Top Banner
VGA VGA 충북대학교 전자정보대학 김영석 2 1 9 2010.9 1
54

10VGA.ppt [호환 모드] - chungbuk.ac.kr

Mar 31, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGAVGA

충북대학교 전자정보대학 김영석

2 1 92010.9

1

Page 2: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Outline1. AGC System

I t d ti– Introduction– System Analysis

2. VGA – Control Block– Gain Cell

3. RSSI– Limiting Amplifier– Rectifier

2전자정보대학 김영석

Page 3: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC in GPS ReceiverRF Freq = 1.575GHzIF F 4 092MHIF Freq = 4.092MHzIF Bandwidth = 2MHzBPF selects GPS signal, but rejects the Image

3Torrre07,GloNav

3전자정보대학 김영석

Page 4: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC in GPS Receiver• AGC Input: Below Thermal Noise • AGC Output: ADC Full ScaleAGC Output: ADC Full Scale• AGC 40dB Variable Gain Range• MOSFET M1,2 in Triode ,

=> Variable Gain• Removes DC Offset • AGC Loop

4 4전자정보대학 김영석

Page 5: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC TheoryAGC(Automatic Gain Control): Automatically Controlling Gain, High Enough to Operate ADC

y

Originally Used to Remove Radio FadingAmplifying Vin => Peak Detection => Low pass Filtering Compare with VREF => Loop Filter => VGA Gain ControlCompare with VREF => Loop Filter => VGA Gain Control

V O U T

PeakD etector

VG AV IN

LPF

V C

LoopFilter V R EF

+-

5 5전자정보대학 김영석

Page 6: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC with Several VGA StagesLarge Gain in the 1st Stage Reduce the Noise FigureBut When Signal Large Enough

g

g g gNoise Figure Not CriticalGain of 1st Stage May Be Low

LPF LPFVG A VG A LPF Buffer

R F Front-End

X1

BasebandD em odulator

R SSI

Analog Baseband AG C

6 6전자정보대학 김영석

Page 7: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC Transfer CharacteristicsVi < V1 (Low Input)

AGC InoperativeLinear

V1< Vi <V2AGC OperativeAGC OperativeOutput Constant

Vi > V2 (High Input)AGC InoperativeLinearPrevent System InstabilityPrevent System Instability Problems

7

Modern Communication Circuits, Smith

7전자정보대학 김영석

Page 8: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC: Linear in Decibels

Linear in DecibelsGain in decibels (dB) vary linearly with VCGain in decibels (dB) vary linearly with VCIf Input has Step Increase in 3dB, Output has Step Increase of 3dB and Decay Exponentially after Settling Time

, : 1 PVVeKPAmpGainVariable ioaVc ==

))((:)ln(:

:

2

122

1

VVsFVVoltageControlVKVAmpcLogarithmi

VVDetectorEnvelope o

−==≈

)log(20 ),log(20 )(ln)](1[ln ,

))((: 2

VeVeletVsaFVsaFVSolving

VVsFVVoltageControl

iioo

rio

rc

==+=+

)(1)(7.8

)(1 saFVsaF

saFe

e rio +

++

=∴

8Modern Communication Circuits, Smith

8전자정보대학 김영석

Page 9: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC: Linear in Decibels

F(s) usually LPF Loop Bandwidth < Modulating Frequency(AM)Loop Bandwidth < Modulating Frequency(AM)

Steady State Output Change = SmallL G i LLoop Gain = Large

Fe

ChangeStateSteady o 0)0(1

1: ≈+

=ΔΔ

S t DC O t t i D ib l P ti l t V

FilterofGainDCFwhereaFei

)0( )0(1

=+Δ

System DC Output in Decibels Proportional to Vr

)( =KsFlet

)1( 655.81655.8

1:

/1)(

>>≈+

++

=

+=

aKVaKaKV

aKe

eOutputDC

BssFlet

rri

o

9 9전자정보대학 김영석

Page 10: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC: Linear in Decibels

Closed-Loop Transfer FunctionaK > 0 => LHP Pole => /1

)( Bs

KsFlet+

=aK 0 LHP Pole Inherently StableAGC = High Pass Filter

1

1

1

/1

sBs

aKe

e

Bs

io

+

+

+

Low Freq: Output Change = Small (AGC Operation)High Freq: Output Pass =>

)1(1

aKB ++

High Freq: Output Pass AGC NonOperation (Ex: Pass AM Signal)wL =B(1+aK) < wM(AmplitudewL =B(1+aK) < wM(Amplitude Modulation Freq)

10 10전자정보대학 김영석

Page 11: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC: Linear in Decibels

Filter = Integrator (Infinite DC Gain)C

ri aCVssese

sCsF

655.8)()(

)(

+=

=

rot

o

VteOutputStateSteadyaCsaCs

se

655.8)(lim:

)(

0=

++

+

Ex: Time Response to a Step Change in InputTime Constant of Exponential Decay = AGC Bandwidth = aC

i

i

sesse

DecibelChangeStepUnits

se

Δ=Δ

)()(

), (1)(

aCtoo

o

eteaCs

se

aCsse

−=Δ+

=Δ∴

)( ,1)(

)(

11 11전자정보대학 김영석

Page 12: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC: Pseudo-Linear• No Logarithmic Amp => NonLinear System

V

oo

orc

ioaV

PVdVS l i

VVsFVVoltageControlPVVeKPAmpGainVariable c

/))((:

,: 1

−===

• Loop Transmission ci

ii

oo

dVdPVsFVdV

Solving)(1/

,+

=

– Nonlinear, Function of Input Signal– BW = Pole = 1/Speed =Input Signal Dependent

12 12전자정보대학 김영석

Page 13: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC: Psuedo-Linear

Ex: No Log Amp, P=Vc(linear), F(s)=K/sVdV /

ci

ci

ii

oo

sKV

P

dVdPVsF

PVdVVdV

+=

+=

1)(1//

i

i

i

cc

sVΔV

InputinChangeStepSmall =)( :

tKVi

o

o

i

i

o

o ieΔtVΔV

KVsΔ

sVΔV −=

+=∴ )( ,)(

Time Constant (Speed) of AGC is Dependent on Input Signal Amplitude Vi

13 13전자정보대학 김영석

Page 14: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC System Componentsy pExponential Amp (VGA)

LT

cLm

o RVI

RgVV

V

21 −=−=

cTc

aVL

T

VVs eKRVeI

1

/ =−=

Logarithmic Amp

/C

VVs

s

i

V

eIRV

I To==

)ln(ss

iTo IR

VVV =

14 14전자정보대학 김영석

Page 15: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC Settling TimePreamble Duration > Settling (Acquisition) Time of AGC Loop

g

Nonlinear AGC System => Settling Time is Input Signal Dependent. Long Preamble 2

1)( VkGC ekVG CG= ⋅Long Preamble

Addition of Logarithmic Function => Linear in Decibels

212

2)(

vGM

GC

kkGC

ekVG

=

=

τ

Analysis:VGA Must Have Exponential Function

21)( Vk

GC

CekVG CG= ⋅

Constant AGC Time ConstantWithout Log Amp, AGC Operates OK But Nonlinear AGC Time

212 vGM kkGC

OK. But Nonlinear AGC Time Constant. Inversely Proportional to VREF=VIN

REFGM VkGC

12=τ

15

Khoury98

15전자정보대학 김영석

Page 16: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC Settling TimeAGC ABM(Analog Behavioral Model) SimulationAGC1: VGA with Exponential Gain Control

g

AGC2: VGA with Linear Gain Control=> Input Decrease => Longer Time Constant

ss

VGeG CVC

μτμτ

503TimeSettling 163.0

331, 2535.1

1

≈≈=>=

+==

sμτ 5.03TimeSettling ≈≈=>

16Khoury98

16전자정보대학 김영석

Page 17: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA Theory• VGA(Variable Gain Amplifier: 자동 이득 조절기): Voltage Gain (dB) is Linear to

Control Signal

y

• Voltage Gain is dB => VGA Gain has dB-Linear Char.• VGA = Exp Amp (cf: RSSI = Log Amp)

G i C t l b Di it l Si l 2NR• Gain Control by Digital Signal 2 R

2R

R

• Gain Control by Analog Signal

V IN

V O UT

-

+

VIN +

2II Δ

+2II Δ

−II Δ+

VIN -

TriodeTransistor

17 17전자정보대학 김영석

Page 18: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA Exponential Function ApproximationVGA Has Exponential Function of Control Signal

p pp

Control SignalExponetial Function Approximations

Pseudo Exponential (Harjani95)p ( j )

Taylor Series (Chang01)

Pseudo Exp + Taylor (Dong05)Pseudo Exp + Taylor (Dong05)

18 18전자정보대학 김영석

Page 19: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA Exponential Function ApproximationPseudo Exponential Appro.[Harjani95]-0.7<x<0.7, 30dB Gain Variability=>

p pp

Require 2 Stages for 60dBDifferential Pairs Q1,Q2 + Load Q3,Q4 Voff: Current Mirror in SaturationVoff: Current Mirror in Saturation Region3rd Stage: Large Diff Gain, CMFB

11)( 2

ax

axax

axax

eeexf

−+

≈==−

)/1()/1(

Required Stages 2/1/1

1

111

1

1

3

1

3

1

bbb

bbbD

b

b

m

m

IIIIIIIIIIIIIIII

gg

Gain

axe

−=−=+=+=

=>−+

==ββ

)/1( 113 bbbD IIIIII ==

19 19전자정보대학 김영석

Page 20: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA Exponential Function ApproximationPseudo-exponential[Motamed98]Exp(Control Current IC) => I1/I2

p pp

cnxn Ixwheree

xx

IIxf α==

−+

== )11()( )2(

2

1

I1/I2 => Vds

2

113

2453

33

1

II*IRV

*IRV

)-V*(VKI

-triodeNds

/NPG

THG∝==

=

Vds => Multiplier

2

p

20 20전자정보대학 김영석

Page 21: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA Exponential Function Approximation

Pseudo-exponential[Huang98] 5.0)

11(

)()(

/ xKIIII

II

ggGain controlbiasiiiloadminputm

+=

+===

ββ

ββ

p pp

exponential[Huang98]Diff Pairs M1/M2, Diode Connected

,, )1

()( xIII

ggcontrolbiaslll

loadminputm −−ββ

Diode Connected Loads M3/M4

Cascading Two Cells => Exp(x)=> Exp(x)

21 21전자정보대학 김영석

Page 22: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA Control Block• Control Block : x=Vc

22

Duong06

22전자정보대학 김영석

Page 23: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA Gain CellGain Cell + CMFB

23

Duong06

23전자정보대학 김영석

Page 24: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA2 VGA StagesTechnology: 0.18umVDD=0.18V, I=3.6mABandwidth: 40MHz – 1GHzGain Variation: 48dB 26dBGain Variation: -48dB – 26dB

24

Duong06

24전자정보대학 김영석

Page 25: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

DC Offset CancellationDC Output Feedback to Input Through LPF. HF Signal Does not Pass.Adding this DC Output (-) to DC Input => Remove DC Offset DC Offset is Removed in First Stage before It Becomes Too LargeResidual Offset is removed in Last Stage

25

Ta05

25전자정보대학 김영석

Page 26: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA ExampleVGA Control Block

p

0674

)1()1()(

25

262

22

=

=−+++

≈==−

aSimulationFromVx

II

axkaxk

eeexf

C

D

Dax

axax

067.4, =aSimulationFrom

26 26전자정보대학 김영석

Page 27: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA ExampleGain Block with CMFB

p

27 27전자정보대학 김영석

Page 28: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA ExampleVGA Output: AC, Transient

p

28 28전자정보대학 김영석

Page 29: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

VGA ExampleCMFB

p

29 29전자정보대학 김영석

Page 30: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC ExampleAGC Block Diagram2 VGAs

30 30전자정보대학 김영석

Page 31: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC Example

3 VGAs

31 31전자정보대학 김영석

Page 32: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

AGC Example

Error Amp + Full Wave Rectifier(FWR)

32 32전자정보대학 김영석

Page 33: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

RSSIRSSI(Received Signal Strength Indicator): Represent the Received Signal Strength Used to Adjust Gains of Baseband Processor. Power Off when No SignalMagnitude of Received Signal [dBm], RSSI Transfer Char. V vs dBm. g g [ ]RSSI is Log Amplifier. (cf. VGA is Exponential Amp)Ref: Huang00

33 33전자정보대학 김영석

Page 34: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Log Amplifier

)log( xy =

• Char.

g p

)log( xy =

• Input Sine Wave modulated by• Input Sine Wave modulated by Triangular Signal => Log Output of Triangular Signal

• ASK Amplitude => Log of Amplitude Pulse

34 34전자정보대학 김영석

Page 35: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Log AmplifierLog Amp

Limiting Amp + FWR(Full Wave Rectifier)

g p

Summation + LPFGain and Bandwidth of Unit Limiting Amp

(N # f St At T t l V lt G i )(N = # of Stages, At=Total Voltage Gain)

35 35전자정보대학 김영석

Page 36: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Log Amplifier• Clipping by 1st Stage:

g p

• Clipping by 2nd Stage:

V IN

4V L

5V L

V]

T rue Logarithm ic R esponse

L ith i E

A vV IN

V IN

V 1

V 2

V 3

V n

V O UT

A v A v A v V log

LPF

3V L

2V L

V

V OU

T [VLogarithm ic Error

Logarithm ic O utput

V L

5V

L

AV

4V

L

AV

3V

L

AV

2V

L

AV

V

L

AV

0-100

6V

Lt A

VV ≈

10-5 1

36

V IN [dB m , V]

36전자정보대학 김영석

Page 37: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Limiting AmplifierConventional NMOS Load: Low Voltage Operation is Difficult due to Body Effect =>

g p

Operation is Difficult due to Body Effect => Folded Load

M 3 M 4

V (+) V ( )

V out(-) V out(+)

M 1 M 2 V (+) V ( )

V out(-) V out(+)

M 1 M 2

M 3 M 4

V B2

ID 3 ID 1

V in(+) V in(-)

V B

M 1 M 2 V in(+) V in(-)

V B1

M 1 M 2

37 37전자정보대학 김영석

Page 38: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Limiting Amplifier(1) An NMOS differential pair with NMOS loads [Khorram95]

g p

3

1m

gg

Gain =3mg

(a) (b)

38 38전자정보대학 김영석

Page 39: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Limiting Amplifier(2) Source-coupled pair with Folded diode load [Huang00] =>Low Voltage operation

g p

load [Huang00] =>Low Voltage operation1m

gg

Gain =3mg

39 39전자정보대학 김영석

Page 40: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Limiting Amplifier(3) Current mirror type [Kim01]:

Khorram95: Load has Body Effect

g py

Eliminate Body Effect. Low Voltage Operation. But High Current Consumption

3

1

m

m

gg

Gain =

40 40전자정보대학 김영석

Page 41: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

RectifierFWR(Full Wave Rectifier)Tie 2 Current Mirrors =>Tie 2 Current Mirrors => FWR-out ResistorVin(+) > Vin(-): ID1 > IBVin(+) > Vin(-): ID1 > IB, Current Mirror 1 On => Current to FWR-out Vin(+) < Vin(-): ID2 < IB, Current Mirror 2 On =>Current to FWR-out => Full Wave Rectification

41 41전자정보대학 김영석

Page 42: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Rectifier(1) Unbalanced Source-Coupled Pairs [Kimura93]Linearity Improvements by Unbalanced Source-Coupled Pair(M1-M4)y p y p ( )Vin+ > Vin- : ID3, ID6, ID8 Increase => Output HighVin+ < Vin- : ID2, ID6, ID8 Increase => Output High => FWR

42 42전자정보대학 김영석

Page 43: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Rectifier(2) Source degenerated differential pairs and two current mirrors [Kim01]Source degenerated differential pairs => Improve LinearityVin+ > Vin- : ID1, ID3, ID5 Increase => Output HighVin+ < Vin : ID2 ID4 ID6 Increase => Output High => FWRVin+ < Vin- : ID2, ID4, ID6 Increase => Output High => FWR

43 43전자정보대학 김영석

Page 44: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Rectifier(3) Multiplier based on Gilbert cells [Khorram95]Four-Quadrant MOS MultiplierQ p

44 44전자정보대학 김영석

Page 45: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

Rectifier(4) Open-loop Current-mode rectification [Huang00]Depending on Iin Direction =>Mrn/MrpON/OFF (Half Wave Rec.)Two Parallel Circuits => Full Wave RecTwo Parallel Circuits => Full Wave Rec.Instead of Mrp, NMOS Didoe Mr1 is usedMg1-Mg4: Convert V => Ig g

45 45전자정보대학 김영석

Page 46: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

DC Offset CancellationDC offset cancellations(1) feedback type [Huang00]( ) yp [ g ]

46 46전자정보대학 김영석

Page 47: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

RSSI ExampleLimiting AmplifierGain =gm21/gm23= 10dB

pg g

47 47전자정보대학 김영석

Page 48: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

RSSI ExampleFull Wave Rectifier

p

48 48전자정보대학 김영석

Page 49: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

RSSI ExampleFWR DC Transfer Curve/Transient Char.

p

49 49전자정보대학 김영석

Page 50: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

RSSI ExampleRSSI

p

50 50전자정보대학 김영석

Page 51: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

RSSI ExampleRSSI Output

1.0V

p

0.5V

0V

Time

50us 100us 150us 200usV(vi+) V(fwr1:fwr_out)

51 51전자정보대학 김영석

Page 52: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

ConclusionAGC System

Linear in Decibels AGCLinear in Decibels AGC Pseudo-Linear AGC

VGAControl BlockGain BlockExample

RSSILimiting AmplifierRectifierE lExample

52 52전자정보대학 김영석

Page 53: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

평가 문제1. Linear in Decibels AGC System의 블록 다이어그램을 그려라.2. Linear in Decibels AGC System과 비교하여 Pseudo-Linear AGC

평가 문제

System의 문제점은 무엇인가?3. Linear in Decibels AGC System에서 사용되는 VGA는 출력 전압이 제어전

압에 대해서 어떤 특성(함수)을 가지나?압에 대해서 어떤 특성(함수)을 가지나?4. RSSI의 출력은 입력 전압에 대해서 어떤 함수를 가지나?

53 53전자정보대학 김영석

Page 54: 10VGA.ppt [호환 모드] - chungbuk.ac.kr

참고 문헌[Chang01] C.-C. Chang et al., “CMOS Current-Mode Exponential-Control Variable-Gain Amplifier”, Electronics Circuits, vol. 37, pp. 868-869, 2001.[Duong05] Q-H. Duong et al., “An All CMOS 84dB-Linear Low-Poer Variable Gain Amplifier”, Symposium on VLSI

참고 문헌

Circuits, pp. 114-117, 2005.[Harjani95] R. Harjani, “A Low-Poer CMOS VGA for 50 Mb/s Disk Drive Read Channels”, IEEE Trans. Circuits Syst. II, vol. 42, pp. 370-376, 1995.[Huang98] P.-C. Huang et al., “A 3.3-V CMOS Wideband Exponential Control Variable-Gain-Amplifier”, ISCAS, pp. 285 288 1998285-288, 1998.[Huang00] P-C. Huang, “A 2-V 10.7-MHz CMOS Limiting Amplifier/RS냐”, IEEE J. of Solid-State Circuits, vol. 35, pp. 1474-1480, 2000.[Kim01] H.-S. Kim et al., “CMOS Limiters with RSSI for Bluetooth Receivers”, MWSCAS, pp. 812-815, 2001.[Kimura93] K Kimura “A CMOS Logarithmic IF Amplifier with Unbalanced Source Coupled Pairs” IEEE J of[Kimura93] K. Kimura, A CMOS Logarithmic IF Amplifier with Unbalanced Source-Coupled Pairs , IEEE J. of Solid-State Circuits, vol. 28. pp. 78-83, 1993.[Khorram95] S. Khorram et al., “A CMOS Limiting Amplifier and Signal-Strength Indicator”, Symp. on VLSI Circuits, pp. 95-96, 1995.[Khoury98] J. M. Khoury, “On the Design of Constant Settling Time AGC Circuits”, IEEE Trans. Circuits Syst. II, [ y ] y, g g , y ,vol. 45, pp. 283-294, 1998.[Motamed98] A. Motamed et al., “A Low-Voltage Low-Power Wide-Range CMOS Variable Gain Amplifier”, IEEE Trans. Circuits Syst. II, vol. 45, pp. 800-811, 1998.[Smith98] Modern Communication Circuits, 2nd Edition, J. R. Smith[Ta05] C. M. Ta et al., “A 2.7mW, 0.064mm2 Linear-in-dB VGA with 60dB Tuning Range, 100MHz Bandwidth, and two DC Offset Cancellation Loops”, RFIT2005, pp. 74-77, 2005.[Torre07] V. D. Torre, “A 20 mW 3.24 mm2 Fully Integrated GPS Radio for Location Based Services”, IEEE J. of Solid-State Circuits, vol. 42, pp. 602-612, 2007.

54 54전자정보대학 김영석