 psi

Allowable Compressive Stress, Cold and New- ScCN, (table HA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScCN = min(B, S) = 3 056 psi

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 3 056 psi

27/142

Page 30: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 30/144

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableHA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScVC = min(B, S) = 3 056 psi

Operating, Hot & Corroded, Wind, Bottom Seam

tp = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tm = M / (π*Rm2*Sc*Ks) (bending)

= 1 426 / (π*60,05252*3 056,32*1,20)

= 0"

tw = 0,6*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,60*441,8 / (2*π*60,0525*3 056,32*1,20)= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0,0001 + 0 - (0,0002)|

= 0,0001"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0003) - (0,0001)

= 0,0003"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0 + (0,0001)) / (60 - 0,40*(0,105 - 0 + (0,0001)))

= 49,15 psi

Operating, Hot & New, Wind, Bottom Seam

tp = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)= 0,0001"

tm = M / (π*Rm2*Sc*Ks) (bending)

= 1 426 / (π*60,05252*3 056,32*1,20)

= 0"

tw = 0,6*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,60*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0002"

28/142

Page 31: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 31/144

tt = |tp + tm - tw| (total, net compressive)

= |0,0001 + 0 - (0,0002)|

= 0,0001"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0003) - (0,0001)= 0,0003"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0 + (0,0001)) / (60 - 0,40*(0,105 - 0 + (0,0001)))

= 49,15 psi

Hot Shut Down, Corroded, Wind, Bottom Seam

tp

= 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 1 426 / (π*60,05252*3 056,32*1,20)

= 0"

tw = 0,6*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,60*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0002)|

= 0,0002"

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0003) - (0)

= 0,0004"

Hot Shut Down, New, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 1 426 / (π*60,05252

*3 056,32*1,20)= 0"

tw = 0,6*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,60*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0002)|

= 0,0002"

29/142

Page 32: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 32/144

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0003) - (0)

= 0,0004"

Empty, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 1 426 / (π*60,05252*3 056,32*1,20)

= 0"

tw = 0,6*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,60*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0002)|

= 0,0002"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0003) - (0)

= 0,0004"

Empty, New, Wind, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)

= 1 426 / (π*60,05252*3 056,32*1,20)

= 0"

tw = 0,6*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,60*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0002)|

= 0,0002"

twc = W / (2*π*Rm*Sc*Ks) (Weight)= 441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0003) - (0)

= 0,0004"

30/142

Page 33: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 33/144

Vacuum, Wind, Bottom Seam

tp = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= -0,0001"

tm = M / (π*Rm2*Sc*Ks) (bending)

= 1 426 / (π*60,05252*3 056,32*1,20)

= 0"

tw = 0,6*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,60*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |-0,0001 + 0 - (0,0002)|

= 0,0002"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc

= tmc

 + twc

 - tpc

(total required, compressive)

= 0 + (0,0003) - (-0,0001)

= 0,0004"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0 - 0,0003) / (60 - 0,40*(0,105 - 0 - 0,0003))

= 12,8 psi

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*Sc*Ks) (bending)

= 0 / (π*60,05252*3 056,32*1,00)

= 0"

tw = W / (2*π*Rm*Sc*Ks) (Weight)

= 441,8 / (2*π*60,0525*3 056,32*1,00)

= 0,0004"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0004)|

= 0,0004"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0004) - (0)

= 0,0004"

Operating, Hot & Corroded, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

31/142

Page 34: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 34/144

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 7 426 / (π*60,05252*16 700*1,20*0,70)

= 0"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*441,8 / (2*π*60,0525*16 700*1,20*0,70)

= 0"

tt = tp + tm - tw (total required, tensile)

= 0 + 0 - (0)= 0"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 7 426 / (π*60,05252*3 056,32*1,20)

= 0,0002"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc = tmc + twc - tpc (total required, compressive)

= 0,0002 + (0,0003) - (0,0001)

= 0,0004"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0 + (0)) / (60 - 0,40*(0,105 - 0 + (0)))

= 49,13 psi

Operating, Hot & New, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 7 426 / (π*60,05252*16 700*1,20*0,70)

= 0"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*441,8 / (2*π*60,0525*16 700*1,20*0,70)

= 0"tt = tp + tm - tw (total required, tensile)

= 0 + 0 - (0)

= 0"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

32/142

Page 35: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 35/144

= 7 426 / (π*60,05252*3 056,32*1,20)

= 0,0002"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc = tmc + twc - tpc (total required, compressive)

= 0,0002 + (0,0003) - (0,0001)

= 0,0004"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0 + (0)) / (60 - 0,40*(0,105 - 0 + (0)))

= 49,13 psi

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 7 426 / (π*60,05252*16 700*1,20*0,70)

= 0"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*441,8 / (2*π*60,0525*16 700*1,20*0,70)

= 0"

tt = tp + tm - tw (total required, tensile)

= 0 + 0 - (0)

= 0"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 7 426 / (π*60,05252*3 056,32*1,20)

= 0,0002"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc = tmc + twc - tpc (total required, compressive)

= 0,0002 + (0,0003) - (0)

= 0,0005"

Hot Shut Down, New, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)

= 7 426 / (π*60,05252*16 700*1,20*0,70)

= 0"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*441,8 / (2*π*60,0525*16 700*1,20*0,70)

= 0"

tt = tp + tm - tw (total required, tensile)

33/142

Page 36: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 36/144

= 0 + 0 - (0)

= 0"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 7 426 / (π*60,05252*3 056,32*1,20)

= 0,0002"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"tc = tmc + twc - tpc (total required, compressive)

= 0,0002 + (0,0003) - (0)

= 0,0005"

Empty, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 803 / (π*60,05252*3 056,32*1,20)

= 0"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,57*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0002)|

= 0,0002"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0003) - (0)

= 0,0003"

Empty, New, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 803 / (π*60,05252*3 056,32*1,20)

= 0"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,57*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0002)|

= 0,0002"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

34/142

Page 37: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 37/144

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0003) - (0)

= 0,0003"

Vacuum, Seismic, Bottom Seam

tp = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= -0,0001"

tm = M / (π*Rm2*Sc*Ks) (bending)

= 7 426 / (π*60,05252*3 056,32*1,20)

= 0,0002"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,57*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0002"

tt = |tp + tm - tw| (total, net compressive)

= |-0,0001 + 0,0002 - (0,0002)|

= 0,0001"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*441,8 / (2*π*60,0525*3 056,32*1,20)

= 0,0003"

tc = tmc + twc - tpc (total required, compressive)

= 0,0002 + (0,0003) - (-0,0001)

= 0,0006"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0,0002 - 0,0003) / (60 - 0,40*(0,105 - 0,0002 - 0,0003))= 12,78 psi

35/142

Page 38: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 38/144

Cylinder #1

ASME Section VIII Division 1, 2013 Edition

Component Cylinder

Material SA-240 316L (II-D p. 74, ln. 9)

ImpactTested

NormalizedFine GrainPractice

PWHTOptimize MDMT/

Find MAWP

No No No No No

DesignPressure (psi)

DesignTemperature (°F)

DesignMDMT (°F)

Internal 0,01 100-20

External 0,01 100

Static Liquid Head

Condition Ps (psi) Hs (in) SG

Operating 4,03 74,4099 1,5

Test horizontal 6,85 126,4175 1,5

Dimensions

Inner Diameter 120"

Length 51"

Nominal Thickness 0,105"

CorrosionInner 0"

Outer 0"

Weight and Capacity

Weight (lb) Capacity (US gal)

New 585,96 2 496,95

Corroded 585,96 2 496,95

Radiography

Longitudinal seam None UW-11(c) Type 1

Top Circumferentialseam

None UW-11(c) Type 1

Bottom Circumferential

seam None UW-11(c) Type 1

36/142

Page 39: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 39/144

Results Summary

Governing condition UG-16

Minimum thickness per UG-16 0,0625" + 0" = 0,0625"

Design thickness due to internal pressure (t) 0,0208"

Design thickness due to external pressure (te) 0,0264"

Design thickness due to combined loadings + corrosion 0,0036"

Maximum allowable working pressure (MAWP) 16,41 psi

Maximum allowable pressure (MAP) 20,44 psi

Maximum allowable external pressure (MAEP) 0,32 psi

Rated MDMT -320 °F

UHA-51 Material Toughness Requirements

tr = 4,59*60 / (16 700*0,7 - 0.6*4,59) = 0,0236"

Stress ratio = tr*E* / (tn - c) = 0,0236*0,8 / (0,105 - 0) = 0,1795

Impact test exempt per UHA-51(g) (coincident ratio = 0,1795)

Rated MDMT = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

Design thickness, (at 100 °F) UG-27(c)(1)

t = P*R / (S*E - 0,60*P) + Corrosion= 4,04*60 / (16 700*0,70 - 0,60*4,04) + 0= 0,0208"

Maximum allowable working pressure, (at 100 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t) - Ps

= 16 700*0,70*0,105 / (60 + 0,60*0,105) - 4,03= 16,41 psi

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t)= 16 700*0,70*0,105 / (60 + 0,60*0,105)

= 20,44 psi

External Pressure, (Corroded & at 100 °F) UG-28(c)

L / Do = 208,2616 / 120,21 = 1,7325

Do / t = 120,21 / 0,0264 = 4547,1948

Experimental basin formula

Pa = [2,42*E / (1 - µ2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)

0,50)] / 3

= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0264 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,0264 / 120,21)0,50)] / 3= 0,01 psi

37/142

Page 40: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 40/144

Design thickness for external pressure Pa = 0,01 psi

ta = t + Corrosion = 0,0264 + 0 = 0,0264"

Maximum Allowable External Pressure, (Corroded & at 100 °F) UG-28(c)

L / Do = 208,2616 / 120,21 = 1,7325Do / t = 120,21 / 0,105 = 1144,8571

Experimental basin formula

Pa = [2,42*E / (1 - µ2

)0,75

]*[(t / Do)2,50

 / (L / Do - 0,45*(t / Do)0,50

)] / 3= [2,42*28000000 / (1 - 0,302)0,75]*[(0,105 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,105 / 120,21)0,50)] / 3= 0,32 psi

% Forming strain - UHA-44(a)(2)

EFE = (50*t / Rf)*(1 - Rf / Ro)

= (50*0,105 / 60,0525)*(1 - 60,0525 / infinity)

= 0,0874%

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

Pv   = W / (2*π*Rm) + M / (π*Rm2)

  = 1 027,7 / (2*π*60,0525) + 19 291 / (π*60,05252)  = 4,4264 lb/in

α   = Pv / (Pe*Do)  = 4,4264 / (0,01*120,21)

  = 3,6823n = 7m = 1,23 / (L / Do)

2

  = 1,23 / (208,2616 / 120,21)2

  = 0,4098

Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)

  = (72 - 1 + 0,4098 + 0,4098*3,6823) / (72 - 1 + 0,4098)  = 1,0312

Ratio Pe * Pe   ≤ MAEP

(1,0312 * 0,01 = 0,01) ≤ 0,32

Cylinder design thickness is satisfactory.

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

Pv   = (1 + 0,14*SDS)*W / (2*π*Rm) + M / (π*Rm2)

  = 1,03*1 027,7 / (2*π*60,0525) + 112 852 / (π*60,05252)

  = 12,7639 lb/inα   = Pv / (Pe*Do)

  = 12,7639 / (0,01*120,21)  = 10,618

n = 7

m = 1,23 / (L / Do)2

  = 1,23 / (208,2616 / 120,21)2

  = 0,4098Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)

  = (72 - 1 + 0,4098 + 0,4098*10,618) / (72 - 1 + 0,4098)

38/142

Page 41: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 41/144

  = 1,0899

Ratio Pe * Pe   ≤ MAEP

(1,0899 * 0,01 = 0,01) ≤ 0,32

Cylinder design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads

Condition Pressure P (psi)

AllowableStress BeforeUG-23 StressIncrease ( psi)

Temperature (°F)

Corrosion C(in)

Load Req'd Thk Due toTension (in)

Req'd Thk Due

toCompression

(in)

St Sc

Operating, Hot & Corroded 0,01 16 700 3 056 100 0Wind 0 0,0011

Seismic 0,0006 0,0034

Operating, Hot & New 0,01 16 700 3 056 100 0Wind 0 0,0011

Seismic 0,0006 0,0034

Hot Shut Down, Corroded 0 16 700 3 056 100 0Wind 0 0,0012

Seismic 0,0006 0,0035

Hot Shut Down, New 0 16 700 3 056 100 0Wind 0 0,0012

Seismic 0,0006 0,0035

Empty, Corroded 0 16 700 3 056 70 0Wind 0 0,0012

Seismic 0,0003 0,0009

Empty, New 0 16 700 3 056 70 0Wind 0 0,0012

Seismic 0,0003 0,0009

Vacuum -0,01 16 700 3 056 100 0Wind 0,0001 0,0013

Seismic 0,0006 0,0036

Hot Shut Down, Corroded, Weight &Eccentric Moments Only

0 16 700 3 056 100 0 Weight 0,0009 0,0009

Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-4)

A = 0,125 / (Ro / t)= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScHC = min(B, S) = 3 056 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 3 056 psi

Allowable Compressive Stress, Cold and New- ScCN, (table HA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScCN = min(B, S) = 3 056 psi

39/142

Page 42: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 42/144

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 3 056 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableHA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScVC = min(B, S) = 3 056 psi

Operating, Hot & Corroded, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"tm = M / (π*Rm

2*St*Ks*Ec) (bending)

= 19 291 / (π*60,05252*16 700*1,20*0,70)

= 0,0001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 027,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0001 - (0,0001)

= 0"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 19 291 / (π*60,05252*3 056,32*1,20)

= 0,0005"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0007"

tc = tmc + twc - tpc (total required, compressive)

= 0,0005 + (0,0007) - (0,0001)= 0,0011"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0001 + (0,0001)) / (60 - 0,40*(0,105 - 0,0001 + (0,0001)))

= 49,13 psi

40/142

Page 43: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 43/144

Operating, Hot & New, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 19 291 / (π*60,05252*16 700*1,20*0,70)

= 0,0001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 027,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0001 - (0,0001)

= 0"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc

= M / (π*R

m

2*Sc*K

s) (bending)

= 19 291 / (π*60,05252*3 056,32*1,20)

= 0,0005"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0007"

tc = tmc + twc - tpc (total required, compressive)

= 0,0005 + (0,0007) - (0,0001)

= 0,0011"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0001 + (0,0001)) / (60 - 0,40*(0,105 - 0,0001 + (0,0001)))

= 49,13 psi

Hot Shut Down, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 19 291 / (π*60,05252*16 700*1,20*0,70)

= 0,0001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 027,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0001 - (0,0001)

= 0"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 19 291 / (π*60,05252*3 056,32*1,20)

41/142

Page 44: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 44/144

= 0,0005"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0007"

tc = tmc + twc - tpc (total required, compressive)

= 0,0005 + (0,0007) - (0)

= 0,0012"

Hot Shut Down, New, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 19 291 / (π*60,05252*16 700*1,20*0,70)

= 0,0001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 027,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0001 - (0,0001)

= 0"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 19 291 / (π*60,05252*3 056,32*1,20)

= 0,0005"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0007"

tc = tmc + twc - tpc (total required, compressive)

= 0,0005 + (0,0007) - (0)

= 0,0012"

Empty, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 19 291 / (π*60,05252*16 700*1,20*0,70)

= 0,0001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 027,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0001 - (0,0001)

= 0"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 19 291 / (π*60,05252*3 056,32*1,20)

= 0,0005"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

42/142

Page 45: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 45/144

= 1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0007"

tc = tmc + twc - tpc (total required, compressive)

= 0,0005 + (0,0007) - (0)

= 0,0012"

Empty, New, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 19 291 / (π*60,05252*16 700*1,20*0,70)

= 0,0001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 027,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0001 - (0,0001)

= 0"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 19 291 / (π*60,05252*3 056,32*1,20)

= 0,0005"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0007"

tc = tmc + twc - tpc (total required, compressive)

= 0,0005 + (0,0007) - (0)

= 0,0012"

Vacuum, Wind, Bottom Seam

tp = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= -0,0001"

tm = M / (π*Rm2*Sc*Ks) (bending)

= 19 291 / (π*60,05252*3 056,32*1,20)

= 0,0005"

tw = 0,6*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,60*1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0004"

tt = |tp + tm - tw| (total, net compressive)

= |-0,0001 + 0,0005 - (0,0004)|

= 0,0001"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0007"

tc = tmc + twc - tpc (total required, compressive)

43/142

Page 46: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 46/144

= 0,0005 + (0,0007) - (-0,0001)

= 0,0013"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0,0005 - 0,0007) / (60 - 0,40*(0,105 - 0,0005 - 0,0007))

= 12,7 psi

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 0 / (π*60,05252*3 056,32*1,00)

= 0"

tw = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 027,7 / (2*π*60,0525*3 056,32*1,00)

= 0,0009"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0009)|

= 0,0009"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0009) - (0)

= 0,0009"

Operating, Hot & Corroded, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 112 852 / (π*60,05252*16 700*1,20*0,70)

= 0,0007"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*1 027,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0001)

= 0,0006"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 112 852 / (π*60,05252*3 056,32*1,20)

= 0,0027"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 027,7 / (2*π*60,0525*3 056,32*1,20)

44/142

Page 47: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 47/144

= 0,0008"

tc = tmc + twc - tpc (total required, compressive)

= 0,0027 + (0,0008) - (0,0001)

= 0,0034"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0007 + (0,0001)) / (60 - 0,40*(0,105 - 0,0007 + (0,0001)))

= 48,85 psi

Operating, Hot & New, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 112 852 / (π*60,05252*16 700*1,20*0,70)

= 0,0007"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*1 027,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0001)

= 0,0006"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc = M / (π*Rm

2

*Sc*Ks) (bending)= 112 852 / (π*60,05252*3 056,32*1,20)

= 0,0027"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0008"

tc = tmc + twc - tpc (total required, compressive)

= 0,0027 + (0,0008) - (0,0001)

= 0,0034"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0007 + (0,0001)) / (60 - 0,40*(0,105 - 0,0007 + (0,0001)))

= 48,85 psi

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

45/142

Page 48: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 48/144

= 112 852 / (π*60,05252*16 700*1,20*0,70)

= 0,0007"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*1 027,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0001)

= 0,0006"tmc = M / (π*Rm

2*Sc*Ks) (bending)

= 112 852 / (π*60,05252*3 056,32*1,20)

= 0,0027"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0008"

tc = tmc + twc - tpc (total required, compressive)

= 0,0027 + (0,0008) - (0)

= 0,0035"

Hot Shut Down, New, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 112 852 / (π*60,05252*16 700*1,20*0,70)

= 0,0007"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*1 027,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0001)

= 0,0006"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 112 852 / (π*60,05252*3 056,32*1,20)

= 0,0027"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0008"

tc = tmc + twc - tpc (total required, compressive)

= 0,0027 + (0,0008) - (0)

= 0,0035"

Empty, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 6 239 / (π*60,05252*3 056,32*1,20)

= 0,0002"

46/142

Page 49: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 49/144

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,57*1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0004"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0002 - (0,0004)|

= 0,0003"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 027,7 / (2*π*60,0525*3 056,32*1,20)= 0,0008"

tc = tmc + twc - tpc (total required, compressive)

= 0,0002 + (0,0008) - (0)

= 0,0009"

Empty, New, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 6 239 / (π*60,05252*3 056,32*1,20)

= 0,0002"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,57*1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0004"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0002 - (0,0004)|

= 0,0003"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 027,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0008"

tc = tmc + twc - tpc (total required, compressive)

= 0,0002 + (0,0008) - (0)

= 0,0009"

Vacuum, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= -0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 112 852 / (π*60,05252

*16 700*1,20*0,70)= 0,0007"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*1 027,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0001"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0001)

= 0,0006"

47/142

Page 50: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 50/144

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= -0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 112 852 / (π*60,05252*3 056,32*1,20)

= 0,0027"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 027,7 / (2*π*60,0525*3 056,32*1,20)= 0,0008"

tc = tmc + twc - tpc (total required, compressive)

= 0,0027 + (0,0008) - (-0,0001)

= 0,0036"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0,0027 - 0,0008) / (60 - 0,40*(0,105 - 0,0027 - 0,0008))

= 12,42 psi

48/142

Page 51: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 51/144

Cylinder #2

ASME Section VIII Division 1, 2013 Edition

Component Cylinder

Material SA-240 316L (II-D p. 74, ln. 9)

ImpactTested

NormalizedFine GrainPractice

PWHTOptimize MDMT/

Find MAWP

No No No No No

DesignPressure (psi)

DesignTemperature (°F)

DesignMDMT (°F)

Internal 0,01 100-20

External 0,01 100

Static Liquid Head

Condition Ps (psi) Hs (in) SG

Operating 6,63 122,4099 1,5

Test horizontal 6,85 126,4175 1,5

Dimensions

Inner Diameter 120"

Length 48"

Nominal Thickness 0,105"

CorrosionInner 0"

Outer 0"

Weight and Capacity

Weight (lb) Capacity (US gal)

New 551,49 2 350,07

Corroded 551,49 2 350,07

Radiography

Longitudinal seam None UW-11(c) Type 1

Top Circumferentialseam

None UW-11(c) Type 1

Bottom Circumferential

seam None UW-11(c) Type 1

49/142

Page 52: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 52/144

Results Summary

Governing condition UG-16

Minimum thickness per UG-16 0,0625" + 0" = 0,0625"

Design thickness due to internal pressure (t) 0,0341"

Design thickness due to external pressure (te) 0,0264"

Design thickness due to combined loadings + corrosion 0,0087"

Maximum allowable working pressure (MAWP) 13,81 psi

Maximum allowable pressure (MAP) 20,44 psi

Maximum allowable external pressure (MAEP) 0,32 psi

Rated MDMT -320 °F

UHA-51 Material Toughness Requirements

tr = 7,19*60 / (16 700*0,7 - 0.6*7,19) = 0,0369"

Stress ratio = tr*E* / (tn - c) = 0,0369*0,8 / (0,105 - 0) = 0,2812

Impact test exempt per UHA-51(g) (coincident ratio = 0,2812)

Rated MDMT = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

Design thickness, (at 100 °F) UG-27(c)(1)

t = P*R / (S*E - 0,60*P) + Corrosion= 6,64*60 / (16 700*0,70 - 0,60*6,64) + 0= 0,0341"

Maximum allowable working pressure, (at 100 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t) - Ps

= 16 700*0,70*0,105 / (60 + 0,60*0,105) - 6,63= 13,81 psi

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t)= 16 700*0,70*0,105 / (60 + 0,60*0,105)

= 20,44 psi

External Pressure, (Corroded & at 100 °F) UG-28(c)

L / Do = 208,2616 / 120,21 = 1,7325

Do / t = 120,21 / 0,0264 = 4547,1948

Experimental basin formula

Pa = [2,42*E / (1 - µ2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)

0,50)] / 3

= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0264 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,0264 / 120,21)0,50)] / 3= 0,01 psi

50/142

Page 53: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 53/144

Design thickness for external pressure Pa = 0,01 psi

ta = t + Corrosion = 0,0264 + 0 = 0,0264"

Maximum Allowable External Pressure, (Corroded & at 100 °F) UG-28(c)

L / Do = 208,2616 / 120,21 = 1,7325Do / t = 120,21 / 0,105 = 1144,8571

Experimental basin formula

Pa = [2,42*E / (1 - µ2

)0,75

]*[(t / Do)2,50

 / (L / Do - 0,45*(t / Do)0,50

)] / 3= [2,42*28000000 / (1 - 0,302)0,75]*[(0,105 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,105 / 120,21)0,50)] / 3= 0,32 psi

% Forming strain - UHA-44(a)(2)

EFE = (50*t / Rf)*(1 - Rf / Ro)

= (50*0,105 / 60,0525)*(1 - 60,0525 / infinity)

= 0,0874%

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

Pv   = W / (2*π*Rm) + M / (π*Rm2)

  = 1 579,2 / (2*π*60,0525) + 55 145 / (π*60,05252)  = 9,0527 lb/in

α   = Pv / (Pe*Do)  = 9,0527 / (0,01*120,21)

  = 7,5308n = 7m = 1,23 / (L / Do)

2

  = 1,23 / (208,2616 / 120,21)2

  = 0,4098

Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)

  = (72 - 1 + 0,4098 + 0,4098*7,5308) / (72 - 1 + 0,4098)  = 1,0637

Ratio Pe * Pe   ≤ MAEP

(1,0637 * 0,01 = 0,01) ≤ 0,32

Cylinder design thickness is satisfactory.

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

Pv   = (1 + 0,14*SDS)*W / (2*π*Rm) + M / (π*Rm2)

  = 1,03*1 579,2 / (2*π*60,0525) + 308 476 / (π*60,05252)

  = 31,5349 lb/inα   = Pv / (Pe*Do)

  = 31,5349 / (0,01*120,21)  = 26,2331

n = 7

m = 1,23 / (L / Do)2

  = 1,23 / (208,2616 / 120,21)2

  = 0,4098Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)

  = (72 - 1 + 0,4098 + 0,4098*26,2331) / (72 - 1 + 0,4098)

51/142

Page 54: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 54/144

  = 1,2221

Ratio Pe * Pe   ≤ MAEP

(1,2221 * 0,01 = 0,01) ≤ 0,32

Cylinder design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads

Condition Pressure P (psi)

AllowableStress BeforeUG-23 StressIncrease ( psi)

Temperature (°F)

Corrosion C(in)

Load Req'd Thk Due toTension (in)

Req'd Thk Due

toCompression

(in)

St Sc

Operating, Hot & Corroded 0,01 16 700 3 056 100 0Wind 0,0002 0,0024

Seismic 0,0018 0,0085

Operating, Hot & New 0,01 16 700 3 056 100 0Wind 0,0002 0,0024

Seismic 0,0018 0,0085

Hot Shut Down, Corroded 0 16 700 3 056 100 0Wind 0,0002 0,0025

Seismic 0,0018 0,0086

Hot Shut Down, New 0 16 700 3 056 100 0Wind 0,0002 0,0025

Seismic 0,0018 0,0086

Empty, Corroded 0 16 700 3 056 70 0Wind 0,0002 0,0025

Seismic 0,0003 0,0015

Empty, New 0 16 700 3 056 70 0Wind 0,0002 0,0025

Seismic 0,0003 0,0015

Vacuum -0,01 16 700 3 056 100 0Wind 0,0001 0,0026

Seismic 0,0017 0,0087

Hot Shut Down, Corroded, Weight &Eccentric Moments Only

0 16 700 3 056 100 0 Weight 0,0014 0,0014

Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-4)

A = 0,125 / (Ro / t)= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScHC = min(B, S) = 3 056 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 3 056 psi

Allowable Compressive Stress, Cold and New- ScCN, (table HA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScCN = min(B, S) = 3 056 psi

52/142

Page 55: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 55/144

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 3 056 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableHA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScVC = min(B, S) = 3 056 psi

Operating, Hot & Corroded, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"tm = M / (π*Rm

2*St*Ks*Ec) (bending)

= 55 145 / (π*60,05252*16 700*1,20*0,70)

= 0,0003"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0003 - (0,0002)

= 0,0002"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 55 145 / (π*60,05252*3 056,32*1,20)

= 0,0013"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0011"

tc = tmc + twc - tpc (total required, compressive)

= 0,0013 + (0,0011) - (0,0001)= 0,0024"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0003 + (0,0002)) / (60 - 0,40*(0,105 - 0,0003 + (0,0002)))

= 49,05 psi

53/142

Page 56: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 56/144

Operating, Hot & New, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 55 145 / (π*60,05252*16 700*1,20*0,70)

= 0,0003"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0003 - (0,0002)

= 0,0002"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc

= M / (π*R

m

2*Sc*K

s) (bending)

= 55 145 / (π*60,05252*3 056,32*1,20)

= 0,0013"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0011"

tc = tmc + twc - tpc (total required, compressive)

= 0,0013 + (0,0011) - (0,0001)

= 0,0024"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0003 + (0,0002)) / (60 - 0,40*(0,105 - 0,0003 + (0,0002)))

= 49,05 psi

Hot Shut Down, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 55 145 / (π*60,05252*16 700*1,20*0,70)

= 0,0003"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0003 - (0,0002)

= 0,0002"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 55 145 / (π*60,05252*3 056,32*1,20)

54/142

Page 57: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 57/144

= 0,0013"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0011"

tc = tmc + twc - tpc (total required, compressive)

= 0,0013 + (0,0011) - (0)

= 0,0025"

Hot Shut Down, New, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 55 145 / (π*60,05252*16 700*1,20*0,70)

= 0,0003"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0003 - (0,0002)

= 0,0002"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 55 145 / (π*60,05252*3 056,32*1,20)

= 0,0013"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0011"

tc = tmc + twc - tpc (total required, compressive)

= 0,0013 + (0,0011) - (0)

= 0,0025"

Empty, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 55 145 / (π*60,05252*16 700*1,20*0,70)

= 0,0003"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0003 - (0,0002)

= 0,0002"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 55 145 / (π*60,05252*3 056,32*1,20)

= 0,0013"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

55/142

Page 58: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 58/144

= 1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0011"

tc = tmc + twc - tpc (total required, compressive)

= 0,0013 + (0,0011) - (0)

= 0,0025"

Empty, New, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 55 145 / (π*60,05252*16 700*1,20*0,70)

= 0,0003"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0003 - (0,0002)

= 0,0002"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 55 145 / (π*60,05252*3 056,32*1,20)

= 0,0013"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0011"

tc = tmc + twc - tpc (total required, compressive)

= 0,0013 + (0,0011) - (0)

= 0,0025"

Vacuum, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= -0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 55 145 / (π*60,05252*16 700*1,20*0,70)

= 0,0003"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0003 - (0,0002)

= 0,0001"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= -0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

56/142

Page 59: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 59/144

= 55 145 / (π*60,05252*3 056,32*1,20)

= 0,0013"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0011"

tc = tmc + twc - tpc (total required, compressive)

= 0,0013 + (0,0011) - (-0,0001)

= 0,0026"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0,0013 - 0,0011) / (60 - 0,40*(0,105 - 0,0013 - 0,0011))

= 12,54 psi

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 0 / (π*60,05252*3 056,32*1,00)

= 0"

tw = W / (2*π*Rm*Sc*Ks) (Weight)

= 1 579,2 / (2*π*60,0525*3 056,32*1,00)

= 0,0014"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0014)|

= 0,0014"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0014) - (0)

= 0,0014"

Operating, Hot & Corroded, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 308 476 / (π*60,05252*16 700*1,20*0,70)

= 0,0019"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0,57*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0019 - (0,0002)

= 0,0018"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

57/142

Page 60: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 60/144

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 308 476 / (π*60,05252*3 056,32*1,20)

= 0,0074"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0012"

tc = tmc + twc - tpc (total required, compressive)= 0,0074 + (0,0012) - (0,0001)

= 0,0085"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0019 + (0,0002)) / (60 - 0,40*(0,105 - 0,0019 + (0,0002)))

= 48,3 psi

Operating, Hot & New, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 308 476 / (π*60,05252*16 700*1,20*0,70)

= 0,0019"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)= 0 + 0,0019 - (0,0002)

= 0,0018"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 308 476 / (π*60,05252*3 056,32*1,20)

= 0,0074"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 579,2 / (2*π*60,0525*3 056,32*1,20)= 0,0012"

tc = tmc + twc - tpc (total required, compressive)

= 0,0074 + (0,0012) - (0,0001)

= 0,0085"

58/142

Page 61: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 61/144

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0019 + (0,0002)) / (60 - 0,40*(0,105 - 0,0019 + (0,0002)))

= 48,3 psi

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)

= 308 476 / (π*60,05252*16 700*1,20*0,70)

= 0,0019"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0019 - (0,0002)

= 0,0018"

tmc = M / (π*Rm

2

*Sc*Ks) (bending)= 308 476 / (π*60,05252*3 056,32*1,20)

= 0,0074"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0012"

tc = tmc + twc - tpc (total required, compressive)

= 0,0074 + (0,0012) - (0)

= 0,0086"

Hot Shut Down, New, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 308 476 / (π*60,05252*16 700*1,20*0,70)

= 0,0019"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0019 - (0,0002)

= 0,0018"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 308 476 / (π*60,05252*3 056,32*1,20)

= 0,0074"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0012"

tc = tmc + twc - tpc (total required, compressive)

59/142

Page 62: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 62/144

= 0,0074 + (0,0012) - (0)

= 0,0086"

Empty, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 14 465 / (π*60,05252*3 056,32*1,20)

= 0,0003"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,57*1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0007"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0003 - (0,0007)|

= 0,0003"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0012"

tc = tmc + twc - tpc (total required, compressive)

= 0,0003 + (0,0012) - (0)

= 0,0015"

Empty, New, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 14 465 / (π*60,05252*3 056,32*1,20)

= 0,0003"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,57*1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0007"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0003 - (0,0007)|

= 0,0003"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0012"

tc = tmc + twc - tpc (total required, compressive)

= 0,0003 + (0,0012) - (0)

= 0,0015"

Vacuum, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= -0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

60/142

Page 63: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 63/144

= 308 476 / (π*60,05252*16 700*1,20*0,70)

= 0,0019"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*1 579,2 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0019 - (0,0002)

= 0,0017"tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= -0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 308 476 / (π*60,05252*3 056,32*1,20)

= 0,0074"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*1 579,2 / (2*π*60,0525*3 056,32*1,20)

= 0,0012"

tc = tmc + twc - tpc (total required, compressive)

= 0,0074 + (0,0012) - (-0,0001)

= 0,0087"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0,0074 - 0,0012) / (60 - 0,40*(0,105 - 0,0074 - 0,0012))

= 11,79 psi

61/142

Page 64: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 64/144

Cylinder #3

ASME Section VIII Division 1, 2013 Edition

Component Cylinder

Material SA-240 316L (II-D p. 74, ln. 9)

ImpactTested

NormalizedFine GrainPractice

PWHTOptimize MDMT/

Find MAWP

No No No No No

DesignPressure (psi)

DesignTemperature (°F)

DesignMDMT (°F)

Internal 0,01 100-20

External 0,01 100

Static Liquid Head

Condition Ps (psi) Hs (in) SG

Operating 9,23 170,4099 1,5

Test horizontal 6,85 126,4175 1,5

Dimensions

Inner Diameter 120"

Length 48"

Nominal Thickness 0,105"

CorrosionInner 0"

Outer 0"

Weight and Capacity

Weight (lb) Capacity (US gal)

New 551,49 2 350,07

Corroded 551,49 2 350,07

Radiography

Longitudinal seam None UW-11(c) Type 1

Top Circumferentialseam

None UW-11(c) Type 1

Bottom Circumferential

seam None UW-11(c) Type 1

62/142

Page 65: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 65/144

Results Summary

Governing condition UG-16

Minimum thickness per UG-16 0,0625" + 0" = 0,0625"

Design thickness due to internal pressure (t) 0,0475"

Design thickness due to external pressure (te) 0,0264"

Design thickness due to combined loadings + corrosion 0,0154"

Maximum allowable working pressure (MAWP) 11,21 psi

Maximum allowable pressure (MAP) 20,44 psi

Maximum allowable external pressure (MAEP) 0,32 psi

Rated MDMT -320 °F

UHA-51 Material Toughness Requirements

Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

Design thickness, (at 100 °F) UG-27(c)(1)

t = P*R / (S*E - 0,60*P) + Corrosion

= 9,24*60 / (16 700*0,70 - 0,60*9,24) + 0= 0,0475"

Maximum allowable working pressure, (at 100 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t) - Ps

= 16 700*0,70*0,105 / (60 + 0,60*0,105) - 9,23

= 11,21 psi

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t)

= 16 700*0,70*0,105 / (60 + 0,60*0,105)= 20,44 psi

External Pressure, (Corroded & at 100 °F) UG-28(c)

L / Do = 208,2616 / 120,21 = 1,7325Do / t = 120,21 / 0,0264 = 4547,1948

Experimental basin formula

Pa = [2,42*E / (1 - µ2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0264 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,0264 / 120,21)0,50)] / 3

= 0,01 psi

Design thickness for external pressure Pa = 0,01 psi

ta = t + Corrosion = 0,0264 + 0 = 0,0264"

63/142

Page 66: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 66/144

Maximum Allowable External Pressure, (Corroded & at 100 °F) UG-28(c)

L / Do = 208,2616 / 120,21 = 1,7325Do / t = 120,21 / 0,105 = 1144,8571

Experimental basin formula

Pa = [2,42*E / (1 - µ2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)

0,50)] / 3

= [2,42*28000000 / (1 - 0,302)0,75]*[(0,105 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,105 / 120,21)0,50)] / 3= 0,32 psi

% Forming strain - UHA-44(a)(2)

EFE = (50*t / Rf)*(1 - Rf / Ro)

= (50*0,105 / 60,0525)*(1 - 60,0525 / infinity)

= 0,0874%

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

Pv   = W / (2*π*Rm) + M / (π*Rm2)

  = 2 130,7 / (2*π*60,0525) + 109 464 / (π*60,05252

)  = 15,3088 lb/in

α   = Pv / (Pe*Do)

  = 15,3088 / (0,01*120,21)  = 12,735

n = 7m = 1,23 / (L / Do)

2

  = 1,23 / (208,2616 / 120,21)2

  = 0,4098Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)

  = (72 - 1 + 0,4098 + 0,4098*12,735) / (72 - 1 + 0,4098)  = 1,1078

Ratio Pe * Pe   ≤ MAEP

(1,1078 * 0,01 = 0,01) ≤ 0,32

Cylinder design thickness is satisfactory.

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

Pv   = (1 + 0,14*SDS)*W / (2*π*Rm) + M / (π*Rm2)

  = 1,03*2 130,7 / (2*π*60,0525) + 572 686 / (π*60,05252)  = 56,3595 lb/in

α   = Pv / (Pe*Do)  = 56,3595 / (0,01*120,21)

  = 46,8842n = 7

m = 1,23 / (L / Do)2

  = 1,23 / (208,2616 / 120,21)2

  = 0,4098

Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)  = (72 - 1 + 0,4098 + 0,4098*46,8842) / (72 - 1 + 0,4098)

  = 1,3969

Ratio Pe * Pe   ≤ MAEP

(1,3969 * 0,01 = 0,01) ≤ 0,32

64/142

Page 67: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 67/144

Cylinder design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads

ConditionPressure P (

psi)

AllowableStress BeforeUG-23 StressIncrease ( psi)

Temperature (°F)

Corrosion C(in)

LoadReq'd Thk Due to

Tension (in)

Req'd Thk Dueto

Compression(in)

St Sc

Operating, Hot & Corroded 0,01 16 700 3 056 100 0 Wind 0,0005 0,0041

Seismic 0,0034 0,0153

Operating, Hot & New 0,01 16 700 3 056 100 0Wind 0,0005 0,0041

Seismic 0,0034 0,0153

Hot Shut Down, Corroded 0 16 700 3 056 100 0Wind 0,0004 0,0042

Seismic 0,0034 0,0154

Hot Shut Down, New 0 16 700 3 056 100 0Wind 0,0004 0,0042

Seismic 0,0034 0,0154

Empty, Corroded 0 16 700 3 056 70 0Wind 0,0004 0,0042

Seismic 0,0003 0,0022

Empty, New 0 16 700 3 056 70 0Wind 0,0004 0,0042

Seismic 0,0003 0,0022

Vacuum -0,01 16 700 3 056 100 0Wind 0,0004 0,0043

Seismic 0,0034 0,0154

Hot Shut Down, Corroded, Weight &

Eccentric Moments Only0 16 700 3 056 100 0 Weight 0,0018 0,0018

Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScHC = min(B, S) = 3 056 psi

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 3 056 psi

Allowable Compressive Stress, Cold and New- ScCN, (table HA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScCN = min(B, S) = 3 056 psi

65/142

Page 68: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 68/144

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 3 056 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableHA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScVC = min(B, S) = 3 056 psi

Operating, Hot & Corroded, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)= 109 464 / (π*60,05252*16 700*1,20*0,70)

= 0,0007"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0002)

= 0,0005"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 109 464 / (π*60,05252*3 056,32*1,20)

= 0,0026"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0015"

tc = tmc + twc - tpc (total required, compressive)

= 0,0026 + (0,0015) - (0,0001)

= 0,0041"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0007 + (0,0002)) / (60 - 0,40*(0,105 - 0,0007 + (0,0002)))

= 48,92 psi

66/142

Page 69: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 69/144

Operating, Hot & New, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 109 464 / (π*60,05252*16 700*1,20*0,70)

= 0,0007"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0002)

= 0,0005"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc

= M / (π*R

m

2*Sc*K

s) (bending)

= 109 464 / (π*60,05252*3 056,32*1,20)

= 0,0026"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0015"

tc = tmc + twc - tpc (total required, compressive)

= 0,0026 + (0,0015) - (0,0001)

= 0,0041"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0007 + (0,0002)) / (60 - 0,40*(0,105 - 0,0007 + (0,0002)))

= 48,92 psi

Hot Shut Down, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 109 464 / (π*60,05252*16 700*1,20*0,70)

= 0,0007"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0002)

= 0,0004"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 109 464 / (π*60,05252*3 056,32*1,20)

67/142

Page 70: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 70/144

= 0,0026"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0015"

tc = tmc + twc - tpc (total required, compressive)

= 0,0026 + (0,0015) - (0)

= 0,0042"

Hot Shut Down, New, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 109 464 / (π*60,05252*16 700*1,20*0,70)

= 0,0007"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0002)

= 0,0004"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 109 464 / (π*60,05252*3 056,32*1,20)

= 0,0026"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0015"

tc = tmc + twc - tpc (total required, compressive)

= 0,0026 + (0,0015) - (0)

= 0,0042"

Empty, Corroded, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 109 464 / (π*60,05252*16 700*1,20*0,70)

= 0,0007"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0002)

= 0,0004"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 109 464 / (π*60,05252*3 056,32*1,20)

= 0,0026"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

68/142

Page 71: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 71/144

= 2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0015"

tc = tmc + twc - tpc (total required, compressive)

= 0,0026 + (0,0015) - (0)

= 0,0042"

Empty, New, Wind, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 109 464 / (π*60,05252*16 700*1,20*0,70)

= 0,0007"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0002)

= 0,0004"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 109 464 / (π*60,05252*3 056,32*1,20)

= 0,0026"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0015"

tc = tmc + twc - tpc (total required, compressive)

= 0,0026 + (0,0015) - (0)

= 0,0042"

Vacuum, Wind, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= -0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 109 464 / (π*60,05252*16 700*1,20*0,70)

= 0,0007"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0007 - (0,0002)

= 0,0004"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= -0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

69/142

Page 72: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 72/144

= 109 464 / (π*60,05252*3 056,32*1,20)

= 0,0026"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0015"

tc = tmc + twc - tpc (total required, compressive)

= 0,0026 + (0,0015) - (-0,0001)

= 0,0043"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0,0026 - 0,0015) / (60 - 0,40*(0,105 - 0,0026 - 0,0015))

= 12,33 psi

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 0 / (π*60,05252*3 056,32*1,00)

= 0"

tw = W / (2*π*Rm*Sc*Ks) (Weight)

= 2 130,7 / (2*π*60,0525*3 056,32*1,00)

= 0,0018"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0 - (0,0018)|

= 0,0018"

tc = tmc + twc - tpc (total required, compressive)

= 0 + (0,0018) - (0)

= 0,0018"

Operating, Hot & Corroded, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 572 686 / (π*60,05252*16 700*1,20*0,70)

= 0,0036"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0,57*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0036 - (0,0002)

= 0,0034"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

70/142

Page 73: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 73/144

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 572 686 / (π*60,05252*3 056,32*1,20)

= 0,0138"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0016"

tc = tmc + twc - tpc (total required, compressive)= 0,0138 + (0,0016) - (0,0001)

= 0,0153"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0036 + (0,0002)) / (60 - 0,40*(0,105 - 0,0036 + (0,0002)))

= 47,55 psi

Operating, Hot & New, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 572 686 / (π*60,05252*16 700*1,20*0,70)

= 0,0036"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)= 0 + 0,0036 - (0,0002)

= 0,0034"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 572 686 / (π*60,05252*3 056,32*1,20)

= 0,0138"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*2 130,7 / (2*π*60,0525*3 056,32*1,20)= 0,0016"

tc = tmc + twc - tpc (total required, compressive)

= 0,0138 + (0,0016) - (0,0001)

= 0,0153"

71/142

Page 74: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 74/144

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*0,70*(0,105 - 0,0036 + (0,0002)) / (60 - 0,40*(0,105 - 0,0036 + (0,0002)))

= 47,55 psi

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)

= 572 686 / (π*60,05252*16 700*1,20*0,70)

= 0,0036"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0036 - (0,0002)

= 0,0034"

tmc = M / (π*Rm

2

*Sc*Ks) (bending)= 572 686 / (π*60,05252*3 056,32*1,20)

= 0,0138"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0016"

tc = tmc + twc - tpc (total required, compressive)

= 0,0138 + (0,0016) - (0)

= 0,0154"

Hot Shut Down, New, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 572 686 / (π*60,05252*16 700*1,20*0,70)

= 0,0036"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0036 - (0,0002)

= 0,0034"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 572 686 / (π*60,05252*3 056,32*1,20)

= 0,0138"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0016"

tc = tmc + twc - tpc (total required, compressive)

72/142

Page 75: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 75/144

= 0,0138 + (0,0016) - (0)

= 0,0154"

Empty, Corroded, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 24 904 / (π*60,05252*3 056,32*1,20)

= 0,0006"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,57*2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0009"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0006 - (0,0009)|

= 0,0003"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0016"

tc = tmc + twc - tpc (total required, compressive)

= 0,0006 + (0,0016) - (0)

= 0,0022"

Empty, New, Seismic, Bottom Seam

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 24 904 / (π*60,05252*3 056,32*1,20)

= 0,0006"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 0,57*2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0009"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0006 - (0,0009)|

= 0,0003"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0016"

tc = tmc + twc - tpc (total required, compressive)

= 0,0006 + (0,0016) - (0)

= 0,0022"

Vacuum, Seismic, Bottom Seam

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= -0,01*60 / (2*16 700*1,20*0,70 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

73/142

Page 76: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 76/144

= 572 686 / (π*60,05252*16 700*1,20*0,70)

= 0,0036"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*2 130,7 / (2*π*60,0525*16 700*1,20*0,70)

= 0,0002"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0036 - (0,0002)

= 0,0034"tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= -0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 572 686 / (π*60,05252*3 056,32*1,20)

= 0,0138"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*2 130,7 / (2*π*60,0525*3 056,32*1,20)

= 0,0016"

tc = tmc + twc - tpc (total required, compressive)

= 0,0138 + (0,0016) - (-0,0001)

= 0,0154"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0,0138 - 0,0016) / (60 - 0,40*(0,105 - 0,0138 - 0,0016))

= 10,96 psi

74/142

Page 77: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 77/144

Cylinder #4

ASME Section VIII Division 1, 2013 Edition

Component Cylinder

Material SA-240 316L (II-D p. 74, ln. 9)

ImpactTested

NormalizedFine GrainPractice

PWHTOptimize MDMT/

Find MAWP

No No No No No

DesignPressure (psi)

DesignTemperature (°F)

DesignMDMT (°F)

Internal 0,01 100-20

External 0,01 100

Static Liquid Head

Condition Ps (psi) Hs (in) SG

Operating 11,83 218,4099 1,5

Test horizontal 6,85 126,4175 1,5

Dimensions

Inner Diameter 120"

Length 48"

Nominal Thickness 0,105"

CorrosionInner 0"

Outer 0"

Weight and Capacity

Weight (lb) Capacity (US gal)

New 537,72 2 350,07

Corroded 537,72 2 350,07

Radiography

Longitudinal seam None UW-11(c) Type 1

Top Circumferentialseam

None UW-11(c) Type 1

Bottom Circumferential

seam None UW-11(c) Type 1

75/142

Page 78: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 78/144

Results Summary

Governing condition UG-16

Minimum thickness per UG-16 0,0625" + 0" = 0,0625"

Design thickness due to internal pressure (t) 0,0608"

Design thickness due to external pressure (te) 0,0264"

Design thickness due to combined loadings + corrosion 0,0249"

Maximum allowable working pressure (MAWP) 8,61 psi

Maximum allowable pressure (MAP) 20,44 psi

Maximum allowable external pressure (MAEP) 0,32 psi

Rated MDMT -320 °F

UHA-51 Material Toughness Requirements

Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

Design thickness, (at 100 °F) UG-27(c)(1)

t = P*R / (S*E - 0,60*P) + Corrosion

= 11,84*60 / (16 700*0,70 - 0,60*11,84) + 0= 0,0608"

Maximum allowable working pressure, (at 100 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t) - Ps

= 16 700*0,70*0,105 / (60 + 0,60*0,105) - 11,83

= 8,61 psi

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

P = S*E*t / (R + 0,60*t)

= 16 700*0,70*0,105 / (60 + 0,60*0,105)= 20,44 psi

External Pressure, (Corroded & at 100 °F) UG-28(c)

L / Do = 208,2616 / 120,21 = 1,7325Do / t = 120,21 / 0,0264 = 4547,1948

Experimental basin formula

Pa = [2,42*E / (1 - µ2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)0,50)] / 3= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0264 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,0264 / 120,21)0,50)] / 3

= 0,01 psi

Design thickness for external pressure Pa = 0,01 psi

ta = t + Corrosion = 0,0264 + 0 = 0,0264"

76/142

Page 79: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 79/144

Maximum Allowable External Pressure, (Corroded & at 100 °F) UG-28(c)

L / Do = 208,2616 / 120,21 = 1,7325Do / t = 120,21 / 0,105 = 1144,8571

Experimental basin formula

Pa = [2,42*E / (1 - µ2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)

0,50)] / 3

= [2,42*28000000 / (1 - 0,302)0,75]*[(0,105 / 120,21)2,50 / (208,2616 / 120,21 - 0,45*(0,105 / 120,21)0,50)] / 3= 0,32 psi

% Forming strain - UHA-44(a)(2)

EFE = (50*t / Rf)*(1 - Rf / Ro)

= (50*0,105 / 60,0525)*(1 - 60,0525 / infinity)

= 0,0874%

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

Pv   = W / (2*π*Rm) + M / (π*Rm2)

  = 3 410,4 / (2*π*60,0525) + 230 583 / (π*60,05252

)  = 29,3908 lb/in

α   = Pv / (Pe*Do)

  = 29,3908 / (0,01*120,21)  = 24,4495

n = 7m = 1,23 / (L / Do)

2

  = 1,23 / (208,2616 / 120,21)2

  = 0,4098Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)

  = (72 - 1 + 0,4098 + 0,4098*24,4495) / (72 - 1 + 0,4098)  = 1,207

Ratio Pe * Pe   ≤ MAEP

(1,207 * 0,01 = 0,01) ≤ 0,32

Cylinder design thickness is satisfactory.

External Pressure + Weight + Wind Loading Check at Bottom Seam (Bergman, ASME paper 54-A-104)

Pv   = 0,6*W / (2*π*Rm) + M / (π*Rm2)

  = 0,60*-136 412,2 / (2*π*60,0525) + 0 / (π*60,05252)  = -216,917 lb/in

α   = Pv / (Pe*Do)

  = -216,917 / (0,01*120,21)  = -180,4484

n = 7m = 1,23 / (L / Do)2

  = 1,23 / (208,2616 / 120,21)2

  = 0,4098Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)

  = (72 - 1 + 0,4098 + 0,4098*-180,4484) / (72 - 1 + 0,4098)  = 1

Ratio Pe * Pe   ≤ MAEP

(1 * 0,01 = 0,01) ≤ 0,32

Cylinder design thickness is satisfactory.

77/142

Page 80: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 80/144

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

Pv   = (1 + 0,14*SDS)*W / (2*π*Rm) + M / (π*Rm2)

  = 1,03*3 410,4 / (2*π*60,0525) + 924 681 / (π*60,05252)

  = 90,9184 lb/inα   = Pv / (Pe*Do)

  = 90,9184 / (0,01*120,21)  = 75,633

n = 7

m = 1,23 / (L / Do)2

  = 1,23 / (208,2616 / 120,21)2

  = 0,4098Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)

  = (72 - 1 + 0,4098 + 0,4098*75,633) / (72 - 1 + 0,4098)  = 1,6402

Ratio Pe * Pe   ≤ MAEP

(1,6402 * 0,01 = 0,02) ≤ 0,32

Cylinder design thickness is satisfactory.

External Pressure + Weight + Seismic Loading Check at Bottom Seam(Bergman, ASME paper 54-A-104)

Pv   = (0,6 - 0,14*SDS)*W / (2*π*Rm) + M / (π*Rm2)

  = 0,57*-136 412,2 / (2*π*60,0525) + 432 / (π*60,05252)

  = -206,3512 lb/in

α   = Pv / (Pe*Do)

  = -206,3512 / (0,01*120,21)  = -171,6589

n = 7m = 1,23 / (L / Do)

2

  = 1,23 / (208,2616 / 120,21)2

  = 0,4098Ratio Pe   = (n2 - 1 + m + m*α) / (n2 - 1 + m)

  = (72 - 1 + 0,4098 + 0,4098*-171,6589) / (72 - 1 + 0,4098)  = 1

Ratio Pe * Pe   ≤ MAEP

(1 * 0,01 = 0,01) ≤ 0,32

Cylinder design thickness is satisfactory.

78/142

Page 81: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 81/144

Thickness Required Due to Pressure + External Loads

ConditionPressure P (

psi)

AllowableStress BeforeUG-23 Stress

Increase (psi)

Temperature (°F)

Corrosion C(in)

Location LoadReq'd Thk Due to

Tension (in)Req'd Thk Due toCompression (in)

St Sc

Operating, Hot & Corroded 0,01 16 700 3 056 100 0Top

Wind 0,0008 0,0079

Seismic 0,0038 0,0247

BottomWind 0,0181 0,0108

Seismic 0,0186 0,0103

Operating, Hot & New 0,01 16 700 3 056 100 0Top

Wind 0,0008 0,0079

Seismic 0,0038 0,0247

BottomWind 0,0181 0,0108

Seismic 0,0186 0,0103

Hot Shut Down, Corroded 0 16 700 3 056 100 0Top

Wind 0,0007 0,008

Seismic 0,0038 0,0248

BottomWind 0,018 0,0108

Seismic 0,0186 0,0103

Hot Shut Down, New 0 16 700 3 056 100 0Top Wind 0,0007 0,008

Seismic 0,0038 0,0248

BottomWind 0,018 0,0108

Seismic 0,0186 0,0103

Empty, Corroded 0 16 700 3 056 70 0Top

Wind 0,0007 0,008

Seismic 0,0001 0,0046

BottomWind 0,0007 0,0004

Seismic 0,0007 0,0004

Empty, New 0 16 700 3 056 70 0Top

Wind 0,0007 0,008

Seismic 0,0001 0,0046

Bottom

Wind 0,0007 0,0004

Seismic 0,0007 0,0004

Vacuum -0,01 16 700 3 056 100 0Top

Wind 0,0007 0,0081

Seismic 0,0038 0,0249

BottomWind 0,018 0,0108

Seismic 0,0186 0,0103

Hot Shut Down, Corroded,

Weight & Eccentric MomentsOnly

0 16 700 3 056 100 0

Top Weight 0,0015 0,0044

Bottom Weight 0,0216 0,0216

Allowable Compressive Stress, Hot and Corroded- ScHC, (table HA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScHC = min(B, S) = 3 056 psi

79/142

Page 82: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 82/144

Allowable Compressive Stress, Hot and New- ScHN

ScHN = ScHC

= 3 056 psi

Allowable Compressive Stress, Cold and New- ScCN, (table HA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScCN = min(B, S) = 3 056 psi

Allowable Compressive Stress, Cold and Corroded- ScCC

ScCC = ScCN

= 3 056 psi

Allowable Compressive Stress, Vacuum and Corroded- ScVC, (tableHA-4)

A = 0,125 / (Ro / t)

= 0,125 / (60,105 / 0,105)

= 0,000218

B = 3 056 psi

S = 16 700 / 1,00 = 16 700 psi

ScVC = min(B, S) = 3 056 psi

Operating, Hot & Corroded, Wind, Above Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 230 583 / (π*60,05252*16 700*1,20*1,00)

= 0,001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,001 - (0,0003)

= 0,0008"tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 230 583 / (π*60,05252*3 056,32*1,20)

= 0,0055"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

80/142

Page 83: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 83/144

= 3 410,4 / (2*π*60,0525*3 056,32*1,20)

= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0055 + (0,0025) - (0,0001)

= 0,0079"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*1,00*(0,105 - 0,001 + (0,0003)) / (60 - 0,40*(0,105 - 0,001 + (0,0003)))

= 69,69 psi

Operating, Hot & New, Wind, Above Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 230 583 / (π*60,05252*16 700*1,20*1,00)

= 0,001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,001 - (0,0003)

= 0,0008"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 230 583 / (π*60,05252*3 056,32*1,20)

= 0,0055"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 3 410,4 / (2*π*60,0525*3 056,32*1,20)

= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0055 + (0,0025) - (0,0001)

= 0,0079"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*1,00*(0,105 - 0,001 + (0,0003)) / (60 - 0,40*(0,105 - 0,001 + (0,0003)))

= 69,69 psi

81/142

Page 84: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 84/144

Hot Shut Down, Corroded, Wind, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 230 583 / (π*60,05252*16 700*1,20*1,00)

= 0,001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,001 - (0,0003)

= 0,0007"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 230 583 / (π*60,05252*3 056,32*1,20)

= 0,0055"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 3 410,4 / (2*π*60,0525*3 056,32*1,20)

= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0055 + (0,0025) - (0)

= 0,008"

Hot Shut Down, New, Wind, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 230 583 / (π*60,05252*16 700*1,20*1,00)

= 0,001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0,60*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,001 - (0,0003)

= 0,0007"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 230 583 / (π*60,05252*3 056,32*1,20)

= 0,0055"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 3 410,4 / (2*π*60,0525*3 056,32*1,20)= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0055 + (0,0025) - (0)

= 0,008"

82/142

Page 85: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 85/144

Empty, Corroded, Wind, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 230 583 / (π*60,05252*16 700*1,20*1,00)

= 0,001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,001 - (0,0003)

= 0,0007"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 230 583 / (π*60,05252*3 056,32*1,20)

= 0,0055"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 3 410,4 / (2*π*60,0525*3 056,32*1,20)

= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0055 + (0,0025) - (0)

= 0,008"

Empty, New, Wind, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 230 583 / (π*60,05252*16 700*1,20*1,00)

= 0,001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0,60*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,001 - (0,0003)

= 0,0007"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 230 583 / (π*60,05252*3 056,32*1,20)

= 0,0055"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 3 410,4 / (2*π*60,0525*3 056,32*1,20)= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0055 + (0,0025) - (0)

= 0,008"

83/142

Page 86: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 86/144

Vacuum, Wind, Above Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= -0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 230 583 / (π*60,05252*16 700*1,20*1,00)

= 0,001"

tw = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,001 - (0,0003)

= 0,0007"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= -0,0001"

tmc

= M / (π*R

m

2*Sc*K

s) (bending)

= 230 583 / (π*60,05252*3 056,32*1,20)

= 0,0055"

twc = W / (2*π*Rm*Sc*Ks) (Weight)

= 3 410,4 / (2*π*60,0525*3 056,32*1,20)

= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0055 + (0,0025) - (-0,0001)

= 0,0081"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0,0055 - 0,0025) / (60 - 0,40*(0,105 - 0,0055 - 0,0025))

= 11,86 psi

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*Sc*Ks) (bending)

= 50 041 / (π*60,05252*3 056,32*1,00)

= 0,0014"

tw = W / (2*π*Rm*Sc*Ks) (Weight)

= 3 410,4 / (2*π*60,0525*3 056,32*1,00)

= 0,003"

tt = |tp + tm - tw| (total, net compressive)

= |0 + 0,0014 - (0,003)|

= 0,0015"

tc = tmc + twc - tpc (total required, compressive)

= 0,0014 + (0,003) - (0)

84/142

Page 87: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 87/144

= 0,0044"

Operating, Hot & Corroded, Wind, Below Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 0 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = W / (2*π*Rm*St*Ks*Ec) (Weight)

= -136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,018"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,018)

= 0,0181"

twc = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)= -0,0108"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0108) - (0)|

= 0,0108"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*1,00*(0,105 - 0 + (-0,018)) / (60 - 0,40*(0,105 - 0 + (-0,018)))

= 58,12 psi

Operating, Hot & New, Wind, Below Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 0 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = W / (2*π*Rm*St*Ks*Ec) (Weight)

= -136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,018"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,018)

= 0,0181"

twc = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

85/142

Page 88: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 88/144

= -0,0108"

tc = |tmc + twc - tpc|(total, net

tensile)

= |0 + (-0,0108) - (0)|

= 0,0108"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))= 2*16 700*1,20*1,00*(0,105 - 0 + (-0,018)) / (60 - 0,40*(0,105 - 0 + (-0,018)))

= 58,12 psi

Hot Shut Down, Corroded, Wind, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 0 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = W / (2*π*Rm*St*Ks*Ec) (Weight)

= -136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,018"

tt = tp + tm - tw(total required,

tensile)

= 0 + 0 - (-0,018)

= 0,018"

twc = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0108"

tc

= |tmc

 + twc

 - tpc

|(total, net

tensile)= |0 + (-0,0108) - (0)|

= 0,0108"

Hot Shut Down, New, Wind, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 0 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = W / (2*π*Rm*St*Ks*Ec) (Weight)

= -136 412,2 / (2*π*60,0525*16 700*1,20*1,00)= -0,018"

tt = tp + tm - tw(total required,

tensile)

= 0 + 0 - (-0,018)

= 0,018"

twc = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

86/142

Page 89: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 89/144

= -0,0108"

tc = |tmc + twc - tpc|(total, net

tensile)

= |0 + (-0,0108) - (0)|

= 0,0108"

Empty, Corroded, Wind, Below Support Point

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)

= 0 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = W / (2*π*Rm*St*Ks*Ec) (Weight)

= -5 104,7 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0007"

tt = tp + tm - tw(total required,

tensile)

= 0 + 0 - (-0,0007)

= 0,0007"twc = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*-5 104,7 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0004"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0004) - (0)|

= 0,0004"

Empty, New, Wind, Below Support Point

tp = 0" (Pressure)tm = M / (π*Rm

2*St*Ks*Ec) (bending)

= 0 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = W / (2*π*Rm*St*Ks*Ec) (Weight)

= -5 104,7 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0007"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,0007)

= 0,0007"twc = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*-5 104,7 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0004"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0004) - (0)|

= 0,0004"

87/142

Page 90: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 90/144

Vacuum, Wind, Below Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= -0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 0 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = W / (2*π*Rm*St*Ks*Ec) (Weight)

= -136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,018"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,018)

= 0,018"

twc = 0,6*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,60*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0108"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0108) - (0)|

= 0,0108"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0 - -0,0591) / (60 - 0,40*(0,105 - 0 - -0,0591))

= 20,09 psi

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 0 / (π*60,05252*16 700*1,00*1,00)

= 0"

tw = W / (2*π*Rm*St*Ks*Ec) (Weight)

= -136 412,2 / (2*π*60,0525*16 700*1,00*1,00)

= -0,0216"

tt = tp + tm - tw (total required, tensile)

= 0 + 0 - (-0,0216)= 0,0216"

tc = |tmc + twc - tpc| (total, net tensile)

= |0 + (-0,0216) - (0)|

= 0,0216"

88/142

Page 91: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 91/144

Operating, Hot & Corroded, Seismic, Above Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 924 681 / (π*60,05252*16 700*1,20*1,00)

= 0,0041"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0041 - (0,0003)

= 0,0038"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc

= M / (π*R

m

2*Sc*K

s) (bending)

= 924 681 / (π*60,05252*3 056,32*1,20)

= 0,0223"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*3 410,4 / (2*π*60,0525*3 056,32*1,20)

= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0223 + (0,0025) - (0,0001)

= 0,0247"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*1,00*(0,105 - 0,0041 + (0,0003)) / (60 - 0,40*(0,105 - 0,0041 + (0,0003)))

= 67,64 psi

Operating, Hot & New, Seismic, Above Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 924 681 / (π*60,05252*16 700*1,20*1,00)

= 0,0041"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0041 - (0,0003)

= 0,0038"

89/142

Page 92: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 92/144

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= 0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 924 681 / (π*60,05252*3 056,32*1,20)

= 0,0223"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*3 410,4 / (2*π*60,0525*3 056,32*1,20)= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0223 + (0,0025) - (0,0001)

= 0,0247"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*1,00*(0,105 - 0,0041 + (0,0003)) / (60 - 0,40*(0,105 - 0,0041 + (0,0003)))

= 67,64 psi

Hot Shut Down, Corroded, Seismic, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 924 681 / (π*60,05252*16 700*1,20*1,00)

= 0,0041"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)= 0 + 0,0041 - (0,0003)

= 0,0038"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 924 681 / (π*60,05252*3 056,32*1,20)

= 0,0223"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*3 410,4 / (2*π*60,0525*3 056,32*1,20)

= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0223 + (0,0025) - (0)= 0,0248"

Hot Shut Down, New, Seismic, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 924 681 / (π*60,05252*16 700*1,20*1,00)

= 0,0041"

90/142

Page 93: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 93/144

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0041 - (0,0003)

= 0,0038"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 924 681 / (π*60,05252*3 056,32*1,20)= 0,0223"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*3 410,4 / (2*π*60,0525*3 056,32*1,20)

= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0223 + (0,0025) - (0)

= 0,0248"

Empty, Corroded, Seismic, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 86 998 / (π*60,05252*16 700*1,20*1,00)

= 0,0004"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0004 - (0,0003)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 86 998 / (π*60,05252*3 056,32*1,20)

= 0,0021"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*3 410,4 / (2*π*60,0525*3 056,32*1,20)

= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0021 + (0,0025) - (0)

= 0,0046"

Empty, New, Seismic, Above Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 86 998 / (π*60,05252*16 700*1,20*1,00)

= 0,0004"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

91/142

Page 94: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 94/144

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0004 - (0,0003)

= 0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 86 998 / (π*60,05252*3 056,32*1,20)

= 0,0021"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)= 1,03*3 410,4 / (2*π*60,0525*3 056,32*1,20)

= 0,0025"

tc = tmc + twc - tpc (total required, compressive)

= 0,0021 + (0,0025) - (0)

= 0,0046"

Vacuum, Seismic, Above Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= -0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 924 681 / (π*60,05252*16 700*1,20*1,00)

= 0,0041"

tw = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*3 410,4 / (2*π*60,0525*16 700*1,20*1,00)

= 0,0003"

tt = tp + tm - tw (total required, tensile)

= 0 + 0,0041 - (0,0003)

= 0,0038"

tpc = P*R / (2*Sc*Ks + 0,40*|P|) (Pressure)

= -0,01*60 / (2*3 056,32*1,20 + 0,40*|0,01|)

= -0,0001"

tmc = M / (π*Rm2*Sc*Ks) (bending)

= 924 681 / (π*60,05252*3 056,32*1,20)

= 0,0223"

twc = (1 + 0,14*SDS)*W / (2*π*Rm*Sc*Ks) (Weight)

= 1,03*3 410,4 / (2*π*60,0525*3 056,32*1,20)

= 0,0025"

tc

= tmc

 + twc

 - tpc

(total required, compressive)

= 0,0223 + (0,0025) - (-0,0001)

= 0,0249"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0,0223 - 0,0025) / (60 - 0,40*(0,105 - 0,0223 - 0,0025))

= 9,81 psi

92/142

Page 95: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 95/144

Operating, Hot & Corroded, Seismic, Below Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 432 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,03*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0186"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,0186)

= 0,0186"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0103"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0103) - (0)|

= 0,0103"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*1,00*(0,105 - 0 + (-0,0186)) / (60 - 0,40*(0,105 - 0 + (-0,0186)))

= 57,77 psi

Operating, Hot & New, Seismic, Below Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= 0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 432 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,03*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0186"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,0186)

= 0,0186"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0103"

93/142

Page 96: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 96/144

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0103) - (0)|

= 0,0103"

Maximum allowable working pressure, Longitudinal Stress

P = 2*St*Ks*Ec*(t - tm + tw) / (R - 0,40*(t - tm + tw))

= 2*16 700*1,20*1,00*(0,105 - 0 + (-0,0186)) / (60 - 0,40*(0,105 - 0 + (-0,0186)))= 57,77 psi

Hot Shut Down, Corroded, Seismic, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 432 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,03*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0186"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,0186)

= 0,0186"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0103"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0103) - (0)|= 0,0103"

Hot Shut Down, New, Seismic, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 432 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,03*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0186"

tt = tp + tm - tw(total required,

tensile)

= 0 + 0 - (-0,0186)

= 0,0186"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0103"

94/142

Page 97: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 97/144

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0103) - (0)|

= 0,0103"

Empty, Corroded, Seismic, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)= 544 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,03*-5 104,7 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0007"

tt = tp + tm - tw(total required,

tensile)

= 0 + 0 - (-0,0007)

= 0,0007"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0,57*-5 104,7 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0004"

tc = |tmc + twc - tpc|(total, net

tensile)

= |0 + (-0,0004) - (0)|

= 0,0004"

Empty, New, Seismic, Below Support Point

tp = 0" (Pressure)

tm = M / (π*Rm2*St*Ks*Ec) (bending)= 544 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,03*-5 104,7 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0007"

tt = tp + tm - tw(total required,

tensile)

= 0 + 0 - (-0,0007)

= 0,0007"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)= 0,57*-5 104,7 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0004"

tc = |tmc + twc - tpc|(total, net

tensile)

= |0 + (-0,0004) - (0)|

= 0,0004"

95/142

Page 98: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 98/144

Vacuum, Seismic, Below Support Point

tp = P*R / (2*St*Ks*Ec + 0,40*|P|) (Pressure)

= -0,01*60 / (2*16 700*1,20*1,00 + 0,40*|0,01|)

= 0"

tm = M / (π*Rm2*St*Ks*Ec) (bending)

= 432 / (π*60,05252*16 700*1,20*1,00)

= 0"

tw = (1 + 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 1,03*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0186"

tt = tp + tm - tw(total required,tensile)

= 0 + 0 - (-0,0186)

= 0,0186"

twc = (0,6 - 0,14*SDS)*W / (2*π*Rm*St*Ks*Ec) (Weight)

= 0,57*-136 412,2 / (2*π*60,0525*16 700*1,20*1,00)

= -0,0103"

tc = |tmc + twc - tpc|(total, nettensile)

= |0 + (-0,0103) - (0)|

= 0,0103"

Maximum Allowable External Pressure, Longitudinal Stress

P = 2*Sc*Ks*(t - tmc - twc) / (R - 0,40*(t - tmc - twc))

= 2*3 056,32*1,20*(0,105 - 0 - -0,0563) / (60 - 0,40*(0,105 - 0 - -0,0563))

= 19,74 psi

96/142

Page 99: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 99/144

Nozzle #1 (N1)

ASME Section VIII Division 1, 2013 Edition

Note: round inside edges per UG-76(c)

Location and Orientation

Located on Cylinder #4

Orientation 0°

Nozzle center line offset to datum line 18"

End of nozzle to shell center 66,4175"

Passes through a Category A joint No

Nozzle

Access opening No

Material specification SA-240 316L (II-D p. 74, ln. 9)

Inside diameter, new 23,25"

Nominal wall thickness 0,375"

Corrosion allowance 0"

Projection available outside vessel, Lpr 0,3125"

Projection available outside vessel to flange face, Lf 6,3125"

Local vessel minimum thickness 0,105"

Liquid static head included 11,48 psi

Longitudinal joint efficiency 1

Reinforcing Pad

Material specification SA-240 316L (II-D p. 74, ln. 9)

Diameter, Dp 24,25"

Thickness, te 0,105"

Is split No

97/142

Page 100: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 100/144

Welds

Inner Fillet, Leg41 0,125"

Outer Fillet, Leg42 0,105"

Nozzle to vessel groove weld 0,105"

Pad groove weld 0"

ASME B16.5-2009 Flange

Description NPS 24 Class 150 WN A105

Bolt MaterialSA-193 B7 Bolt <= 2 1/2 (II-D p.352, ln. 31)

Blind included Yes

Rated MDMT -55°F

Liquid static head 10,85 psi

MAWP rating 285 psi @ 100°F

MAP rating 285 psi @ 70°F

Hydrotest rating 450 psi @ 70°F

PWHT performed No

Impact Tested No

Circumferential joint radiography Full UW-11(a) Type 1

Notes

Flange rated MDMT per UCS-66(b)(3) = -155°F (Coincident ratio = 0,04)Bolts rated MDMT per Fig UCS-66 note (c) = -55°F

UHA-51 Material Toughness Requirements Nozzle

Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

UHA-51 Material Toughness Requirements Pad

Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

98/142

Page 101: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 101/144

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in2)UG-45

Summary (in)

For P = 16,06 psi @ 100 °FThe opening is adequately reinforced

The nozzle passesUG-45

Arequired

Aavailable

A1 A2 A3 A5A

weldstreq tmin

1,3422 1,3429 1,099 0,191 -- 0,0263 0,0266 0,0625 0,375

UG-41 Weld Failure Path Analysis Summary (lbf)

All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

4 653,87 4 072,3 195 410,29 4 765,35 87 479,47 5 387,42 81 647,05

UW-16 Weld Sizing Summary

Weld descriptionRequired weldthroat size (in)

Actual weldthroat size (in)

Status

Nozzle to pad fillet (Leg41) 0,0735 0,0875 weld size is adequate

Pad to shell fillet (Leg42) 0,0525 0,0735 weld size is adequate

Calculations for internal pressure 16,06 psi @ 100 °F

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))

= MAX(23,25, 11,625 + (0,375 - 0) + (0,105 - 0))

= 23,25 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2,5*(t - C), 2,5*(tn - Cn) + te)

= MIN(2,5*(0,105 - 0), 2,5*(0,375 - 0) + 0,105)

= 0,2625 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0,6*P)

= 16,0589*11,625 / (16 700*1 - 0,6*16,0589)

= 0,0112 in

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0,6*P)

= 16,0589*60 / (16 700*1 - 0,6*16,0589)

99/142

Page 102: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 102/144

= 0,0577 in

Required thickness tr per Interpretation VIII-1-07-50

tr = P*R / (S*E - 0,6*P)

= 16,0589*60 / (16 700*0,7 - 0,6*16,0589)

= 0,0825 in

Area required per UG-37(c)

Allowable stresses: Sn = 16 700, Sv = 16 700, Sp = 16 700 psi

fr1 = lesser of 1 or Sn / Sv = 1

fr2 = lesser of 1 or Sn / Sv = 1

fr3 = lesser of fr2 or Sp / Sv = 1

fr4 = lesser of 1 or Sp / Sv = 1

A = d*tr*F + 2*tn*tr*F*(1 - fr1)= 23,25*0,0577*1 + 2*0,375*0,0577*1*(1 - 1)

= 1,3422 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 1,099 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)

= 23,25*(1*0,105 - 1*0,0577) - 2*0,375*(1*0,105 - 1*0,0577)*(1 - 1)

= 1,099 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)

= 2*(0,105 + 0,375)*(1*0,105 - 1*0,0577) - 2*0,375*(1*0,105 - 1*0,0577)*(1 - 1)

= 0,0454 in2

 A2 = smaller of the following= 0,191 in2

= 5*(tn - trn)*fr2*t

= 5*(0,375 - 0,0112)*1*0,105

= 0,191 in2

= 2*(tn - trn)*fr2*Lpr

= 2*(0,375 - 0,0112)*1*0,3125

= 0,2274 in2

A41 = Leg2*fr3= 0,1252*1

= 0,0156 in2

100/142

Page 103: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 103/144

A42 = Leg2*fr4= 0,1052*1

= 0,011 in2

A5 = (Dp - d - 2*tn)*te*fr4= (24,25 - 23,25 - 2*0,375)*0,105*1

= 0,0263 in2

Area = A1 + A2 + A41 + A42 + A5

= 1,099 + 0,191 + 0,0156 + 0,011 + 0,0263

= 1,3429 in2

As Area >= A the reinforcement is adequate.

UW-16(c)(2) Weld Check

Inner fillet: tmin = lesser of 0,75 or tn or te = 0,105 in

tw(min) = 0,7*tmin = 0,0735 in

tw(actual) = 0,7*Leg = 0.7*0,125 = 0,0875 in

Outer fillet: tmin = lesser of 0,75 or te or t = 0,105 in

tw(min) = 0,5*tmin = 0,0525 in

tw(actual) = 0,7*Leg = 0.7*0,105 = 0,0735 in

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0,6*P) + Corrosion

= 16,0589*11,625 / (16 700*1 - 0,6*16,0589) + 0

= 0,0112 in

ta = max[ ta UG-27 , ta UG-22 ]

= max[ 0,0112 , 0 ]

= 0,0112 in

tb1 = P*R / (S*E - 0,6*P) + Corrosion

= 16,0589*60 / (16 700*1 - 0,6*16,0589) + 0

= 0,0577 in

tb1 = max[ tb1 , tb UG16 ]

= max[ 0,0577 , 0,0625 ]

= 0,0625 in

tb = min[ tb3 , tb1 ]

= min[ 0,3281 , 0,0625 ]

= 0,0625 in

101/142

Page 104: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 104/144

tUG-45 = max[ ta , tb ]

= max[ 0,0112 , 0,0625 ]

= 0,0625 in

Available nozzle wall thickness new, tn = 0,375 in

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: 0,74*16 700 = 12 358 psi

Nozzle wall in shear: 0,7*16 700 = 11 690 psi

Inner fillet weld in shear: 0,49*16 700 = 8 183 psi

Outer fillet weld in shear: 0,49*16 700 = 8 183 psi

Strength of welded joints:

(1) Inner fillet weld in shear(π / 2)*Nozzle OD*Leg*Si = (π / 2)*24*0,125*8 183 = 38 561,48 lbf

(2) Outer fillet weld in shear(π / 2)*Pad OD*Leg*So = (π / 2)*24,25*0,105*8 183 = 32 729,06 lbf

(3) Nozzle wall in shear

(π / 2)*Mean nozzle dia*tn*Sn = (π / 2)*23,625*0,375*11 690 = 162 681,24 lbf

(4) Groove weld in tension(π / 2)*Nozzle OD*tw*Sg = (π / 2)*24*0,105*12 358 = 48 917,99 lbf

Loading on welds per UG-41(b)(1)

W = (A - A1 + 2*tn*fr1*(E1*t - F*tr))*Sv

= (1,3422 - 1,099 + 2*0,375*1*(1*0,105 - 1*0,0577))*16 700

= 4 653,87 lbf

W1-1 = (A2 + A5 + A41 + A42)*Sv

= (0,191 + 0,0263 + 0,0156 + 0,011)*16 700

= 4 072,3 lbf

W2-2 = (A2 + A3 + A41 + A43 + 2*tn*t*fr1)*Sv

= (0,191 + 0 + 0,0156 + 0 + 2*0,375*0,105*1)*16 700

= 4 765,35 lbf

W3-3 = (A2 + A3 + A5 + A41 + A42 + A43 + 2*tn*t*fr1)*Sv

= (0,191 + 0 + 0,0263 + 0,0156 + 0,011 + 0 + 2*0,375*0,105*1)*16 700

= 5 387,42 lbf

Load for path 1-1 lesser of W or W1-1 = 4 072,3 lbf

102/142

Page 105: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 105/144

Path 1-1 through (2) & (3) = 32 729,06 + 162 681,24 = 195 410,29 lbf

Path 1-1 is stronger than W1-1 so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or W2-2 = 4 653,87 lbf

Path 2-2 through (1), (4) = 38 561,48 + 48 917,99 = 87 479,47 lbf

Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 3-3 lesser of W or W3-3 = 4 653,87 lbf

Path 3-3 through (2), (4) = 32 729,06 + 48 917,99 = 81 647,05 lbf

Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

% Forming strain - UHA-44(a)(2)

EFE = (50*t / Rf)*(1 - Rf / Ro)

= (50*0,375 / 11,8125)*(1 - 11,8125 / infinity)

= 1,5873%

103/142

Page 106: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 106/144

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in2)UG-45

Summary (in)

For P = 16,06 psi @ 70 °FThe opening is adequately reinforced

The nozzle passesUG-45

Arequired

Aavailable

A1 A2 A3 A5A

weldstreq tmin

1,3425 1,3427 1,0988 0,191 -- 0,0263 0,0266 0,0625 0,375

UG-41 Weld Failure Path Analysis Summary (lbf)

All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

4 660,97 4 072,3 195 410,29 4 765,35 87 479,47 5 387,42 81 647,05

UW-16 Weld Sizing Summary

Weld descriptionRequired weldthroat size (in)

Actual weldthroat size (in)

Status

Nozzle to pad fillet (Leg41) 0,0735 0,0875 weld size is adequate

Pad to shell fillet (Leg42) 0,0525 0,0735 weld size is adequate

Calculations for internal pressure 16,06 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))

= MAX(23,25, 11,625 + (0,375 - 0) + (0,105 - 0))

= 23,25 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2,5*(t - C), 2,5*(tn - Cn) + te)

= MIN(2,5*(0,105 - 0), 2,5*(0,375 - 0) + 0,105)

= 0,2625 in

Nozzle required thickness per UG-27(c)(1)

trn = P*Rn / (Sn*E - 0,6*P)

= 16,0603*11,625 / (16 700*1 - 0,6*16,0603)

= 0,0112 in

Required thickness tr from UG-37(a)

tr = P*R / (S*E - 0,6*P)

= 16,0603*60 / (16 700*1 - 0,6*16,0603)

104/142

Page 107: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 107/144

= 0,0577 in

Required thickness tr per Interpretation VIII-1-07-50

tr = P*R / (S*E - 0,6*P)

= 16,0603*60 / (16 700*0,7 - 0,6*16,0603)

= 0,0825 in

Area required per UG-37(c)

Allowable stresses: Sn = 16 700, Sv = 16 700, Sp = 16 700 psi

fr1 = lesser of 1 or Sn / Sv = 1

fr2 = lesser of 1 or Sn / Sv = 1

fr3 = lesser of fr2 or Sp / Sv = 1

fr4 = lesser of 1 or Sp / Sv = 1

A = d*tr*F + 2*tn*tr*F*(1 - fr1)= 23,25*0,0577*1 + 2*0,375*0,0577*1*(1 - 1)

= 1,3425 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 1,0988 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)

= 23,25*(1*0,105 - 1*0,0577) - 2*0,375*(1*0,105 - 1*0,0577)*(1 - 1)

= 1,0988 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)

= 2*(0,105 + 0,375)*(1*0,105 - 1*0,0577) - 2*0,375*(1*0,105 - 1*0,0577)*(1 - 1)

= 0,0454 in2

 A2 = smaller of the following= 0,191 in2

= 5*(tn - trn)*fr2*t

= 5*(0,375 - 0,0112)*1*0,105

= 0,191 in2

= 2*(tn - trn)*fr2*Lpr

= 2*(0,375 - 0,0112)*1*0,3125

= 0,2274 in2

A41 = Leg2*fr3= 0,1252*1

= 0,0156 in2

105/142

Page 108: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 108/144

A42 = Leg2*fr4= 0,1052*1

= 0,011 in2

A5 = (Dp - d - 2*tn)*te*fr4= (24,25 - 23,25 - 2*0,375)*0,105*1

= 0,0263 in2

Area = A1 + A2 + A41 + A42 + A5

= 1,0988 + 0,191 + 0,0156 + 0,011 + 0,0263

= 1,3427 in2

As Area >= A the reinforcement is adequate.

UW-16(c)(2) Weld Check

Inner fillet: tmin = lesser of 0,75 or tn or te = 0,105 in

tw(min) = 0,7*tmin = 0,0735 in

tw(actual) = 0,7*Leg = 0.7*0,125 = 0,0875 in

Outer fillet: tmin = lesser of 0,75 or te or t = 0,105 in

tw(min) = 0,5*tmin = 0,0525 in

tw(actual) = 0,7*Leg = 0.7*0,105 = 0,0735 in

UG-45 Nozzle Neck Thickness Check

ta UG-27 = P*R / (S*E - 0,6*P) + Corrosion

= 16,0603*11,625 / (16 700*1 - 0,6*16,0603) + 0

= 0,0112 in

ta = max[ ta UG-27 , ta UG-22 ]

= max[ 0,0112 , 0 ]

= 0,0112 in

tb1 = P*R / (S*E - 0,6*P) + Corrosion

= 16,0603*60 / (16 700*1 - 0,6*16,0603) + 0

= 0,0577 in

tb1 = max[ tb1 , tb UG16 ]

= max[ 0,0577 , 0,0625 ]

= 0,0625 in

tb = min[ tb3 , tb1 ]

= min[ 0,3281 , 0,0625 ]

= 0,0625 in

106/142

Page 109: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 109/144

tUG-45 = max[ ta , tb ]

= max[ 0,0112 , 0,0625 ]

= 0,0625 in

Available nozzle wall thickness new, tn = 0,375 in

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension: 0,74*16 700 = 12 358 psi

Nozzle wall in shear: 0,7*16 700 = 11 690 psi

Inner fillet weld in shear: 0,49*16 700 = 8 183 psi

Outer fillet weld in shear: 0,49*16 700 = 8 183 psi

Strength of welded joints:

(1) Inner fillet weld in shear(π / 2)*Nozzle OD*Leg*Si = (π / 2)*24*0,125*8 183 = 38 561,48 lbf

(2) Outer fillet weld in shear(π / 2)*Pad OD*Leg*So = (π / 2)*24,25*0,105*8 183 = 32 729,06 lbf

(3) Nozzle wall in shear

(π / 2)*Mean nozzle dia*tn*Sn = (π / 2)*23,625*0,375*11 690 = 162 681,24 lbf

(4) Groove weld in tension(π / 2)*Nozzle OD*tw*Sg = (π / 2)*24*0,105*12 358 = 48 917,99 lbf

Loading on welds per UG-41(b)(1)

W = (A - A1 + 2*tn*fr1*(E1*t - F*tr))*Sv

= (1,3425 - 1,0988 + 2*0,375*1*(1*0,105 - 1*0,0577))*16 700

= 4 660,97 lbf

W1-1 = (A2 + A5 + A41 + A42)*Sv

= (0,191 + 0,0263 + 0,0156 + 0,011)*16 700

= 4 072,3 lbf

W2-2 = (A2 + A3 + A41 + A43 + 2*tn*t*fr1)*Sv

= (0,191 + 0 + 0,0156 + 0 + 2*0,375*0,105*1)*16 700

= 4 765,35 lbf

W3-3 = (A2 + A3 + A5 + A41 + A42 + A43 + 2*tn*t*fr1)*Sv

= (0,191 + 0 + 0,0263 + 0,0156 + 0,011 + 0 + 2*0,375*0,105*1)*16 700

= 5 387,42 lbf

Load for path 1-1 lesser of W or W1-1 = 4 072,3 lbf

107/142

Page 110: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 110/144

Path 1-1 through (2) & (3) = 32 729,06 + 162 681,24 = 195 410,29 lbf

Path 1-1 is stronger than W1-1 so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or W2-2 = 4 660,97 lbf

Path 2-2 through (1), (4) = 38 561,48 + 48 917,99 = 87 479,47 lbf

Path 2-2 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 3-3 lesser of W or W3-3 = 4 660,97 lbf

Path 3-3 through (2), (4) = 32 729,06 + 48 917,99 = 81 647,05 lbf

Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

108/142

Page 111: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 111/144

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in2)UG-45

Summary (in)

For Pe = 0,15 psi @ 100 °F

The opening is adequately reinforced

The nozzle passesUG-45

Arequired

Aavailable

A1 A2 A3 A5 Awelds

treq tmin

0,8955 0,896 0,6503 0,1928 -- 0,0263 0,0266 0,0625 0,375

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary

Weld descriptionRequired weldthroat size (in)

Actual weldthroat size (in)

Status

Nozzle to pad fillet (Leg41) 0,0735 0,0875 weld size is adequate

Pad to shell fillet (Leg42) 0,0525 0,0735 weld size is adequate

Calculations for external pressure 0,15 psi @ 100 °F

Parallel Limit of reinforcement per UG-40

LR = MAX(d, Rn + (tn - Cn) + (t - C))

= MAX(23,25, 11,625 + (0,375 - 0) + (0,105 - 0))

= 23,25 in

Outer Normal Limit of reinforcement per UG-40

LH = MIN(2,5*(t - C), 2,5*(tn - Cn) + te)

= MIN(2,5*(0,105 - 0), 2,5*(0,375 - 0) + 0,105)

= 0,2625 in

Nozzle required thickness per UG-28 trn = 0,0077 in

From UG-37(d)(1) required thickness tr = 0,077 in

Area required per UG-37(d)(1)

Allowable stresses: Sn = 16 700, Sv = 16 700, Sp = 16 700 psi

fr1 = lesser of 1 or Sn / Sv = 1

fr2 = lesser of 1 or Sn / Sv = 1

fr3 = lesser of fr2 or Sp / Sv = 1

109/142

Page 112: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 112/144

fr4 = lesser of 1 or Sp / Sv = 1

A = 0,5*(d*tr*F + 2*tn*tr*F*(1 - fr1))

= 0,5*(23,25*0,077*1 + 2*0,375*0,077*1*(1 - 1))

= 0,8955 in2

Area available from FIG. UG-37.1

A1 = larger of the following= 0,6503 in2

= d*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)

= 23,25*(1*0,105 - 1*0,077) - 2*0,375*(1*0,105 - 1*0,077)*(1 - 1)

= 0,6503 in2

= 2*(t + tn)*(E1*t - F*tr) - 2*tn*(E1*t - F*tr)*(1 - fr1)

= 2*(0,105 + 0,375)*(1*0,105 - 1*0,077) - 2*0,375*(1*0,105 - 1*0,077)*(1 - 1)

= 0,0269 in2

 A2 = smaller of the following= 0,1928 in2

= 5*(tn - trn)*fr2*t

= 5*(0,375 - 0,0077)*1*0,105

= 0,1928 in2

= 2*(tn - trn)*fr2*Lpr

= 2*(0,375 - 0,0077)*1*0,3125

= 0,2296 in2

A41 = Leg2*fr3= 0,1252*1

= 0,0156 in2

A42 = Leg2*fr4= 0,1052*1

= 0,011 in2

A5 = (Dp - d - 2*tn)*te*fr4= (24,25 - 23,25 - 2*0,375)*0,105*1

= 0,0263 in2

Area = A1 + A2 + A41 + A42 + A5

= 0,6503 + 0,1928 + 0,0156 + 0,011 + 0,0263

= 0,896 in2

As Area >= A the reinforcement is adequate.

110/142

Page 113: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 113/144

UW-16(c)(2) Weld Check

Inner fillet: tmin = lesser of 0,75 or tn or te = 0,105 in

tw(min) = 0,7*tmin = 0,0735 in

tw(actual) = 0,7*Leg = 0.7*0,125 = 0,0875 in

Outer fillet: tmin = lesser of 0,75 or te or t = 0,105 intw(min) = 0,5*tmin = 0,0525 in

tw(actual) = 0,7*Leg = 0.7*0,105 = 0,0735 in

UG-45 Nozzle Neck Thickness Check

ta UG-28 = 0,0077 in

ta = max[ ta UG-28 , ta UG-22 ]

= max[ 0,0077 , 0 ]

= 0,0077 in

tb2 = P*R / (S*E - 0,6*P) + Corrosion

= 0,1464*60 / (16 700*1 - 0,6*0,1464) + 0

= 0,0005 in

tb2 = max[ tb2 , tb UG16 ]

= max[ 0,0005 , 0,0625 ]

= 0,0625 in

tb = min[ tb3 , tb2 ]

= min[ 0,3281 , 0,0625 ]

= 0,0625 in

tUG-45 = max[ ta , tb ]

= max[ 0,0077 , 0,0625 ]

= 0,0625 in

Available nozzle wall thickness new, tn = 0,375 in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 100 °F) UG-28(c)

L / Do = 7,5226 / 24 = 0,3134Do / t = 24 / 0,0077 = 3116,5647

Experimental basin formula

Pa = [2,42*E / (1 - µ2)0,75]*[(t / Do)2,50 / (L / Do - 0,45*(t / Do)

0,50)] / 3= [2,42*28000000 / (1 - 0,302)0,75]*[(0,0077 / 24)2,50 / (7,5226 / 24 - 0,45*(0,0077 / 24)0,50)] / 3= 0,15 psi

111/142

Page 114: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 114/144

Design thickness for external pressure Pa = 0,15 psi

ta = t + Corrosion = 0,0077 + 0 = 0,0077"

112/142

Page 115: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 115/144

Support Skirt #1

ASME Section VIII Division 1, 2013 Edition

Component Support Skirt

Material SA-240 304L (II-D p. 86, ln. 43)

Skirt is Attached To Cylinder #4

Skirt Attachment Offset 1" up from the bottom seam

Design Temperature

Internal 100°F

External 100°F

Dimensions

Inner DiameterTop 120,21"

Botttom 120,21"

Length (includes base ring thickness) 40"

Nominal Thickness 0,25"

CorrosionInner 0"

Outer 0"

Weight

New 1 083,75 lb

Corroded 1 083,75 lb

Joint Efficiency

Top 0,55

Bottom 0,8

Skirt design thickness, largest of the following + corrosion = 0,0668 in

The governing condition is due to earthquake, compressive stress at the base, operating & corroded.

The skirt thickness of 0,25 in is adequate.

113/142

Page 116: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 116/144

Results Summary

LoadingVessel

Condition(Stress)

GoverningSkirt

Location

Temperature(°F)

AllowableStress(psi)

CalculatedStress/E

(psi)

Requiredthickness

(in)

Wind operating, corroded (+) top 100 7 308,12 -805,81 0,0276

Wind operating, corroded (-) bottom 100 7 308,12 1 596,42 0,0546

Wind empty, corroded (+) bottom 70 16 700 57,74 0,0009

Wind empty, corroded (-) bottom 70 7 308,12 208,52 0,0071

Wind vacuum, corroded (+) top 100 7 308,12 -805,81 0,0276

Wind vacuum, corroded (-) bottom 100 7 308,12 1 596,42 0,0546

Seismic operating, corroded (+) top 100 7 308,12 -519,31 0,0178

Seismic operating, corroded (-) bottom 100 7 308,12 1 953,31 0,0668

Seismic empty, corroded (+) bottom 70 7 308,12 -21,57 0,0007

Seismic empty, corroded (-) bottom 70 7 308,12 140,76 0,0048

Seismic vacuum, corroded (+) top 100 7 308,12 -519,31 0,0178

Seismic vacuum, corroded (-) bottom 100 7 308,12 1 953,31 0,0668

Loading due to wind, operating & corrodedWindward side (tensile)

Required thickness, tensile stress at base:

t = -0,6*W / (π*D*St*E) + 48*M / (π*D2*St*E)

= -0,6*140 906,34 / (π*120,46*7 308*1) + 48*25 420,5 / (π*120,462*7 308*1)

= 0,0269 in

Required thickness, tensile stress at the top:

t = -0,6*Wt / (π*Dt*St*E) + 48*Mt / (π*Dt2*St*E)

= -0,6*139 822,59 / (π*120,46*7 308*1) + 48*19 215,2 / (π*120,462*7 308*1)

= 0,0276 in

Leeward side (compressive)

Required thickness, compressive stress at base:

t = W / (π*D*Sc*Ec) + 48*M / (π*D2*Sc*Ec)

= 140 906,34 / (π*120,46*7 308*1) + 48*25 420,5 / (π*120,462*7 308*1)

= 0,0546 in

Required thickness, compressive stress at the top:

t = Wt / (π*Dt*Sc*Ec) + 48*Mt / (π*Dt2*Sc*Ec)

= 139 822,59 / (π*120,46*7 308*1) + 48*19 215,2 / (π*120,462*7 308*1)

= 0,0533 in

114/142

Page 117: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 117/144

Loading due to wind, empty & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

t = -0,6*W / (π*D*St*E) + 48*M / (π*D2*St*E)

= -0,6*9 598,83 / (π*120,46*16 700*0,8) + 48*25 420,5 / (π*120,462

*16 700*0,8)= 0,0009 in

Required thickness, tensile stress at the top:

t = -0,6*Wt / (π*Dt*St*E) + 48*Mt / (π*Dt2*St*E)

= -0,6*8 515,09 / (π*120,46*16 700*0,55) + 48*19 215,2 / (π*120,462*16 700*0,55)

= 0,0007 in

Leeward side (compressive)

Required thickness, compressive stress at base:

t = W / (π*D*Sc*Ec) + 48*M / (π*D2*Sc*Ec)

= 9 598,83 / (π*120,46*7 308*1) + 48*25 420,5 / (π*120,462*7 308*1)

= 0,0071 in

Required thickness, compressive stress at the top:

t = Wt / (π*Dt*Sc*Ec) + 48*Mt / (π*Dt2*Sc*Ec)

= 8 515,09 / (π*120,46*7 308*1) + 48*19 215,2 / (π*120,462*7 308*1)

= 0,0058 in

Loading due to wind, vacuum & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

t = -0,6*W / (π*D*St*E) + 48*M / (π*D2*St*E)

= -0,6*140 906,34 / (π*120,46*7 308*1) + 48*25 420,5 / (π*120,462*7 308*1)

= 0,0269 in

Required thickness, tensile stress at the top:

t = -0,6*Wt / (π*Dt*St*E) + 48*Mt / (π*Dt2*St*E)

= -0,6*139 822,59 / (π*120,46*7 308*1) + 48*19 215,2 / (π*120,462*7 308*1)

= 0,0276 in

115/142

Page 118: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 118/144

Leeward side (compressive)

Required thickness, compressive stress at base:

t = W / (π*D*Sc*Ec) + 48*M / (π*D2*Sc*Ec)

= 140 906,34 / (π*120,46*7 308*1) + 48*25 420,5 / (π*120,462*7 308*1)

= 0,0546 in

Required thickness, compressive stress at the top:

t = Wt / (π*Dt*Sc*Ec) + 48*Mt / (π*Dt2*Sc*Ec)

= 139 822,59 / (π*120,46*7 308*1) + 48*19 215,2 / (π*120,462*7 308*1)

= 0,0533 in

Loading due to earthquake, operating & corroded

Tensile side

Required thickness, tensile stress at base:

t = -(0,6 - 0,14*SDS)*W / (π*D*St*E) + 48*M / (π*D2*St*E)

= -(0,6 - 0,14*0,208)*140 906,34 / (π*120,46*7 308*1) + 48*99 859,8 / (π*120,462*7 308*1)

= 0,0147 in

Required thickness, tensile stress at the top:

t = -(0,6 - 0,14*SDS)*Wt / (π*Dt*St*E) + 48*Mt / (π*Dt2*St*E)

= -(0,6 - 0,14*0,208)*139 822,59 / (π*120,46*7 308*1) + 48*77 020,8 / (π*120,462*7 308*1)

= 0,0178 inCompressive side

Required thickness, compressive stress at base:

t = (1 + 0,14*SDS)*W / (π*D*Sc*Ec) + 48*M / (π*D2*Sc*Ec)

= (1 + 0,14*0,208)*140 906,34 / (π*120,46*7 308*1) + 48*99 859,8 / (π*120,462*7 308*1)

= 0,0668 in

Required thickness, compressive stress at the top:

t = (1 + 0,14*SDS)*Wt / (π*Dt*Sc*Ec) + 48*Mt / (π*Dt2*Sc*Ec)= (1 + 0,14*0,208)*139 822,59 / (π*120,46*7 308*1) + 48*77 020,8 / (π*120,462*7 308*1)

= 0,0631 in

Loading due to earthquake, empty & corroded

116/142

Page 119: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 119/144

Tensile side

Required thickness, tensile stress at base:

t = -(0,6 - 0,14*SDS)*W / (π*D*St*E) + 48*M / (π*D2*St*E)

= -(0,6 - 0,14*0,208)*9 598,83 / (π*120,46*7 308*1) + 48*8 630,3 / (π*120,462*7 308*1)

= 0,0007 in

Required thickness, tensile stress at the top:

t = -(0,6 - 0,14*SDS)*Wt / (π*Dt*St*E) + 48*Mt / (π*Dt2*St*E)

= -(0,6 - 0,14*0,208)*8 515,09 / (π*120,46*7 308*1) + 48*7 204,5 / (π*120,462*7 308*1)

= 0,0007 in

Compressive side

Required thickness, compressive stress at base:

t = (1 + 0,14*SDS)*W / (π*D*Sc*Ec) + 48*M / (π*D2*Sc*Ec)

= (1 + 0,14*0,208)*9 598,83 / (π*120,46*7 308*1) + 48*8 630,3 / (π*120,462*7 308*1)= 0,0048 in

Required thickness, compressive stress at the top:

t = (1 + 0,14*SDS)*Wt / (π*Dt*Sc*Ec) + 48*Mt / (π*Dt2*Sc*Ec)

= (1 + 0,14*0,208)*8 515,09 / (π*120,46*7 308*1) + 48*7 204,5 / (π*120,462*7 308*1)

= 0,0042 in

Loading due to earthquake, vacuum & corroded

Tensile side

Required thickness, tensile stress at base:

t = -(0,6 - 0,14*SDS)*W / (π*D*St*E) + 48*M / (π*D2*St*E)

= -(0,6 - 0,14*0,208)*140 906,34 / (π*120,46*7 308*1) + 48*99 859,8 / (π*120,462*7 308*1)

= 0,0147 in

Required thickness, tensile stress at the top:

t = -(0,6 - 0,14*SDS)*Wt / (π*Dt*St*E) + 48*Mt / (π*Dt2*St*E)= -(0,6 - 0,14*0,208)*139 822,59 / (π*120,46*7 308*1) + 48*77 020,8 / (π*120,462*7 308*1)

= 0,0178 in

Compressive side

117/142

Page 120: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 120/144

Required thickness, compressive stress at base:

t = (1 + 0,14*SDS)*W / (π*D*Sc*Ec) + 48*M / (π*D2*Sc*Ec)

= (1 + 0,14*0,208)*140 906,34 / (π*120,46*7 308*1) + 48*99 859,8 / (π*120,462*7 308*1)

= 0,0668 in

Required thickness, compressive stress at the top:

t = (1 + 0,14*SDS)*Wt / (π*Dt*Sc*Ec) + 48*Mt / (π*Dt

2

*Sc*Ec)= (1 + 0,14*0,208)*139 822,59 / (π*120,46*7 308*1) + 48*77 020,8 / (π*120,462*7 308*1)

= 0,0631 in

118/142

Page 121: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 121/144

Skirt Base Ring #1

Inputs

Base configuration single base plate

Base plate material

Base plate allowable stress, Sp 20 000 psi

Foundation compressive strength 1 658 psi

Concrete ultimate 28-day strength 3 000 psi

Bolt circle, BC 124,75"

Base plate inner diameter, Di 118"

Base plate outer diameter, Do 130"

Base plate thickness, tb 0,5"

Gusset separation, w 4"

Gusset height, h 4,75"

Gusset thickness, tg 0,375"

Anchor Bolts

Material

Allowable stress, Sb 20 000 psi

Bolt size and type 0,75 " series 8 threaded

Number of bolts, N 8

Corrosion allowance (applied to root radius) 0"

Anchor bolt clearance 0,375"

Bolt root area (corroded), Ab 0,3 in2

Diameter of anchor bolt holes, db 1,125"

Initial bolt preload 0% (0 psi)

Bolt at 0° No

119/142

Page 122: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 122/144

Results Summary

LoadVessel

conditionBase V

(lbf)Base M(lbf-ft)

W(lb)

Requiredbolt area

(in2)

trBase(in)

Foundationbearingstress(psi)

Wind operating, corroded 2 022,5 25 420,5 141 254,3 0 0,4483 65,04

Wind operating, new 2 022,5 25 420,5 141 254,3 0 0,4483 65,04

Wind empty, corroded 2 022,5 25 420,5 9 946,8 0,0238 0,1637 8,67

Wind empty, new 2 022,5 25 420,5 9 946,8 0,0238 0,1637 8,67

Wind vacuum, corroded 2 022,5 25 420,5 141 254,3 0 0,4483 65,04

Seismic operating, corroded 6 855,5 99 859,8 141 254,3 0 0,4962 79,7

Seismic operating, new 6 855,5 99 859,8 141 254,3 0 0,4962 79,7

Seismic empty, corroded 434,5 8 630,3 9 946,8 0 0,1349 5,89

Seismic empty, new 434,5 8 630,3 9 946,8 0 0,1349 5,89

Seismic vacuum, corroded 6 855,5 99 859,8 141 254,3 0 0,4962 79,7

Anchor bolt load (operating, corroded + Wind)

P = -0,6*W / N + 48 * M / (N*BC)= -0,6*141 254,34 / 8 + 48 * 25 420,5 / (8*124,75)

= -9 371,45 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, corroded + Wind)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(1302 - 1182) / 4 - 8*π*1,1252 / 4

= 2 329,3928 in2

Ic = π*(Do4 - Di

4) / 64= π*(1304 - 1184) / 64

= 4 502 895 in4

fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic= 8*0,302*0 / 2 329,3928 + 141 254,34 / 2 329,3928 + 6*25 420,5*130 / 4 502 895

= 65 psi

As fc <= 1 658 psi the base plate width is satisfactory.

Base plate required thickness (operating, corroded + Wind)

From Brownell & Young, Table 10.3:, l / b = 0,105

Mx = 0,0025*65*44,23922 = 313,2 lbf

My = -0,4773*65*4,6452 = -669,9 lbf

tr = (6*Mmax / Sp)0,5

= (6*669,86 / 20 000)0,5

= 0,4483 in

120/142

Page 123: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 123/144

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, operating, corroded + Wind)

Bolt load = Ab*fs =0,302*0 = 0 lbf

tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5

= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5

= 0 in

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

Sr = 1,5*F*b / (gussets*π*tsk2*h)

= 1,5*0*4,645 / (2*π*0,252*4,75)= 0 psi

As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (operating, new + Wind)

P = -0,6*W / N + 48 * M / (N*BC)= -0,6*141 254,34 / 8 + 48 * 25 420,5 / (8*124,75)

= -9 371,45 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, new + Wind)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(1302 - 1182) / 4 - 8*π*1,1252 / 4= 2 329,3928 in2

Ic = π*(Do4 - Di

4) / 64= π*(1304 - 1184) / 64

= 4 502 895 in4

fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic= 8*0,302*0 / 2 329,3928 + 141 254,34 / 2 329,3928 + 6*25 420,5*130 / 4 502 895= 65 psi

As fc <= 1 658 psi the base plate width is satisfactory.

Base plate required thickness (operating, new + Wind)

From Brownell & Young, Table 10.3:, l / b = 0,105

Mx = 0,0025*65*44,23922 = 313,2 lbf

My = -0,4773*65*4,6452 = -669,9 lbf

tr = (6*Mmax / Sp)0,5

= (6*669,86 / 20 000)0,5

= 0,4483 in

121/142

Page 124: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 124/144

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, operating, new + Wind)

Bolt load = Ab*fs =0,302*0 = 0 lbf

tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5

= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5

= 0 in

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

Sr = 1,5*F*b / (gussets*π*tsk2*h)

= 1,5*0*4,645 / (2*π*0,252*4,75)

= 0 psi

As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (empty, corroded + Wind)

P = -0,6*W / N + 48 * M / (N*BC)= -0,6*9 946,83 / 8 + 48 * 25 420,5 / (8*124,75)= 476,62 lbf

Required area per bolt = P / Sb = 0,0238 in2

The area provided (0,302 in2) by the specified anchor bolt is adequate.

Foundation bearing stress (empty, corroded + Wind)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(1302 - 1182) / 4 - 8*π*1,1252 / 4= 2 329,3928 in2

Ic = π*(Do4 - Di

4) / 64

= π*(1304 - 1184) / 64= 4 502 895 in4

fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic= 8*0,302*0 / 2 329,3928 + 9 946,83 / 2 329,3928 + 6*25 420,5*130 / 4 502 895

= 9 psi

As fc <= 1 658 psi the base plate width is satisfactory.

Base plate required thickness (empty, corroded + Wind)

From Brownell & Young, Table 10.3:, l / b = 0,105

Mx = 0,0025*9*44,23922 = 41,8 lbf

My = -0,4773*9*4,6452 = -89,3 lbf

tr = (6*Mmax / Sp)0,5

= (6*89,33 / 20 000)0,5

= 0,1637 in

122/142

Page 125: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 125/144

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, empty, corroded + Wind)

Bolt load = Ab*fs =0,302*1 578 = 476,62 lbf

tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5

= (3,91*476,62 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5

= 0,1447 in

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

Sr = 1,5*F*b / (gussets*π*tsk2*h)

= 1,5*476,62*4,645 / (2*π*0,252*4,75)= 1 780,3 psi

As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (empty, new + Wind)

P = -0,6*W / N + 48 * M / (N*BC)= -0,6*9 946,83 / 8 + 48 * 25 420,5 / (8*124,75)

= 476,62 lbf

Required area per bolt = P / Sb = 0,0238 in2

The area provided (0,302 in2) by the specified anchor bolt is adequate.

Foundation bearing stress (empty, new + Wind)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(1302 - 1182) / 4 - 8*π*1,1252 / 4

= 2 329,3928 in2

Ic = π*(Do4 - Di

4) / 64= π*(1304 - 1184) / 64

= 4 502 895 in4

fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic= 8*0,302*0 / 2 329,3928 + 9 946,83 / 2 329,3928 + 6*25 420,5*130 / 4 502 895= 9 psi

As fc <= 1 658 psi the base plate width is satisfactory.

Base plate required thickness (empty, new + Wind)

From Brownell & Young, Table 10.3:, l / b = 0,105

Mx = 0,0025*9*44,23922 = 41,8 lbf

My = -0,4773*9*4,6452 = -89,3 lbf

tr = (6*Mmax / Sp)0,5

= (6*89,33 / 20 000)0,5

123/142

Page 126: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 126/144

= 0,1637 in

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, empty, new + Wind)

Bolt load = Ab*fs =0,302*1 578 = 476,62 lbf

tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5

= (3,91*476,62 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5

= 0,1447 in

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

Sr = 1,5*F*b / (gussets*π*tsk2*h)

= 1,5*476,62*4,645 / (2*π*0,252*4,75)

= 1 780,3 psi

As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (vacuum, corroded + Wind)

P = -0,6*W / N + 48 * M / (N*BC)

= -0,6*141 254,34 / 8 + 48 * 25 420,5 / (8*124,75)= -9 371,45 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (vacuum, corroded + Wind)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(1302 - 1182) / 4 - 8*π*1,1252 / 4= 2 329,3928 in2

Ic = π*(Do4 - Di

4) / 64

= π*(1304 - 1184) / 64= 4 502 895 in4

fc = N*Ab*Preload / Ac + W / Ac + 6*M*Do / Ic= 8*0,302*0 / 2 329,3928 + 141 254,34 / 2 329,3928 + 6*25 420,5*130 / 4 502 895

= 65 psi

As fc <= 1 658 psi the base plate width is satisfactory.

Base plate required thickness (vacuum, corroded + Wind)

From Brownell & Young, Table 10.3:, l / b = 0,105

Mx = 0,0025*65*44,23922 = 313,2 lbf

My = -0,4773*65*4,6452 = -669,9 lbf

tr = (6*Mmax / Sp)0,5

= (6*669,86 / 20 000)0,5

= 0,4483 in

124/142

Page 127: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 127/144

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, vacuum, corroded + Wind)

Bolt load = Ab*fs =0,302*0 = 0 lbf

tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5

= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5

= 0 in

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

Sr = 1,5*F*b / (gussets*π*tsk2*h)

= 1,5*0*4,645 / (2*π*0,252*4,75)= 0 psi

As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (operating, corroded + Seismic)

P = -(0,6 - 0,14*SDS)*W / N + 48 * M / (N*BC)= -(0,6 - 0,14*0,208)*141 254,34 / 8 + 48 * 99 859,8 / (8*124,75)

= -5 277,03 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, corroded + Seismic)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(1302 - 1182) / 4 - 8*π*1,1252 / 4= 2 329,3928 in2

Ic = π*(Do4 - Di

4) / 64= π*(1304 - 1184) / 64

= 4 502 895 in4

fc = N*Ab*Preload / Ac + (1 + 0,14*SDS)*W / Ac + 6*M*Do / Ic= 8*0,302*0 / 2 329,3928 + (1 + 0,14*0,208)*141 254,34 / 2 329,3928 + 6*99 859,8*130 / 4 502 895= 80 psi

As fc <= 1 658 psi the base plate width is satisfactory.

Base plate required thickness (operating, corroded + Seismic)

From Brownell & Young, Table 10.3:, l / b = 0,105

Mx = 0,0025*80*44,23922 = 383,7 lbf

My = -0,4773*80*4,6452 = -820,8 lbf

tr = (6*Mmax / Sp)0,5

= (6*820,84 / 20 000)0,5

= 0,4962 in

125/142

Page 128: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 128/144

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, operating, corroded + Seismic)

Bolt load = Ab*fs =0,302*0 = 0 lbf

tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5

= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5

= 0 in

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

Sr = 1,5*F*b / (gussets*π*tsk2*h)

= 1,5*0*4,645 / (2*π*0,252*4,75)

= 0 psi

As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (operating, new + Seismic)

P = -(0,6 - 0,14*SDS)*W / N + 48 * M / (N*BC)= -(0,6 - 0,14*0,208)*141 254,34 / 8 + 48 * 99 859,8 / (8*124,75)= -5 277,03 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, new + Seismic)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(1302 - 1182) / 4 - 8*π*1,1252 / 4

= 2 329,3928 in2

Ic

 = π*(Do

4 - Di

4) / 64

= π*(1304 - 1184) / 64= 4 502 895 in4

fc = N*Ab*Preload / Ac + (1 + 0,14*SDS)*W / Ac + 6*M*Do / Ic= 8*0,302*0 / 2 329,3928 + (1 + 0,14*0,208)*141 254,34 / 2 329,3928 + 6*99 859,8*130 / 4 502 895= 80 psi

As fc <= 1 658 psi the base plate width is satisfactory.

Base plate required thickness (operating, new + Seismic)

From Brownell & Young, Table 10.3:, l / b = 0,105

Mx = 0,0025*80*44,23922 = 383,7 lbf

My = -0,4773*80*4,6452 = -820,8 lbf

tr = (6*Mmax / Sp)0,5

= (6*820,84 / 20 000)0,5

= 0,4962 in

The base plate thickness is satisfactory.

126/142

Page 129: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 129/144

Base plate bolt load (Jawad & Farr eq. 12.13, operating, new + Seismic)

Bolt load = Ab*fs =0,302*0 = 0 lbf

tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5

= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5

= 0 in

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

Sr = 1,5*F*b / (gussets*π*tsk2*h)

= 1,5*0*4,645 / (2*π*0,252*4,75)= 0 psi

As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (empty, corroded + Seismic)

P = -(0,6 - 0,14*SDS)*W / N + 48 * M / (N*BC)

= -(0,6 - 0,14*0,208)*9 946,83 / 8 + 48 * 8 630,3 / (8*124,75)= -294,72 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (empty, corroded + Seismic)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(1302 - 1182) / 4 - 8*π*1,1252 / 4= 2 329,3928 in2

Ic = π*(Do4 - Di

4) / 64= π*(1304 - 1184) / 64

= 4 502 895 in4

fc = N*Ab*Preload / Ac + (1 + 0,14*SDS)*W / Ac + 6*M*Do / Ic= 8*0,302*0 / 2 329,3928 + (1 + 0,14*0,208)*9 946,83 / 2 329,3928 + 6*8 630,3*130 / 4 502 895

= 6 psi

As fc <= 1 658 psi the base plate width is satisfactory.

Base plate required thickness (empty, corroded + Seismic)

From Brownell & Young, Table 10.3:, l / b = 0,105

Mx = 0,0025*6*44,23922

 = 28,4 lbf

My = -0,4773*6*4,6452 = -60,7 lbf

tr = (6*Mmax / Sp)0,5

= (6*60,65 / 20 000)0,5

= 0,1349 in

The base plate thickness is satisfactory.

127/142

Page 130: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 130/144

Base plate bolt load (Jawad & Farr eq. 12.13, empty, corroded + Seismic)

Bolt load = Ab*fs =0,302*0 = 0 lbf

tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5

= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5

= 0 in

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

Sr = 1,5*F*b / (gussets*π*tsk2*h)

= 1,5*0*4,645 / (2*π*0,252*4,75)

= 0 psi

As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (empty, new + Seismic)

P = -(0,6 - 0,14*SDS)*W / N + 48 * M / (N*BC)

= -(0,6 - 0,14*0,208)*9 946,83 / 8 + 48 * 8 630,3 / (8*124,75)

= -294,72 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (empty, new + Seismic)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(1302 - 1182) / 4 - 8*π*1,1252 / 4

= 2 329,3928 in2

Ic = π*(Do4 - Di

4) / 64= π*(1304 - 1184) / 64= 4 502 895 in4

fc = N*Ab*Preload / Ac + (1 + 0,14*SDS)*W / Ac + 6*M*Do / Ic= 8*0,302*0 / 2 329,3928 + (1 + 0,14*0,208)*9 946,83 / 2 329,3928 + 6*8 630,3*130 / 4 502 895= 6 psi

As fc <= 1 658 psi the base plate width is satisfactory.

Base plate required thickness (empty, new + Seismic)

From Brownell & Young, Table 10.3:, l / b = 0,105

Mx = 0,0025*6*44,23922 = 28,4 lbf

My = -0,4773*6*4,6452 = -60,7 lbf

tr = (6*Mmax / Sp)0,5

= (6*60,65 / 20 000)0,5

= 0,1349 in

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, empty, new + Seismic)

128/142

Page 131: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 131/144

Bolt load = Ab*fs =0,302*0 = 0 lbf

tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5

= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5

= 0 in

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

Sr = 1,5*F*b / (gussets*π*tsk2*h)

= 1,5*0*4,645 / (2*π*0,252*4,75)= 0 psi

As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (vacuum, corroded + Seismic)

P = -(0,6 - 0,14*SDS)*W / N + 48 * M / (N*BC)= -(0,6 - 0,14*0,208)*141 254,34 / 8 + 48 * 99 859,8 / (8*124,75)

= -5 277,03 lbf

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (vacuum, corroded + Seismic)

Ac = π*(Do2 - Di

2) / 4 - N*π*db2 / 4

= π*(1302 - 1182) / 4 - 8*π*1,1252 / 4= 2 329,3928 in2

Ic = π*(Do4 - Di

4) / 64

= π*(1304 - 1184) / 64= 4 502 895 in4

fc = N*Ab*Preload / Ac + (1 + 0,14*SDS)*W / Ac + 6*M*Do / Ic= 8*0,302*0 / 2 329,3928 + (1 + 0,14*0,208)*141 254,34 / 2 329,3928 + 6*99 859,8*130 / 4 502 895

= 80 psi

As fc <= 1 658 psi the base plate width is satisfactory.

Base plate required thickness (vacuum, corroded + Seismic)

From Brownell & Young, Table 10.3:, l / b = 0,105

Mx = 0,0025*80*44,23922 = 383,7 lbf

My = -0,4773*80*4,6452

 = -820,8 lbf

tr = (6*Mmax / Sp)0,5

= (6*820,84 / 20 000)0,5

= 0,4962 in

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, vacuum, corroded + Seismic)

129/142

Page 132: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 132/144

Bolt load = Ab*fs =0,302*0 = 0 lbf

tr= (3,91*F / (Sy*(2*b / w+w / (2*l)-db*(2 / w+1 / (2*l)))))0,5

= (3,91*0 / (36 000*(2*4,645 / 4+4 / (2*2,02)-1,125*(2 / 4+1 / (2*2,02)))))0,5

= 0 in

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

Sr = 1,5*F*b / (gussets*π*tsk2*h)

= 1,5*0*4,645 / (2*π*0,252*4,75)

= 0 psi

As Sr <= 25 050 psi the skirt thickness is adequate to resist the gusset reaction.

130/142

Page 133: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 133/144

Welded Cover #1

ASME Section VIII Division 1, 2013 Edition

Component Welded Cover

Configuration Figure UG-34 Sketch (b-1)

Material SA-240 316L (II-D p. 74, ln. 9)

Attached To Cylinder #4

ImpactTested

NormalizedFine GrainPractice

PWHTOptimize MDMT/

Find MAWP

No No No No No

DesignPressure (psi)

DesignTemperature (°F)

DesignMDMT (°F)

Internal 0,01 100-20

External 0,01 100

Static Liquid Head

Condition Ps (psi) Hs (in) SG

Operating 12,05 222,5349 1,5

Test horizontal 6,85 126,4175 1,5

Dimensions

Inner Diameter 120"

Nominal Thickness 1,625"

Inside corner radius r 4,125"

CorrosionInner 0"

Outer 0"

Weight and Capacity

Weight (lb) Capacity (US gal)

New 5 093,23 196,09

Corroded 5 093,23 196,09

Radiography

Category A joints None UW-11(c) Type 1

Head to shell seam None UW-11(c) Type 1

131/142

Page 134: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 134/144

Results Summary

Governing condition internal pressure

Minimum thickness per UG-16 0,0625" + 0" = 0,0625"

Design thickness due to internal pressure (t) 1,5891"

Design thickness due to external pressure (te) 0,0458"

Maximum allowable working pressure (MAWP) 0,56 psi

Maximum allowable pressure (MAP) 12,61 psi

Maximum allowable external pressure (MAEP) 12,61 psi

Rated MDMT -320°F

UHA-51 Material Toughness Requirements

Rated MDMT per UHA-51(d)(1)(a), (carbon content does not exceed 0,10%) = -320°F

Material is exempt from impact testing at the Design MDMT of -20°F.

Factor C from Fig. UG-34, sketch (b-1)

Factor C = 0,17

Design thickness, (at 100 °F) UG-34 (c)(2)

t = d*Sqr(C*P / (S*E)) + Corrosion

= 120*Sqr(0,17*12,06 / (16 700*0,7)) + 0= 1,5891"

Maximum allowable working pressure, (at 100 °F )

MAWP = (S*E / C)*(t / d)2 - Ps

= (16 700*0,7 / 0,17)*(1,625 / 120)2 - 12,05

= 0,56 psi

Maximum allowable pressure, (At 70 °F )

MAP = (S*E / C)*(t / d)2

= (16 700*0,7 / 0,17)*(1,625 / 120)2

= 12,61 psi

Design thickness for external pressure, (at 100 °F) UG-34(c)(2)

t = d*Sqr(C*Pe

 / (S*E)) + Corrosion= 120*Sqr(0,17*0,01 / (16 700*0,7)) + 0

= 0,0458"

Maximum allowable external pressure, (At 100 °F )

MAEP = (S*E / C)*(t / d)2

= (16 700*0,7 / 0,17)*(1,625 / 120)2

= 12,61 psi

132/142

Page 135: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 135/144

Seismic Code

Building Code: ASCE 7-10 ground supported

Site Class C

Importance Factor, Ie 1,0000

Spectral Response Acceleration at short

period (% g), Ss

26,00%

Spectral Response Acceleration at period of1 sec (% g), S1

6,50%

Response Modification Coeficient fromTable 15.4-2, R

3,0000

Acceleration-based Site Coefficient, Fa 1,2000

Velocity-based Site Coefficient, Fv 1,7000

Long-period Transition Period, TL 12,0000

Redundancy factor, ρ 1,0000

Risk Category (Table 1.5-1) II

User Defined Vertical AccelerationsConsidered

No

Vessel Characteristics

Height 21,4596 ft

WeightOperating, Corroded 141 254 lb

Empty, Corroded 9 947 lb

Vacuum, Corroded 141 254 lb

Period of Vibration Calculation

Fundamental Period, TOperating, Corroded 0,084 sec (f = 12,0 Hz)

Empty, Corroded 0,013 sec (f = 77,7 Hz)

Vacuum, Corroded 0,084 sec (f = 12,0 Hz)

The fundamental period of vibration T (above) is calculated using the Rayleigh method of approximation

T = 2 * PI * Sqr( {Sum(Wi * yi2 )} / {g * Sum(W i * yi )} ), where

Wi is the weight of the ith lumped mass, andyi is its deflection when the system is treated as a cantilever beam.

133/142

Page 136: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 136/144

12.4.2.3 Basic Load Combinations for Allowable Stress Design

Load combinations considered in accordance with ASCE section2.4.1:

5. D  + P + P s  + 0.7E  = (1.0 + 0.14S 

DS )D  + P + P 

s  + 0.7ρQ 

8. 0.6D  + P + P s  + 0.7E  = (0.6 - 0.14S 

DS )D  + P + P 

s  + 0.7ρQ 

Parameter description

D  = Dead load

P  = Internal or external pressure load

P s 

= Static head load

E  = Seismic load = E h  +/- E 

v =  ρQ 

E  +/- 0.2S 

DS D 

Seismic Shear Reports:

Operating, CorrodedEmpty, CorrodedVacuum, Corroded

Base Shear Calculations

Seismic Shear Report: Operating, Corroded

ComponentElevation of Bottom

above Base (in)Elastic Modulus E

(106 psi)Inertia I

(ft4)Seismic Shear at

Bottom (lbf)Bending Moment at

Bottom (lbf-ft)

F&D Head #1 234 28,1 * 847 619

Cylinder #1 183 28,1 3,4451 3 192 9 404

Cylinder #2 135 28,1 3,4451 4 875 25 706

Cylinder #3 87 28,1 3,4451 6 049 47 724

Cylinder #4 (top) 40 28,1 3,4451 6 723 77 057

Support Skirt #1 0 28,1 8,276 6 856 99 860

Cylinder #4 (bottom) 40 28,1 3,4451 125 36

Welded Cover #1 39 28,1 497,7822 116 26

*Moment of Inertia I varies over the length of the component

134/142

Page 137: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 137/144

Seismic Shear Report: Empty, Corroded

ComponentElevation of Bottom

above Base (in)Elastic Modulus E

(106 psi)Inertia I

(ft4)Seismic Shear at

Bottom (lbf)Bending Moment at

Bottom (lbf-ft)

F&D Head #1 234 28,3 * 67 67

Cylinder #1 183 28,3 3,4451 143 520

Cylinder #2 135 28,3 3,4451 197 1 205

Cylinder #3 87 28,3 3,4451 235 2 075

Cylinder #4 (top) 40 28,3 3,4451 282 7 250

Support Skirt #1 0 28,3 8,276 434 8 630

Cylinder #4 (bottom) 40 28,3 3,4451 139 45

Welded Cover #1 39 28,3 497,7822 138 34

*Moment of Inertia I varies over the length of the component

Seismic Shear Report: Vacuum, Corroded

ComponentElevation of Bottom

above Base (in)Elastic Modulus E

(106 psi)Inertia I

(ft4)Seismic Shear at

Bottom (lbf)Bending Moment at

Bottom (lbf-ft)

F&D Head #1 234 28,1 * 847 619

Cylinder #1 183 28,1 3,4451 3 192 9 404

Cylinder #2 135 28,1 3,4451 4 875 25 706

Cylinder #3 87 28,1 3,4451 6 049 47 724

Cylinder #4 (top) 40 28,1 3,4451 6 723 77 057

Support Skirt #1 0 28,1 8,276 6 856 99 860

Cylinder #4 (bottom) 40 28,1 3,4451 125 36

Welded Cover #1 39 28,1 497,7822 116 26

*Moment of Inertia I varies over the length of the component

11.4.3: Maximum considered earthquake spectral response acceleration

The maximum considered earthquake spectral response acceleration at short period, SMS 

SMS  = Fa * Ss = 1,2000 * 26,00 / 100 = 0,3120The maximum considered earthquake spectral response acceleration at 1 s period, S

M1

SM1

= Fv * S1 = 1,7000 * 6,50 / 100 = 0,1105

11.4.4: Design spectral response acceleration parameters

Design earthquake spectral response acceleration at short period, SDS 

SDS 

= 2 / 3 * SMS 

= 2 / 3 * 0,3120 = 0,2080

Design earthquake spectral response acceleration at 1 s period, SD1

SD1

= 2 / 3 * SM1

= 2 / 3 * 0,1105 = 0,0737

11.6 Seismic Design Category

The Risk Category is II.From Table 11.6-1, the Seismic Design Category based on S

Ds  = 0,2080 is B.

From Table 11.6-2, the Seismic Design Category based on SD1

 = 0,0737 is B.This vessel is assigned to Seismic Design Category B.

12.4.2.3: Seismic Load Combinations: Vertical Term

135/142

Page 138: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 138/144

Factor is applied to dead load.

Compressive Side: = 1.0 + 0.14 * SDS

= 1.0 + 0.14 * 0,2080

= 1,0291

Tensile Side: = 0.6 - 0.14 * SDS

= 0.6 - 0.14 * 0,2080

= 0,5709

Base Shear Calculations

Operating, CorrodedEmpty, Corroded

Vacuum, Corroded

Base Shear Calculations: Operating, Corroded

Paragraph 15.4.4: Period Determination

Fundamental Period is taken from the Rayleigh method listed previously in this report.

T = 0,0836 sec.

12.8.1: Calculation of Seismic Response Coefficient

Cs is the value computed below, bounded by CsMin and CsMax:

CsMin is calculated with equation 15.4-1 and shall not be less than 0.03; in addition, if S1 >= 0.6g, CsMin shall not beless than eqn 15.4-2.

CsMax calculated with 12.8-3 because (T = 0,0836) <= (TL = 12,0000)

Cs = SDS  / (R / Ie) = 0,2080 / (3,0000 / 1,0000) = 0,0693CsMin = max ( 0.044 * S

DS  * Ie , 0.03 ) = max ( 0.044 * 0,2080 * 1,0000 , 0.03 ) = 0,0300

CsMax = SD1

 / (T * (R / Ie)) = 0,0737 / (0,0836 * (3,0000 / 1,0000)) = 0,2937

Cs = 0,0693

12.8.1: Calculation of Base Shear

V = Cs * W

= 0,0693 * 141 254,3438

= 9 793,63 lb

12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, Eh

QE = V

Eh = 0.7 * ρ * QE (Only 70% of seismic load considered as per Section 2.4.1)

= 0,70 * 1,0000 * 9 793,63

= 6 855,54 lb

136/142

Page 139: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 139/144

Base Shear Calculations: Empty, Corroded

Paragraph 15.4.2: T < 0,06, so:

V = 0,30 * SDS 

 * W * Ie= 0,30 * 0,2080 * 9 946,8330 * 1,0000

= 620,68 lb

12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, Eh

QE = VEh = 0.7 * ρ * QE (Only 70% of seismic load considered as per Section 2.4.1)

= 0,70 * 1,0000 * 620,68

= 434,48 lb

Base Shear Calculations: Vacuum, Corroded

Paragraph 15.4.4: Period Determination

Fundamental Period is taken from the Rayleigh method listed previously in this report.

T = 0,0836 sec.

12.8.1: Calculation of Seismic Response Coefficient

Cs is the value computed below, bounded by CsMin and CsMax:CsMin is calculated with equation 15.4-1 and shall not be less than 0.03; in addition, if S1 >= 0.6g, CsMin shall not be

less than eqn 15.4-2.CsMax calculated with 12.8-3 because (T = 0,0836) <= (TL = 12,0000)

Cs = SDS 

 / (R / Ie) = 0,2080 / (3,0000 / 1,0000) = 0,0693

CsMin = max ( 0.044 * SDS 

 * Ie , 0.03 ) = max ( 0.044 * 0,2080 * 1,0000 , 0.03 ) = 0,0300

CsMax = SD1

 / (T * (R / Ie)) = 0,0737 / (0,0836 * (3,0000 / 1,0000)) = 0,2937

Cs = 0,0693

12.8.1: Calculation of Base Shear

V = Cs * W

= 0,0693 * 141 254,3438

= 9 793,63 lb

12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, Eh

QE = V

Eh = 0.7 * ρ * QE (Only 70% of seismic load considered as per Section 2.4.1)

= 0,70 * 1,0000 * 9 793,63

= 6 855,54 lb

137/142

Page 140: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 140/144

Wind Code

Building Code: ASCE 7-10

Elevation of base above grade 0,0000 ft

Increase effective outer diameter by 0,0000 ft

Wind Force Coefficient, Cf 0,5100

Risk Category (Table 1.5-1) II

Basic Wind Speed, V 115,0000 mph

Exposure category B

Wind Directionality Factor, Kd 0,9500

Topographic Factor, Kzt 1,0000

Enforce min. loading of 16 psf Yes

Vessel Characteristics

Height, h 21,4596 ft

Minimum Diameter, bOperating, Corroded 10,0175 ft

Empty, Corroded 10,0175 ft

Fundamental Frequency, n1

Operating, Corroded 11,9624 Hz

Empty, Corroded 77,7439 Hz

Vacuum, Corroded 11,9624 Hz

Damping coefficient, βOperating, Corroded 0,0249

Empty, Corroded 0,0200

Vacuum, Corroded 0,0249

Table Lookup Values

2.4.1 Basic Load Combinations for Allowable Stress Design

Load combinations considered in accordance with ASCEsection 2.4.1:

5. D  + P + P s  + 0.6W 

7. 0.6D  + P + P s  + 0.6W 

Parameter Description

D  = Dead load

P  = Internal or external pressure load

P s 

= Static head load

W  = Wind load

138/142

Page 141: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 141/144

Wind Deflection Reports:

Operating, CorrodedEmpty, CorrodedVacuum, Corroded

Wind Pressure Calculations

Wind Deflection Report: Operating, Corroded

Component

Elevation of

Bottom aboveBase (in)

Effective OD(ft) Elastic ModulusE (106 psi) InertiaI (ft4)

Platform

Wind Shear atBottom (lbf)

Total Wind

Shear atBottom (lbf)

Bending

Moment atBottom (lbf-ft)

Deflectionat Top (in)

F&D Head #1 234 10,02 28,1 * 0 146 119 0,0017

Cylinder #1 183 10,02 28,1 3,445 0 555 1 608 0,0014

Cylinder #2 135 10,02 28,1 3,445 0 939 4 595 0,001

Cylinder #3 87 10,02 28,1 3,445 0 1 324 9 122 0,0006

Cylinder #4 (top) 40 10,02 28,1 3,445 0 1 701 19 215 0,0003

Support Skirt #1 0 10,06 28,1 8,276 0 2 023 25 421 0

Cylinder #4 (bottom) 40 10,06 28,1 3,445 0 0 0 0

Welded Cover #1 39 10,04 28,1 497,8 0 0 0 0,0001

*Moment of Inertia I varies over the length of the component

Wind Deflection Report: Empty, Corroded

ComponentElevation of

Bottom aboveBase (in)

Effective OD(ft)

Elastic ModulusE (106 psi)

InertiaI (ft4)

PlatformWind Shear atBottom (lbf)

Total WindShear at

Bottom (lbf)

BendingMoment at

Bottom (lbf-ft)

Deflectionat Top (in)

F&D Head #1 234 10,02 28,3 * 0 146 119 0,0016

Cylinder #1 183 10,02 28,3 3,445 0 555 1 608 0,0014

Cylinder #2 135 10,02 28,3 3,445 0 939 4 595 0,001

Cylinder #3 87 10,02 28,3 3,445 0 1 324 9 122 0,0006

Cylinder #4 (top) 40 10,02 28,3 3,445 0 1 701 19 215 0,0003

Support Skirt #1 0 10,06 28,3 8,276 0 2 023 25 421 0

Cylinder #4 (bottom) 40 10,06 28,3 3,445 0 0 0 0

Welded Cover #1 39 10,04 28,3 497,8 0 0 0 0,0001

*Moment of Inertia I varies over the length of the component

139/142

Page 142: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 142/144

Wind Deflection Report: Vacuum, Corroded

ComponentElevation of

Bottom aboveBase (in)

Effective OD(ft)

Elastic ModulusE (106 psi)

InertiaI (ft4)

PlatformWind Shear atBottom (lbf)

Total WindShear at

Bottom (lbf)

BendingMoment at

Bottom (lbf-ft)

Deflectionat Top (in)

F&D Head #1 234 10,02 28,1 * 0 146 119 0,0017

Cylinder #1 183 10,02 28,1 3,445 0 555 1 608 0,0014

Cylinder #2 135 10,02 28,1 3,445 0 939 4 595 0,001

Cylinder #3 87 10,02 28,1 3,445 0 1 324 9 122 0,0006

Cylinder #4 (top) 40 10,02 28,1 3,445 0 1 701 19 215 0,0003

Support Skirt #1 0 10,06 28,1 8,276 0 2 023 25 421 0

Cylinder #4 (bottom) 40 10,06 28,1 3,445 0 0 0 0

Welded Cover #1 39 10,04 28,1 497,8 0 0 0 0,0001

*Moment of Inertia I varies over the length of the component

Wind Pressure (WP) Calculations

Gust Factor (G¯) Calculations

Kz = 2,01 * (Z/ Zg)2/ α

= 2,01 * (Z/1 200,0000)0,2857

qz = 0,00256 * Kz * Kzt * Kd * V2

= 0,00256 * Kz * 1,0000 * 0,9500 * 115,00002

= 32,1632 * Kz

WP = 0.6 * qz * G * Cf (Minimum 16 lb/ft2)

= 0.6 * qz * G * 0,5100 (Minimum 16 lb/ft2)

Design Wind Pressures

Height Z(')

Kzqz

(psf)WP (psf)

Operating Empty Hydrotest New Hydrotest Corroded Vacuum

15,0 0,5747 18,48 9,60 9,60 N.A. N.A. 9,60

20,0 0,6240 20,07 9,60 9,60 N.A. N.A. 9,60

25,0 0,6650 21,39 9,60 9,60 N.A. N.A. 9,60

Design Wind Force determined from: F = Pressure * Af , where Af is the projected area.

Gust Factor Calculations

Operating, Corroded

Empty, CorrodedVacuum, Corroded

Gust Factor Calculations: Operating, Corroded

Vessel is considered a rigid structure as n1 = 11,9624 Hz ≥ 1 Hz.

z¯ = max ( 0,60 * h , zmin )

= max ( 0,60 * 21,4596 , 30,0000 )

= 30,0000

140/142

Page 143: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 143/144

Iz¯ = c * (33 / z¯)1/6

= 0,3000 * (33 / 30,0000)1/6

= 0,3048

Lz¯ = l * (z¯ / 33)ep

= 320,0000 * (30,0000 / 33)0,3333

= 309,9934

Q = Sqr(1 / (1 + 0,63 * ((b + h) / Lz¯)0,63))

= Sqr(1 / (1 + 0,63 * ((10,0175 + 21,4596) / 309,9934)0,63))

= 0,9329

G = 0.925 * (1 + 1.7 * gQ * Iz¯ * Q) / (1 + 1.7 * gv * Iz¯)

= 0.925 * (1 + 1.7 * 3,40* 0,3048 * 0,9329) / (1 + 1.7 * 3,40 * 0,3048)

= 0,8854

Gust Factor Calculations: Empty, Corroded

Vessel is considered a rigid structure as n1 = 77,7439 Hz ≥ 1 Hz.

z¯ = max ( 0,60 * h , zmin )

= max ( 0,60 * 21,4596 , 30,0000 )= 30,0000

Iz¯ = c * (33 / z¯)1/6

= 0,3000 * (33 / 30,0000)1/6

= 0,3048

Lz¯ = l * (z¯ / 33)ep

= 320,0000 * (30,0000 / 33)0,3333

= 309,9934

Q = Sqr(1 / (1 + 0,63 * ((b + h) / Lz¯)0,63))

= Sqr(1 / (1 + 0,63 * ((10,0175 + 21,4596) / 309,9934)0,63))

= 0,9329

G = 0.925 * (1 + 1.7 * gQ * Iz¯ * Q) / (1 + 1.7 * gv * Iz¯)

= 0.925 * (1 + 1.7 * 3,40* 0,3048 * 0,9329) / (1 + 1.7 * 3,40 * 0,3048)

= 0,8854

Gust Factor Calculations: Vacuum, Corroded

Vessel is considered a rigid structure as n1 = 11,9624 Hz ≥ 1 Hz.

z¯ = max ( 0,60 * h , zmin )

= max ( 0,60 * 21,4596 , 30,0000 )

= 30,0000Iz¯ = c * (33 / z¯)1/6

= 0,3000 * (33 / 30,0000)1/6

= 0,3048

Lz¯ = l * (z¯ / 33)ep

= 320,0000 * (30,0000 / 33)0,3333

= 309,9934

Q = Sqr(1 / (1 + 0,63 * ((b + h) / Lz¯)0,63))

141/142

Page 144: 11455 TANK 36000L

7/23/2019 11455 TANK 36000L

http://slidepdf.com/reader/full/11455-tank-36000l 144/144

= Sqr(1 / (1 + 0,63 * ((10,0175 + 21,4596) / 309,9934)0,63))

= 0,9329

G = 0.925 * (1 + 1.7 * gQ * Iz¯ * Q) / (1 + 1.7 * gv * Iz¯)

= 0.925 * (1 + 1.7 * 3,40* 0,3048 * 0,9329) / (1 + 1.7 * 3,40 * 0,3048)

= 0,8854

Table Lookup Values

α = 7,0000, zg = 1 200,0000 ft [Table 26.9-1, page256]

c = 0,3000, l = 320,0000, ep = 0,3333[Table 26.9-1, page256]

a¯ = 0,2500, b¯ = 0,4500[Table 26.9-1, page256]

zmin = 30,0000 ft[Table 26.9-1, page256]

gQ = 3,40 [26.9.4 page 254]

gv = 3,40 [26.9.4 page 254]