Top Banner
1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine
43

1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

Dec 28, 2015

Download

Documents

Pearl Mitchell
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

1

Turbomachinery Lecture 4b

- Compressor / Engine Maps- Radial Turbine

Page 2: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

2

Total Pressure Mass Flow Parameter

• Defines common flow parameters.

• Valid for flow with one gas.

• Corrected flow to standard day [eliminate effect of outside ambient conditions].

0

0 cos

m RT

P A

0

0

m T

P

0

0

519

14.7

Tm

mP

0 0

0 0STD STD

T p

T p

Page 3: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

3

Total Pressure Mass Flow Parameter

Std.

Std.

Ambient Temperature

Am

bie

nt P

ress

ure

B

A

Stratosphere >65,000 ft

59 FTemperature

Altitude

3.202 psia

14.696 psiaPressure

36,089 ft

Altitude

36,089 ft

How to compare performanceof engines A & B, each at ownambient conditions?

- Use corrected flow variables

Page 4: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

4

Compressor Performance Map

Page 5: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

5

Turbomachine Map

• Functional behavior of map [mc, Nc, PR] is solely dependent on machine

• Behavior is applicable to – Compressors: axial, centrifugal– Turbines: axial, centrifugal– Multi-stage machines

• Choke limit: cannot pass more massflow– Sonic flow occurs at minimum area location

• Surge limit: onset of instability• Stall: too low mass flow, flow separates

Page 6: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

6

Example: Compressor Test Assessment

0 02

0.4911628.73 . 14.11

1 .

56 515.67 47.4 61.51

39.3 /

29

a

a

a

psip in Hg psi

in Hg

T F R p psig psia

m lbm s

p

1 2

Consider the test of a compressor operating at the following conditions

Rig modificationat same indicated speed N = N

0 02

1

.88 . 14.68

29 488.67 49.6 64.28

41.1 /

. 2 ,

a

2

in Hg psi

T F R p psig psia

m lbm s

Consider Pr = p /p Since the tests were run at different conditions

they mus

Discuss value of rig modification as it relates to the compressors performance

.t be corrected to be compared

Page 7: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

7

Example: Compressor Test Assessment

1 0

1 0

2 2

1

1

1:

/ 14.11 /14.7 0.960

/ 515.67 / 520 0.992

/ 61.51/ 0.960 64.073

/ 39.3 0.992 / 0.96 40.773 /

Pr 4.359

/ / 0.992 1.0040

a

a

C

C

Test

c

Test

p p

T T

p p psia

m m lbm s

N N N N

Page 8: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

8

Example: Compressor Test Assessment

2 0

2 0

2 2

2

2

2 :

/ 14.68 /14.7 0.999

/ 488.67 / 520 0.940

/ 64.28 / 0.999 64.344

/ 41.1 0.940 / 0.999 39.888 /

Pr 4.377

/ / 0.940 1.0314

a

a

C

C

Test

c

Test

p p

T T

p p psia

m m lbm s

N N N N

Pr (4.377 4.359 / 0 / 4.359 100% 0.41%

( 40.773 39.888) / 40.773 100% 2.17%

(1.0314 1.0040 ) /1.0040 100% 2.73%c

test equipment may not be this accurate

m

N N N N

Page 9: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

9

Example: Compressor Test Assessment

• Test 1: Baseline

• Test 2: After modifications

Pr

/

/

m

N

Pr

/

/

m

N

, .

.

Pr ,

.

Since N changed we are on a different speed line

We cannot really tell if efficiency increased or decreased

We can only say that and flow increased by the mods

which may improve performance

Page 10: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

10

1

2

Ex: Compressor Test Assessment

Page 11: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

11

Flow Coefficient-Compressible

1 2

1

1 1

1 1 1 1

QND D

m RTm

U A P U A

1

1 / 1m T mU UPA AT

Page 12: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

12

Specific Speed

• Ns is a non-dimensional combination of so that diameter does not appear.

1/2 1/2 3/21/21

3/43/4 3/2 3/22

/

/s

Q N DN

gH N D

1/2

3/4s

N QN

gH

21 &

Page 13: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

13

Specific Speed

• Ns is non-dimensional when consistant units are used for N, Q & H.

• Inconsistent units are often used making Ns a garble of funny units. Typical:

N RPMQ CFSH "Ft".......Bad!

• Efficiency Correlated with Specific speed for many different machines…e.g. Pumps and Compressors

Page 14: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

Specific Speed

• U.S. Customary Units: H [ft], Q [gal/min], N [rpm]• Europe Customary Units: H [m], Q [m3/s], N [rot/sec –

Hz]• Conversion ratios

14

4/ 3.568 10

/ 2

/ 17,180

s s US

s s Eur

s US s Eur

N N

N N

N N

Page 15: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

15

Specific Speed Used to Determine Turbomachine Type

1/2

3/4s

N QN

gH

Page 16: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

16

Specific Speed Used to Determine Turbomachine Type

Low Ns High Ns

Be careful with these strange units

Here H (head) is in ft

Q (volume flow) is in gallons per minute

N (shaft speed) is in RPM

Ns is dimensional (rpm)(gpm)0.5/(ft0.75)

1/2

3/4s

N QN

gH

Page 17: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

17

Variation of Efficiency with Ns for Various Pump Sizes

Low Ns High Ns

Q

Page 18: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

18

Specific Speed - Compressors

Page 19: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

19

Specific Speed - Turbines

Page 20: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

Example

• A pump is designed to deliver 320 gpm of gasolene. The required net head is 23.5 ft. The pump shaft rotates at 1170 rpm. Pick the best type of pump.

• Centrifugal pump is the most apt choice [see chart 18]

1/21/2

3/4 3/4

4

1170 3201960

23.5

[ ] 3.658 10 0.717

s US

s s US

rpm gpmN QN

gH ft

N nondim N

Page 21: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

21

Specific Speed• Consider Range of Impellers

• If We Set:Inducer (Inlet) DiametersInducer (Inlet) Axial Velocity, FlowWork CoefficientBacksweep (Impeller Exit Angle)RPMPressure Rise, Inlet P & T

• Then:– Exit Velocity Diagram, Angles & Speeds are Set

Page 22: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

22

Specific Diameter• Specific Diameter is another combination of the

non-dimensional ’s so that N does not appear:

14

dim 12

14

dim 12

s

s non

DHD

Q

D gHD

Q

Page 23: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

23

Specific Speed and Diameter Indicates Flowpath Shape

Page 24: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

24

Specific Speed Indicates Flowpath Shape(Cordier Diagram)

From Wright and Balje

From Logan

Ns is dimensionless

Page 25: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

25

Specific Speed Indicates Flowpath Shape (Cordier Diagram)

Note that axes are switched from previous figure

From Wright

Ns is in consistent units for this plot

Page 26: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

26

Intro to Turbomachinery Analysis

[ , ]

[ , ]

[ ]

1

2

x U

x U

R

C absolute frame velocity C C C

also V

W relative frame velocity W W W

also V

absolute frame angle of velocity to axial

relative frame angle of velocity to axial

Subscripts normally

inlet to blade or stator

exit to blade

or stator

Page 27: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

Hydraulic Turbines

• Low flow, high head: impulse, Pelton turbine

• Medium flow, medium head: Francis, pump turbine

• High flow, low head: Kaplan, bulb turbine

Page 28: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

Impulse Type

Page 29: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

Francis Type

Page 30: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

Francis Turbine

Page 31: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

Francis Turbine Runner Velocity Triangles for InwardFlow Reaction Turbine

Page 32: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.
Page 33: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

33

0.5 0.75 0.5 0.75

: 250 [ ]

18 [ ] 1500 [ ]

. . .

/ 1500 250 /18 2714

[16,17]s

Ex Select type of pump to pump water of gpm Q to

overcome resistance of ft H if a motor of rpm N

is available Also estimate approx size and efficiency

N NQ H

From charts Franc

0.75

dim

dim

0.250.5

, 74%

1500, 250 0.5575 / 32.2 18 0.992

30

, 3.1

/ 0.472 5.7

s non

s non

s

is type

For size N

From Cordier D

D D Q gH ft in

Page 34: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

34

Blade Design Intro - Centrifugal TurbomachinesRadial Turbines

If no viscosity: flow off blade surface tangent to metal surface

Page 35: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

35

Centrifugal TurbomachinesRadial Turbines

Page 36: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

36

Radial Turbine Example

• T0=1500 R

• P0=200 psia

• N=50,000 rpm =90%

• Cu1=U1, 1=0

• Cu2=0 [no swirl]

• M2=0.25• C is absolute frame velocity vector [Cu, Cr]• Cu is tangential or circumferential component

Page 37: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

37

Radial Turbine Example

• Tip Speed

• Entrance Velocity Diagram [W is relative frame velocity vector]

( )2 872.7

60 2 12 720

N D in NDU fps

1C��������������

1U��������������

1 1xW C����������������������������

Page 38: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

38

Radial Turbine Example

22

1

2 22 2 1 1 2 1 1

0

0 0

2 300 / sec2 720 720

872.67 / sec720

030.4 /

/ 30.4 / 0.24 126.8

id od m

u um

r r D NNU ft

DNU ft

Euler equation

U C U C U U Uh BTU lb

gJ gJ gJ

T h Cp R

Page 39: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

39

Intro to Turbomachinery Analysis• Uses Euler’s Equation Which Works for Axial, Radial, and Mixed

Flow Turbomachinery

• Work done by turning Cu and by change in radius U• Temperature Drops Across Turbine Rotor

2 2 1 10

1 1 2

21

0

0 0

Since & 0

30.4 /

/ 30.4 / 0.24 126.8

u u

u u

p

U C U Ch

gJ

C U C

Uh BTU lbm

gJ

T h c R

Page 40: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

40

Radial Turbine Example• Temperature Ratio:

Tr = 1.0923 = (1500)/(1500-126.8)=TT1/TT2

• Rearranging the Turbine Efficiency Equation:

• Mass Flow:

Tt2 abs = 1373.2 R = 1500 - 126.8

Pt2 abs = 141.61 psia = 200/1.4123

M2 abs = .25 = given

A2 = 2.7 sq. in. =

/ 1

01

02

1 1/1 1.4123r

r

pTP

p

2 22 14

D D

Page 41: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

41

Radial Turbine Example

• FP0 Equation:

• Power Output:

1

2 10 2

0

11.0883 1

cos 2

2.28 / secm

m TM M

P A

m lb

.2.28 30.41 778.16

sec 98.1.

550sec

lbm BTU ft lbflbm BTU HPft lbfHP

Page 42: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

42

Radial Turbine Example

• Exit Velocity Diagram:

0

2

1356.21

12

. 451.3 / sec

TT

M

Total Abs Velocity C M gRT ft

2 2. 541.92 / secTotal Rel Velocity W C U ft

2. . 300 / sec720

mU

D NRel Circ Velocity U W ft

Page 43: 1 Turbomachinery Lecture 4b - Compressor / Engine Maps - Radial Turbine.

43

Radial Turbine Ex. – Dmean Velocity Triangle

Circumferential Direction

1 1 0451.3cos cos 33.61

541.92exit

C

W