Top Banner
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005
27

1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

Jan 04, 2016

Download

Documents

Joy Webb
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

1

Physics of GRB Prompt emission

Asaf Pe’er

University of Amsterdam

September 2005

Page 2: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

2

Outline

Dynamics Basic facts Why relativistic expansion ? Constraints on the expansion Lorentz factor Fireball hydrodynamics: Time evolution The 4 different phases

Radiative Processes Spectrum I: Simplified analysis Complexities Spectrum II: Modified analysis Some open issues

Page 3: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

3

Basic Facts

- ray flux: f ~ 10-7 -10-5 erg cm-2 s-1

ob. MeV

Cosmological distance: z=1 dL = 1028 cm

Liso, = 4 f dL2 1050 – 1052 erg s-1

Duration: few sec.

Variability: t~ ms

Example of a lightcurve

(Thanks to Klaas Wiersema)

Page 4: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

4

Why relativistic expansion?

♦ Variability: t ~ 1ms Source size: R0 = ct ~ 107 cm

♦ Number density of photons at MeV:

♦ Optical depth for pair production e±:

cR

Ln

204

1MeV

16

0

TT0 10

4~

cR

LnR

Creation of e±, fireball !

-152 s erg10L

Page 5: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

5

Why relativistic expansion ?

► Photons accelerate the fireball.

► In comoving frame: co. = ob./

►Photons don’t have enough energy to produce pairs.

Page 6: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

6

Estimate of

Mean free path for pair production ) e±( by photon of comoving energy

,,(') 1

2

11

Th dd

ndddl

:/' 11

100 MeV photons were observed

Idea: Optical depth to ~100 MeV photons ≤ 1

22 BATSEU

d

dn

T1 16

3(,,)

221

T11

()2

'

16

3

2

1(')

cm

Ul

e

BATSE

The )comoving( energy density in the BATSE range )20 keV – 2 MeV(: cR

LU BATSE 224

1

2

'

()

cos1

2 2

cme

Th

Page 7: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

7

Estimate of (2)

Constraint on source size in expanding plasma:

22

(cos1)2

2

RRRR

R

-

1

c

Rt

22

tcmc

L

e

6222

1T

()512

3

6/112

152, MeV100

250

tL

RRco

1

Rt relation:

l

RcocRcm

Ll

e2222

1T1

1

4()2

'

16

3

2

1(')

QxQ/10x

Page 8: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

8

Some complexities

♦ The observed spectrum is NOT quasi-thermal

♦ Small baryon load )enough >10-8 M( High optical depth to scattering

Conclusion: Explosion energy is converted to baryons kinetic energy,

which then dissipates to produce -rays.

Page 9: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

9

Stages in dynamics of fireball evolution

Acceleration Coasting Self-similar:

(Forward )shock

Dissipation )Internal collisions,Shock waves(

Transition)Rev. Shock(

R

R-3/2 )R-1/2(

R0

Page 10: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

10

Stages in dynamics of fireball evolution

Acceleration Coasting Self-similar:

(Forward )shock

Dissipation )Internal collisions,Shock waves(

Transition)Rev. Shock(

R

R-3/2 )R-1/2(

R0

Page 11: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

11

Scaling law for an expanding plasma: I. Expansion phase

Conservation of entropy in adiabatic expansion:

Conservation of energy )obs. Frame(:

Combined together:

.

3

4 ()

30

2

4

02

ConstTRR

Tu

p

RRVT

puVS co

co

.40

2

..

ConstTRR

uVE cocoob

33

11 ;()()

;()

RnRV

RRRT

RR

coco

Page 12: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

12

Stages in dynamics of fireball evolution

Acceleration Coasting Self-similar:

(Forward )shock

Dissipation )Internal collisions,Shock waves(

Transition)Rev. Shock(

R

R-3/2 )R-1/2(

R0

Page 13: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

13

Scaling law for an expanding plasma: II. Coasting phase

Fraction of energy carried by baryons:

Baryons kinetic energy:

Entropy conservation equation- holds

1/21 EcM b

0

2

RR

EcME

s

bk

2

3/2

30

2

;()

()

Rn

RRT

ConstR

ConstTRR

co

024 RRVco

Page 14: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

14

Extended emission: Shells collisions

cRtTGRB /0

22 22

c~v~For

c

The kinetic energy must dissipate. e.g.:

Magnetic reconnection

Internal collisions (among the propagating shells)

External collisions (with the surrounding matter)

Slow heating Expansion as a collection of shells each of thickness R0

cm1062 22

2122

ttcRcollisions

R0=ct

v1, 1 v2,2

Page 15: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

15

Stages in dynamics of fireball evolution

Acceleration Coasting Self-similar:

(Forward )shock

Dissipation )Internal collisions,Shock waves(

Transition)Rev. Shock(

R

R-3/2 )R-1/2(

R0

Page 16: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

16

Radiation

─ Characteristic )synchrotron( observed energy -

─ Characteristic inverse Compton )IC( energy-

cR

LuuB iso

B 222/1

4 ;(8)

MeV1.0

2

3

13

22

2/152,

2/15.0,

25.0,

2.

tL

cm

qB

isoBe

me

obsyn

fm

m

e

pem

1

.2. obsynm

obIC

f~few

Dissipation process: Unknown physics !!!

Most commonly used model:Synchrotron + inverse Compton )IC(

A fraction e of the energy is transferred to electronsB - to magnetic field

Characteristic electrons Lorentz factor:

magnetic field:

Page 17: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

17

Example of expected spectrum- optically thin case

Synchrotron component

Inverse-Compton Component

Page 18: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

18

Some complexities…

• Clustering of the peak energy

• Steep slopes at low energies

Observational:

• Dissipation at mild optical depth ?

• Contribution from other radiative sources .

• Unknown shock microphysics )e,B…(

Theoretical:

From Preece et. al., 2000

Page 19: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

19

“The compactness problem”

3'

cRm

Ll

e

T

55.2

145.0,52250'

tLl e

1

11'

sc

l

Optically thin Synchrotron – IC emission model is incomplete ! Synchrotron spectrum extends above ob.

syn~0.1 MeV Possibility of pair production

Compactness parameter:

High compactness Large optical depth

T2'

. ()' cmnRl eco

MeV1.0 14

25.2

2/152

2/15.0,

25.0,

.

tLBe

obsyn

15.0,

35.0,

15.24

2.MeV1.0,250'

Be

obsyn tl

MeV250

'1.0 5/32/1

5.0,5/8

5.0,10/1

5/2.

452

tL

lBe

obsyn

Put numbers:

Or: ob.syn~0.1 MeV

High Compactness !!

Page 20: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

20

Example of optically thin spectrum

Synchrotron component

Inverse-Compton Component

Page 21: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

21

Physical processes – dissipation phase:

Electrons cool fast by Synchrotron and IC scattering –

♦ Synchrotron )cyclotron(

♦ Synchrotron self absorption

♦ Inverse )+ direct !( Compton

♦ Pair creation: e±

♦ Pair annihilation: e+ + e-

♦ Contribution of protons – production )’, high energy photons(

Page 22: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

22

Estimate of scattering optical depth by pairs

Balance between pair production and annihilation

Pair production rate – from energy considerations:

dyne

e

tcmcR

L

dt

dn222

od.Pr

1

4

T2

Ann.

cndt

dn

At steady state: 2/1T. 'lnRco

Pair annihilation rate:

Conclusion: optical depth of (at least)±≥ few is expected due to pairs!

Page 23: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

23

Spectrum at mild- high optical depth

IC scattering by pairs:

Steep slopes in keV – MeV : 0.5 < peak ~ MeVHigh optical depth Sharp cutoff at mec2 100 MeV

250'l

2500'l

Page 24: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

24

Electron distribution: high compactness

=0.08

Low energy distribution: quasi )but not( Maxwellian

Steep power law above .1/1' pe nnfl

l’ = 250

= elec. temp. )in units of mec2(

Page 25: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

25

Spectrum as a function of compactness

500100log100()

log()

1

()3

4exp()

.2

.

.

.2

..

in

sc

el

sc

scelinsc

nn

nn

Spectrum dependence on the Optical depth Compactness

± < few, l’≤few Optically thin spectrum

± >500, l’>105 Spectrum approach thermal

Characteristic values – in between !!

Estimate number of scattering required for thermalization:

Page 26: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

26

Summary

Dynamical evolution of GRB’s: different phases

Resulting spectrum : Complicated Low compactness High compactness

Acceleration Coasting Self-similar:

Dissipation

Page 27: 1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.

27

Estimate of Full calculation(

• Given: Photons observed up to 1~100 MeV

2

2

2

2~10log

BATSE

BATSE

U

d

dn

AAd

dndU

Ad

dn

d

dndd

dd

dnddl

(cos)16

3

2

1

(,,)(')

T

111

221

T

221

T

2T11

()2

'

16

3

2

1

(cos)1(cos)()2

'

216

3

2

1

2(cos)

16

3

2

1(')

cm

U

dcm

U

Uddl

e

BATSE

e

BATSE

BATSE

TH

T1 16

3(,,)

Photons in the BATSE range )20 keV – 2 MeV(: above MeV

6/112

152,

6222

1T

221

T

MeV100250

1()512

3

()2

'

16

3

2

1

2

tL

tcmc

L

cm

UR

l

R

ee

BATSEco