Top Banner

of 8

10 FEM2&3D

Jul 07, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/19/2019 10 FEM2&3D

    1/17

    Introduction to Finite Elements

    FEM Discretization of

    2D Elasticity

    Reading assignment:

    Lecture notes

    Summary:

    • FEM Formulation of 2D elasticity (plane stress/strain)

    •Displacement approximation

    •Strain and stress approximation

    •Derivation of element stiffness matrix and nodal load vector 

    •Assembling the global stiffness matrix

    • Application of boundary conditions

    • Physical interpretation of the stiffness matrix

  • 8/19/2019 10 FEM2&3D

    2/17

    Recap: 2D Elasticity

    x

    y

    Su

    ST

    Volume (V)u

    v

    x

     px

     py

    Xa dV

    X b dVVolume

    element dV Su: Portion of the

     boundary on which

    displacements are

     prescribed (zero or

    nonzero)

    ST: Portion of the

     boundary on which

    tractions are prescribed

    (zero or nonzero)

    Examples: concept of displacement field

    x

    y

    3

    2 1

    4

    2

    2

    Example

    For the square block shown above, determine u and v for the

    following displacements

    x

    y

    1

    4

    Case 1: StretchCase 2: Pure sheary

    2

    21/2

  • 8/19/2019 10 FEM2&3D

    3/17

    Solution

    Case 1: Stretch

    2

     yv

     xu

    −=

    =

    Check that the new coordinates (in the deformed configuration)

    2

    2

    '

    '

     yv y y

     xu x x

    =+=

    =+=

    Case 2: Pure shear

    / 4

    0

    u y

    v

    =

    =

    Check that the new coordinates (in the deformed configuration)

    '

    '

    / 4 x x u x y

     y y v y

    = + = +

    = + =

    =y)(x,v

    y)(x,uu

    =

     xy

     y

     x

    γ  

    ε 

    ε 

    ε 

    ∂∂

    ∂∂

    =∂

     x y

     y

     x

    0

    0

    =

     xy

     y

     x

    τ 

    σ 

    σ 

    σ 

    u D D

    u

     y xuu

    ∂==

    ∂=

    =

    ε σ 

    ε 

    LawStrain-Stress

    RelationntDisplaceme-Strain

    ),(fieldntDisplaceme

    Recap: 2D Elasticity

    −−=

    2

    100

    01

    01

    1 2 ν ν 

    ν 

    ν 

     E  D

    For plane stress

    (3 nonzero stress components)

    ( )( )

    −−

    −+=

    2

    2100

    01

    01

    211   ν ν ν 

    ν ν 

    ν ν 

     E  D

    For plane strain

    (3 nonzero strain components)

  • 8/19/2019 10 FEM2&3D

    4/17

    V in X T 

    0=+∂   σ Equilibrium equations

    Boundary conditions

    1. Displacement boundary conditions: Displacements are specified on

     portion Su of the boundary

    u

     specified S onuu =

    2. Traction (force) boundary conditions: Tractions are specified on

     portion ST of the boundary

     Now, how do I express this mathematically?

    Strong formulation

    But in finite element analysis we DO NOT work with the strong

    formulation (why?), instead we use an equivalent Principle of

    Minimum Potential Energy

    Principle of Minimum Potential Energy (2D)

     Definition: For a linear elastic body subjected to body forces

    X=[Xa,X b]T and surface tractions TS=[px,py]

    T, causing

    displacements u=[u,v]T and strains ε and stresses σ, the potentialenergy Π is defined as the strain energy minus the potential energyof the loads (X and TS)

    Π=U-W

  • 8/19/2019 10 FEM2&3D

    5/17

    ∫∫

    +=

    =

    T S   S 

    dS T udV  X u

    dV 

    W2

    1U   ε σ 

    x

    y

    Su

    ST

    Volume (V)u

    v

    x

     px

     py

    Xa dV

    X b dVVolume

    element dV

     Strain energy of the elastic body

    ∫∫   == V T 

    T dV  DdV    ε ε ε σ 

    2

    1

    2

    1U

    ε σ    D=Using the stress-strain law

    In 2D plane stress/plane strain

    ( )∫

    ++=

    =

    =

    V   xy xy y y x x

     xy

     y

     x

     xy

     y

     x

    dV 

    dV 

    dV 

    γ  τ ε σ ε σ 

    γ  

    ε 

    ε 

    τ 

    σ 

    σ 

    ε σ 

    2

    1

    21

    2

    1U

  • 8/19/2019 10 FEM2&3D

    6/17

    Principle of minimum potential energy: Among all admissible

    displacement fields the one that satisfies the equilibrium equations

    also render the potential energy Π a minimum.

    “admissible displacement field”:

    1. first derivative of the displacement components exist

    2. satisfies the boundary conditions on Su

    Finite element formulation for 2D:

    Step 1: Divide the body into finite elements connected to each

    other through special points (“nodes”)

    x

    ySu

    STu

    v

    x

     px

     py

    Element ‘e’

    3

    2

    1

    4

    y

    xv

    u

    1

    2

    3

    4

    u1

    u2

    u3

    u4

    v4

    v3

    v2

    v1

    =

    4

    4

    3

    3

    2

    2

    1

    1

    v

    u

    v

    u

    v

    u

    v

    u

    d

  • 8/19/2019 10 FEM2&3D

    7/17

    Total potential energy

    Potential energy of element ‘e’:

    ∫∫∫   −−=Π T S    S T 

    T  dS T udV  X udV ε σ 21

    ∫∫∫   −−=Π   eT 

    ee S   S 

    e   dS T udV  X udV ε σ 2

    1

    Total potential energy = sum of potential energies of the elements

    ∑ Π=Πe

    e

    This term may or may not be present

    depending on whether the element is

    actually on ST

    Step 2: Describe the behavior of each element (i.e., derive the

    stiffness matrix of each element and the nodal load vector).

    Inside the element ‘e’

    y

    x

    v

    u

    1

    2

    3

    4

    u1

    u2

    u3

    u4

    v4

    v3

    v2

    v1

    =y)(x,v

    y)(x,uu

    Displacement at any point x=(x,y)

    =

    4

    4

    3

    3

    2

    2

    1

    1

    v

    u

    v

    u

    v

    u

    v

    u

    d

     Nodal displacement vector 

    (x1,y1)

    (x2,y2)

    (x4,y4)

    (x3,y3)

    where

    u1=u(x1,y1)

    v1=v(x1,y1)

    etc

  • 8/19/2019 10 FEM2&3D

    8/17

    u D D

    u

    ∂==

    ∂=

    ε σ 

    ε 

    LawStrain-Stress

    RelationntDisplaceme-Strain

    =

     xy

     y

     x

    γ  

    ε 

    ε 

    ε 

    ∂∂

    ∂∂

    =∂

     x y

     y

     x

    0

    0

    =

     xy

     y

     x

    τ 

    σ 

    σ 

    σ 

    If we knew u then we could compute the strains and stresses within the

    element. But I DO NOT KNOW u!!

    Hence we need to approximate u first (using shape functions) andthen obtain the approximations for ε and σ (recall the case of a 1D bar)

    This is accomplished in the following 3 Tasks in the next slide

    Recall

    TASK 1: APPROXIMATE THE DISPLACEMENTS WITHINEACH ELEMENT

    TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN

    EACH ELEMENT

    TASK 3: DERIVE THE STIFFNESS MATRIX OF EACH

    ELEMENT USING THE PRINCIPLE OF MIN. POT ENERGY

    We’ll see these for a generic element in 2D today and then derive

    expressions for specific finite elements in the next few classes

    Displacement approximation in terms of shape functions

    d Nu =

    dBD=σ 

    dBε =Strain approximation

    Stress approximation

  • 8/19/2019 10 FEM2&3D

    9/17

    Displacement approximation in terms of shape functions

    u

    v3

    y

    xv

    1

    2

    3

    4

    u1

    u2

    u3

    u4

    v4v2

    v1

    TASK 1: APPROXIMATE THE DISPLACEMENTS

    WITHIN EACH ELEMENT

    44332211

    44332211

     vy)(x, Nvy)(x, Nvy)(x, Nvy)(x, Ny)(x,v

    uy)(x, Nuy)(x, Nuy)(x, Nuy)(x, Ny)(x,u

    +++≈

    +++≈

    Displacement approximation within element ‘e’

    44332211

    44332211

     vy)(x, Nvy)(x, Nvy)(x, Nvy)(x, Ny)(x,v

    uy)(x, Nuy)(x, Nuy)(x, Nuy)(x, Ny)(x,u

    +++≈+++≈

    =

    =

    4

    4

    3

    3

    2

    2

    1

    1

    4321

    4321

    vu

    v

    u

    v

    u

    v

    u

     N0 N0 N0 N0

    0 N0 N0 N0 N

    y)(x,v

    y)(x,uu

    d Nu =

    We’ll derive specific expressions of the shape functions for

    different finite elements later 

  • 8/19/2019 10 FEM2&3D

    10/17

    TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN

    EACH ELEMENT

    ......vy)(x, N

    uy)(x, Ny)(x,vy)(x,u

    vy)(x, N

     vy)(x, N

    vy)(x, N

     vy)(x, Ny)(x,v

    uy)(x, N

    uy)(x, N

    uy)(x, N

    uy)(x, Ny)(x,u

    11

    11

    xy

    44

    33

    22

    11

    y

    44

    33

    22

    11

    x

    +∂

    ∂+

    ∂≈

    ∂+

    ∂=

    ∂+

    ∂+

    ∂+

    ∂≈

    ∂=

    ∂+

    ∂+

    ∂+

    ∂≈

    ∂=

     x y x y

     y y y y y

     x x x x x

    γ  

    ε 

    ε 

    Approximation of the strain in element ‘e’

    ∂∂

    ∂∂

    =

    =

    4

    4

    3

    3

    2

    2

    1

    1

    B

    44332211

    4321

    4321

    xy

    v

    u

    v

    u

    v

    u

    v

    u

    y)(x, Ny)(x, Ny)(x, Ny)(x, Ny)(x, Ny)(x, Ny)(x, Ny)(x, N

    y)(x, N0

    y)(x, N0

    y)(x, N0

    y)(x, N0

    0y)(x, N

    0y)(x, N

    0y)(x, N

    0y)(x, N

                                         

     x y x y x y x y

     y y y y

     x x x x

     y

     x

    γ  

    ε 

    ε 

    ε 

    dBε =

  • 8/19/2019 10 FEM2&3D

    11/17

    Compact approach to derive the B matrix:

    ( )

     NB

    dBd NRelationntDisplaceme-Strain

    d NufieldntDisplaceme

    ∂=

    =∂=∂=

    =

    uε 

    Stress approximation within the element ‘e’

    ε σ    D=LawStrain-Stress

    ε σ    B D=⇒

  • 8/19/2019 10 FEM2&3D

    12/17

    Potential energy of element ‘e’:

    TASK 3: DERIVE THE STIFFNESS MATRIX OF EACH

    ELEMENT USING THE PRINCIPLE OF MININUM

    POTENTIAL ENERGY

    Lets plug in the approximations

    ∫∫∫   −−=Π   eT 

    ee S   S 

    e   dS T udV  X udV ε σ 2

    1

    d Nu = dBD=σ dBε =

    ( ) ( ) ( ) ( )∫∫∫   −−≈Π   eT ee S    S T 

    e   dS T dV  X dV  d Nd NdBdBD21)d(

     f  k 

    dS T dV  X dV 

    dS T dV  X dV 

    T T 

    e

     f  

    S   S 

    T T 

    T T 

    S   S 

    T T 

    T T 

    T T 

    e

    eT 

    ee

    eT 

    ee

    ddd2

    1)d(

     N NddBDBd2

    1

     Nd NddBDBd2

    1)d(

    −=Π⇒

      

       +−

      

      =

      

      −

      

      −

      

      ≈Π

    ∫∫∫

    ∫∫∫

                 

    Rearranging

    From the Principle of Minimum Potential Energy

    0d

    d

    )d(=−=

    Π∂ f  k e

    Discrete equilibrium equation for element ‘e’  f  k    =d

  • 8/19/2019 10 FEM2&3D

    13/17

    ∫=   eV k  dVBDBT

    Element stiffness matrix for element ‘e’

    Element nodal load vector

       

    eT 

    b

    e

     f  

    S   S 

     f  

    T dS T dV  X  f   ∫∫   +=  N N

    Due to body force Due to surface traction

    STe

    e

    For a 2D element, the size of the k matrix is

    2 x number of nodes of the element

    Question: If there are ‘n’ nodes per element, then what is the size of

    the stiffness matrix of that element?

    If the element is of thickness ‘t’

    ∫=   e Ak  dABDBtT

    Element nodal load vector

           

    eT 

    b

    e

     f  

    l   S 

     f  

     A

    T dl T dA X  f   ∫∫   +=  Nt Nt

    Due to body force Due to surface traction

    For a 2D element, the size of the k matrix is

    2 x number of nodes of the element

    t

    dAdV=tdA

  • 8/19/2019 10 FEM2&3D

    14/17

    The properties of the element stiffness matrix

    1. The element stiffness matrix is singular and is therefore non-

    invertible

    2. The stiffness matrix is symmetric

    3. Sum of any row (or column) of the stiffness matrix is zero!

    (why?)

    ∫=   eV k  dVBDBT

    The B-matrix (strain-displacement) corresponding to this element is

    We will denote the columns of the B-matrix as

    Computation of the terms in the stiffness matrix of 2D elements

    x

    y

    (x,y)

    v

    u

    1   2

    34v

    4v

    3

    v2

    v1

    u1

    u2

    u3

    u4

    1 2 3 4

    1 2 3 4

    1 1 2 2 3 3 4 4

     N (x,y) N (x,y) N (x,y) N (x,y)0 0 0 0

     N (x,y) N (x,y) N (x,y) N (x,y)0 0 0 0

     N (x,y) N (x,y) N (x,y) N (x,y) N (x,y) N (x,y) N (x,y) N (x,y)

     x x x x

     y y y y

     y x y x y x y x

    ∂ ∂ ∂ ∂

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    u1   v1   u2   v2

      u3

      u4

    v3   v4

    1 1

    1

    1

    1

    1

     N (x ,y)0

     N (x,y)0 ; ; and so on...

     N (x ,y) N (x,y)

    u v

     x

     B B y

     y x

    ∂   ∂ = = ∂ ∂   ∂ ∂   ∂

  • 8/19/2019 10 FEM2&3D

    15/17

    ∫=   eV k  dVBDBT

    1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8

    2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8

    3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8

    4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8

    5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8

    6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8

    7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8

    8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8

    k k k k k k k k  

    k k k k k k k k  

    k k k k k k k k  

    k k k k k k k k  k 

    k k k k k k k k  

    k k k k k k k k  

    k k k k k k k k  

    k k k k k k k k  

    =

    u1

    v1

    u2

    v2

    u3

    u4

    v3

    v4

    u1   v1

    u2

      v2   u3 u4v3 v4

    The stiffness matrix corresponding to this element is

    which has the following form

    1 1 1 1 1 2

    1 1 1 1

    T T T

    11 12 13

    T T

    21 21

    B D B dV; B D B dV; B D B dV,...

    B D B dV; B D B dV;.....

    e e e

    e e

    u u u v u   uV V V 

    v u v vV V 

    k k k 

    k k 

    = = =

    = =

    ∫ ∫ ∫

    ∫ ∫

    The individual entries of the stiffness matrix may be computed as follows

    Step 3: Assemble the element stiffness matrices into the global

    stiffness matrix of the entire structure

    For this create a node-element connectivity chart exactly as in 1D

    3

    2

     Node 2

    422

    3

     Node 3

    11

     Node 1ELEMENT

    u

    v3

    y

    xv

    1

    2

    4

    3

    u2

    u4

    u3

    u1

    v1v4

    v2

    Element #1

    Element #2

  • 8/19/2019 10 FEM2&3D

    16/17

    Stiffness matrix of element 1 Stiffness matrix of element 2

    There are 6 degrees of freedom (dof ) per element (2 per node)

    =)2(

    =)1(k 

    u1

    u2

    v1

    v2u3v3

    u1 v1 u2 v2 u3 v3

    u2

    u3

    v2

    v3u4v4

    v2 u3 v3 u4 v4u2

    88

    ×

    =

    Global stiffness matrix

    How do you incorporate boundary conditions?

    Exactly as in 1D

    )2(k 

    )1(k 

    u1

    v1

    u2

    v2u3

    v3u4

    v4

    u1 v1 u2 v2 u3 u4v4v3

  • 8/19/2019 10 FEM2&3D

    17/17

    Finally, solve the system equations taking care of theFinally, solve the system equations taking care of the

    displacement boundary conditionsdisplacement boundary conditions..

    Displacement approximation in terms of shape functions

    Strain approximation in terms of strain-displacement matrix

    Stress approximation

    Summary: For each element

    Element stiffness matrix

    Element nodal load vector

    d Nu =

    dBD=σ 

    dBε =

    ∫=   eV k  dVBDBT

       

    eT 

    b

    e

     f  

    S   S 

     f  

    T dS T dV  X  f   ∫∫   +=  N N