Top Banner
1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12 FOR 2012 IRC & CTSG WORK to prepare for 2013 ITRS
37

1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

Mar 27, 2015

Download

Documents

Luke Andersen
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

1

ORTC 2012/13 ITRS WorkIRC and CTSG Plenary

Alan Allan 04/23/2012

Based on [WAS] ORTC Final Rev 1a, 12/13/11[plus backup]

CORRECTED/UPDATED04/23/12

FOR 2012 IRC &CTSG WORK to prepare for

2013 ITRS

Page 2: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

2

1) Unchanged for 2010/11: MPU contacted M11) 2-year cycle trend through 2013 [27nm (“14nm” node)]; then 3-year trend to 2026

consider for 2013 ITRS proposal: extend 2yr cycle to 2017/14nm (”7nm” node)2) 60f2 SRAM 6t cell Design Factor Proposal for 2013 ITRS consideration: tbd3) 175f2 Logic Gate 4t Design Factor Proposal for 2013 ITRS consideration: tbd4) Ongoing - evaluate alignment of “nodes” with latest M1 industry status and

also High Performance/Low Power timing needs2) Unchanged for 2010/11 Tables: MPU Functions/Chip and Chip Size Models 1) Design TWG Model for Chip Size and Density Model trends – tied to technology

cycle timing trends and cell design factors2) ORTC line item OverHead (OH) area model, includes non-active area3) Proposal for 2013 ITRS consideration: tbd; based on final consensus of new

proposals3) Updated for 2010/11 Tables: MPU GLpr, GLph – trends “smoothed” by PIDS

modeling; but close to previous targets Proposal for 2013 ITRS consideration: tbd; targeted for 8% CAGR (1/CV/I) intrinsic transistor performance vs. present 2011 ITRS 13% trend

4) Updated for 2010/11 Tables: Vdd Low operating and standby line items from PIDS model track “smoothed” gate length changes Proposal for 2013 ITRS consideration: tbd; targeted for 8% CAGR (1/CV/I) intrinsic transistor performance vs. present 13%

5) Added in 2011 – Table ORTC-6 Battery Energy Storage (Watt-hours) Line Item from iNEMI Roadmap [will update based on 2013 iNEMI roadmap work]

2011 Renewal ITRS ORTC Technology Trend Pre-Summary [and including updates for 2012 Proposals and 2013 ITRS Renewal Preparation]

Page 3: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

3

6) Updated in ORTC 2011 Tables - DRAM contacted M1:1) 1-year pull-in of M1 and bits/chip trends; [unchanged]2) no Flattening of DRAM M1 as with Flash Poly** [unchanged]3) 4f2 push out [to 2013]; 2012 Update: 2014/4f24) Increased array efficiency from 56% to 59% [unchanged; needs review]

7) Updated in ORTC 2011 Tables - Flash Un-contacted Poly:1) 2+-year pull-in of Poly; however slower 4-year cycle (0.5x per 8yrs) trend

to 2020/10nm; then 3-year trend to 2022/8nm; then Flat Poly after 2022/8nm; [unchanged]

2) and 3bits/cell extended to 2018; 4bits/cell delay to 2022 [unchanged]8) Updated in ORTC 2011 Tables - DRAM Bits/Chip and Chip Size Model:

1) 3-year generation “Moore’s Law” bits/chip doubling cycle target (1-2yr delay for smaller chip sizes <30mm2 – 2x/2.5yrs) [unchanged]

9) Updated in ORTC 2011 Tables - Flash Bits/Chip and Chip Size Model:1) 3-year generation “Moore’s Law” bits/chip doubling cycle target (after 1-yr

acceleration; then flat @ 1-2Tbits; keep chip size <160mm2); [unchanged]2) New 3D layers Models vs. relaxed half-pitch tradeoffs are now included

in the 2011 Renewal for maximum bits per chip [2012 Update Survey Proposal: 2016 increased from 8/32nm -128/18nm Layers to 16/48nm – 128/24nm Layers (option C in 2011 ORTC Table 2)]

2011 Renewal ITRS ORTC Technology Trend Pre-Summary (cont.)

Page 4: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

4

10) Updated in ORTC 2011 Tables - ORTC Table 5 - Litho # of Mask Counts MPU, DRAM, 1) Flash Survey inputs Updated2) Also IC Knowledge (ICK) model contribution to extend mask levels range3) Proposal for 2013 ITRS consideration: tbd; based on survey plus

modeling consensus of Litho, PIDS, FEP, Design11) Unchanged for 2011[and 2012 Update] - IRC 450mm Position: 1) Timing Status (as of July, 2011 – to be updated by G450C in July, 2012)

1) Consortia work underway2) IDM and Foundry Pilot lines: 2013-14; 3) Production: 2015-162) SEMATECH/ISMI making good progress on 450mm program activities to meet the ITRS Timing

1) Consortium operations are using 450mm early test wafer process, metrology and patterning capability to support Supplier development

2) 193 immersion multiple exposure litho tools are under development to support consortium and manufacturers’ schedules [for stated “1xnm technology” goal; note: 19nm-10nm M1 = “10nm-5nm” “nodes”= 2015-2022 (ITRS) – see Inchon Litho public presentation]

3) 450mm increasing silicon demand is needed from consortium demonstrations to support development

3) Europe momentum building - EEMI status reviewed with IRC in Potsdam [update due at Netherlands IRC meetings Apr’12]

4) FI TWG extended 300mm wafer generation in parallel line item header with 450mm; 1) Including Technology upgrade assumptions through end of roadmap2) Assuming compatibility of 300mm productivity extensions into the 450mm generation ;

5) Utilizing a new ITRS-based ICK Strategic commercial model , SEMATECH has developed 300mm and 450mm 2009-2024 Range Scenarios for silicon and equipment demand ; ICK has updated to 2011 ITRS www.itrs.net

12) Updated in 2011 - More than Moore white paper online at www.itrs.net 1) New “Moore’s Law and More” Graphic update included in 2011 ITRS Executive Summary2) MtM Workshop completed in Potsdam, GE, in April and reviewed at Summer ITRS meeting3) New MEMS TWG and Chapter added to 2011 ITRS4) Proposals for 2013 ITRS consideration: tbd; ITRS MtM cross-TWG work; plus Weds, 4/25 Europe workshop

includes new iNEMI applications driver presentation (Grace O’Malley/Europe iNEMI Mgr. – highlights on Automotive; Medical; Energy; Lighting; et al)

)

2011 Renewal ITRS ORTC Technology Trend Pre-Summary (cont.)

Page 5: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

5

Technology Pacing Cross-TWG Study Group (CTSG) work preparation for 2012 Update [move to 2013 ITRS Renewal (kickoff Dec’12) including new cooperation with PIDS, M&S, and the NIST, ST (MASTAR), and Purdue (TCAD) modeling teams]:

2011 Renewal ITRS ORTC Technology Trend Summary (cont.)

– IRC Equivalent Scaling Graphic Update• Included in 2011 Update: Parallel bulk and SOI pathways; and Clarification of gate mobility

materials pathway• Proposals for pull-in placement of MuGFET [2012 Update work] [preparation for 2013 ITRS]

and III/V Ge Timing [consider in 2013 ITRS work] (one IDM or Foundry company may lead technology production ramp)

– PIDS and FEP Memory Survey Proposal Updates • Additional acceleration will be monitored [see 2012 ITRS Update Proposals]

– FEP and Design and System Drivers Logic Monitor• Monitor MPU and Leading Edge Logic technology trends [2012 Proposals for 2013 ITRS]

– A&P/Design Power (Thermal) Model [2012 proposals for 2013 ITRS]• Possible proposals for Power Dissipation "hot spot" model rather than chip area basis

– PIDS/Design Max On-chip Frequency vs Intrinsic Modeling• Included in 2011 Update: New Max Chip Frequency trends (reset to 3.6Ghz/2010

plus 4% CAGR trend)• TBD PIDS Intrinsic Transistor and Ring Oscillator model Changes to 8% [from

unchanged 2011 13% trend (supported past 8% Design Frequency trend)]• PIDS Updates include MASTAR static modeling near-term and TCAD dynamic

long-term modeling• Also “equivalent scaling” tradeoffs (FDSOI, MuGFET, III-V/Ge) with dimensional

scaling; timing to include IRC proposal for “Leading Co.” driver timing– YE Defect Density Modeling

• New ORTC Defect Density model work moved to 2012 Update due to loss of modeling resources [2012 proposals for 2013 ITRS]

Page 6: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

6

More than Moore: DiversificationM

ore

Mo

ore

: M

inia

turi

zati

on

Combining SoC and SiP: Higher Value SystemsBa

se

lin

e C

MO

S:

CP

U,

Me

mo

ry,

Lo

gic

BiochipsSensors

Actuators[e.g. MEMS]

HVPower

Analog/RF Passives

130nm

90nm

65nm

45nm

32nm

22nm

16 nm...V

Information Processing

Digital contentSystem-on-chip

(SoC)

Beyond CMOS

Interacting with people and environment

Non-digital contentSystem-in-package

(SiP)

Source: 2011 ITRS - Exec. Summary Fig. 4

Figure 4 The Concept of Moore’s Law and More

Page 7: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

7

More Poly Dense Lines added in 2010 ITRS Update[Note: The ITRS does not utilize any single-product “node” designation reference; Flash Poly and DRAM M1 half-pitch are still Lithography drivers; however, other product technology trends may be drivers on individual TWG tables]

Source: 2011 ITRS - Exec. Summary Fig. 1

Metal Pitch

Typical DRAM/MPU/ASIC Metal Bit Line

DRAM ½ Pitch = DRAM Metal Pitch/2

MPU/ASIC M1 ½ Pitch = MPU/ASIC M1 Pitch/2

Typical flash Un-contacted Poly

FLASH Poly Silicon ½ Pitch = Flash Poly Pitch/2

32-64 Lines

Poly Pitch

Exec. Summary - Figure 1 Definition of Half-Pitch

Page 8: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

Work in Progress - Do Not Publish8

Months

0-24

Alpha

Tool

12 24-12

Development Production

Beta

Tool

Production

Tool

First

Conf.

Papers

Proposal: First 1-2 Companies

Reaching

Combined Production

(work in Progress) 2

20

200

2K

20K

200K

AdditionalLead-time:ERD/ERM

Research andPIDS Transfer

Volum

e (Wafers/M

onth)

Source: 2009 ITRS - Exec. Summary Fig. 2a

Figure 2a- (within an established wafer generation*)- *see also Figure 2a for ERD/ERM Research and PIDS Transfer timing; and also- Figure 6 (450mm topic) for Typical Wafer Generation Pilot and Production “Ramp Curves”

Production Ramp-up Model and Technology/Cycle Timing

Proposal *For 2012 Update Note:Fewer leadingIDM Companies Requires Adaption of DefinitionTo allow oneIDM CompanyOr a Foundry RepresentingMany Fabless CompaniesTo Lead aTechnology Production Ramp Timing

*Proposal Note:Leadership company First Manu-facturing could set more aggressive first production target, since “fast followers” may trail 1-3 years

Page 9: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

9

Months

Alpha

Tool

Development Production

Beta

Tool

Product

Tool

Vol

ume

(Waf

ers/

Mon

th)

2

20

200

2K

20K

200KResearch

-72 0 24-48 -24-96

Transfer to PIDS/FEP(96-72moLeadtime)

First Tech. Conf.

Device PapersUp to ~12yrs

Prior to Product

20192017201520132011 2021Hi-Channel

Example:

1st 2 Co’s

Reach

Product

First Tech. Conf.

Circuits PapersUp to ~ 5yrs

Prior to Product

Hi-Channel Proposal - for 2013 ITRS work

Source: 2011 ITRS - Exec. Summary Fig. 2b; plus:

Figure 2b A Typical Technology Production “Ramp” Curve for ERD/ERM Research and PIDS Transfer timing - including an example for III/V Hi-Mobility Channel Technology Timing Scenario

- Acceleration to 2015 Scenario for the 2012 Update work

[http://www.eetimes.com/electronics-news/4087596/Intel-s-Gargini-pushes-III-V-on-silicon-as-2015-transistor-option ]

ITRS Near Term(2011 – 2019)

ITRS Long Term(2019 – 2025)

Page 10: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

Work in Progress - Do Not Publish

2009 ITWG Table Timing: 2007 2010 2013 2016 2019

68nm 45nm 32nm 22nm 16nm2011 IS ITRS DRAM M1 :

2011 ITRS MPU/hpASIC M1 : 76nm 65nm 54nm 45nm 38nm 32nm 27nm 19nm 13nm

MPU/hpASIC “Node”: “45nm” “32nm/28” “22/20nm” “16/14nm” “11/10nm” “8/7nm”

2011 ITRS hi-perf GLph : 32nm 29nm 29nm 27nm 24nm 22nm 20nm 15nm 12nm2011 ITRS hi-perf GLpr : 54nm 47nm 47nm 41nm 35nm 31nm 28nm 20nm 14nm

45nm 32nm 22nm 15nm 11nm2011 IS ITRS Flash Poly : 54nm

Source: Proposal 2011 ITRS - Executive Summary Fig tbd

450mm Production Ramp-up Model 2012 ITRS Proposal[ Modified from 2009  ITRS Figure 2c  A Typical Wafer Generation Pilot Line and Production “Ramp” Curve ]

Versus “Node” vs. actual contacted M1 and un-contacted Poly Half-Pitch alignment

[ 7/27 Note for 450mm Special Topic:Need Consortium Development and Demonstration Update and Silicon Consumption model in light of latest Consortium plans… ]

[Backup]

*Note:  At ITRS/USA, the IRC recommended updating the ITRS 450mm Timing Graphic for use in the 2011 ITRS Roadmap guidance; based onguidance from SEMATECH suggestions for modification and commentary in an Executive Summary Topic.

Vo

lum

e

Years

Alpha

Tool

Beta

ToolSilicon is supporting development using partially-patterned and processed test wafers --IDM & Foundry -

Pilot Lines

Manufacturing

Demonstrations focus on 1xnm M1 half-pitch capable tools

Development Production

Increasing450mm Silicon Demand

From Demonstrations

Beta

Tool

Production

Tool

<--------------------- Consortium --------------------------

2012 ITRS 450mm Production Ramp-up Model[Modified from 2009 Figure 2c  A Typical Wafer Generation Pilot Line and Production “Ramp” Curve ]

Demonstration

2010

2011

2012

2015

2016

2013

2014

202111.3nm

“1x nm”

10

2012MPU =DRAM

2013/14 MPU <DRAM

2015 onM1: 2-yrCycle?

2017 onM1: 2-yrCycle?

Proposal for consideration in 2012 ITRS Update work for Proposals for

2013 ITRS Kickoff Hsinchu Dec, 2012: continue to extend

M1:on 2-yrCycle through 2017/13nm (“8/7nm”

“node”)?

Page 11: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

11

[See Litho Inchon December Public ITRS acrobatFoil #4,5]

Page 12: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

Work in Progress - Do Not Publish12

Year of Production 2019 2020 2021 2022 2023 2024 2025 2026Flash ½ Pitch (nm) (un-contacted Poly)(f)[2] 10.9 10.0 8.9 8.0 8.0 8.0 8.0 8.0DRAM ½ Pitch (nm) (contacted)[1,2] 14.2 12.6 11.3 10.0 8.9 8.0 7.1 6.3MPU/ASIC Metal 1 (M1) ½ Pitch (nm)[1,2] 13.4 11.9 10.6 9.5 8.4 7.5 6.7 6.0

MPU High-Performance Printed Gate Length (GLpr) (nm) ††[1] 14.0 12.5 11.1 9.9 8.8 7.9 6.79 5.87

MPU High-Performance Physical Gate Length (GLph) (nm)[1] 11.7 10.6 9.7 8.9 8.1 7.4 6.6 5.9

ASIC/Low Operating Power Printed Gate Length (nm) ††[1] 14.0 12.5 11.1 9.9 8.8 7.9 6.8 5.8ASIC/Low Operating Power Physical Gate Length (nm)[1] 11.9 10.8 9.8 8.9 8.1 7.3 6.5 5.8ASIC/Low Standby Power Physical Gate Length (nm)[1] 12.7 11.4 10.2 9.2 8.2 7.4 6.6 5.9MPU High-Performance Etch Ratio GLpr/GLph [1] 1.2013 1.1725 1.1444 1.1169 1.0901 1.0640 1.0315 1.0000MPU Low Operating Power Etch Ratio GLpr/GLph [1] 1.1766 1.1558 1.1352 1.1151 1.0953 1.0759 1.0372 1.0000

Long-term Years

Table ORTC-1 ITRS Technology Trend Targets

Year of Production 2011 2012 2013 2014 2015 2016 2017 2018Flash ½ Pitch (nm) (un-contacted Poly)(f)[2] 22 20 18 17 15 14.2 13.0 11.9DRAM ½ Pitch (nm) (contacted)[1,2] 36 32 28 25 23 20.0 17.9 15.9MPU/ASIC Metal 1 (M1) ½ Pitch (nm)[1,2] 38 32 27 24 21 18.9 16.9 15.0

MPU High-Performance Printed Gate Length (GLpr) (nm) ††[1] 35 31 28 25 22 19.8 17.7 15.7

MPU High-Performance Physical Gate Length (GLph) (nm)[1] 24 22 20 18 17 15.3 14.0 12.8

ASIC/Low Operating Power Printed Gate Length (nm) ††[1] 41 35 31 25 22 19.8 17.7 15.7ASIC/Low Operating Power Physical Gate Length (nm)[1] 26 24 21 19.4 17.6 16.0 14.5 13.1ASIC/Low Standby Power Physical Gate Length (nm)[1] 30 27 24 22 20 17.5 15.7 14.1MPU High-Performance Etch Ratio GLpr/GLph [1] 1.4589 1.4239 1.3898 1.3564 1.3239 1.2921 1.2611 1.2309MPU Low Operating Power Etch Ratio GLpr/GLph [1] 1.5599 1.4972 1.4706 1.2869 1.2640 1.2416 1.2196 1.1979

Near-term Years

2011 ORTC Table 1 [Unchanged for 2012 Update; tbd 2013 ITRS Renewal]

450mm Production Target : 2015-2016

‘11 ITRS EUV Intro:DRAM&Flash: 2013MPU: 2015

MPU/hpASIC “Node”(nm): “45” “38” “32” “27” “22.5” “19” “16” “13.4” “11.25” “9.5” “8.0” “6.7” “5.6” “4.73” “4.0” “3.34” “2.81” “2.37” “2.0”

2011 ITWG Table Timing: 2007 2010 2013 2016 2019 2021 2023 2025

2-year “Node” Cycle (@ 0.7071/2yrs = 0.8409/yr

2011 ITRS M1 2yr cyc(nm): 76 65 54 45 38 32 27 22.5 19 16 13.4 11.25 9.5 8.0 6.7 5.6 4.73 4.0 3.34

2011 ITRS M1 3yr cyc (nm): 76 65 54 45 38 32 26.8 23.8 21.2 18.9 16 .9 15.0 13.4 11.9 10.6 9.5 8.43 7.5 6.69 ??

Page 13: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

13

2011 ITRS Figure 11 – ORTC Table 1 Graphical Trends – Memory Half Pitch[With 2011 Flash 3D Scenario Overlay]

Source: 2011 ITRS - Executive Summary Fig 3

UNCHANGEDHowever,

FOR 2012 CTSGWORK: DRAM

4f2/’14; 3D Flash2016/’16 Layers

@ 48nm – op. C ?

1

10

100

1000

1995 2000 2005 2010 2015 2020 2025 2030

Nan

om

eter

s (1

e-9)

Year of Production

2011 ITRS - Technology Trends

2011 ITRS Flash ½ Pitch (nm) (un-contacted Poly) -[2-yr cycle to 2009; then 8-yr cycle to 2020; then 3-yr cycle to 2022/8nm; then flat]

2011 ITRS DRAM ½ Pitch (nm) (Contacted M1) -[2.5-yr cycle to 2008; 45nm pull-in to 2009; then 3-yr cycle to 2026]

2011 ITRS: 2011-2026

3D - 8 layers

3D - 128 layers

PIDS 3DFlash :

Looser Polyhalf-pitch

2016-18/32;Then

2019-21/28nmThen

2022-25/24nmThen

2025-26/18nm ~5.5-yr Cycle

Long-Term ’19-’26

16nm

3D -16layers/48nm?

3D -256layers/24nm?4-yr cycle?

5.5-yr cycle

Page 14: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

14

1

10

100

1000

1995 2000 2005 2010 2015 2020 2025 2030

Nan

om

eter

s (1

e-9)

Year of Production

2011 ITRS - Technology Trends

2009/10/11 ITRS MPU/ASIC Metal 1 (M1) ½ Pitch (nm) [historical trailing at 2-yr cycle; extended to 2013; then 3-yr cycle]

2009/10/11 ITRS MPU Printed Gate Length (GLpr) (nm) [3-yr cycle from 2011/35.3nm]

2009/10/11 ITRS MPU Physical Gate Length (nm) [begin 3.8-yr cycle from 2009/29.0nm]

2011 ITRS: 2011-2026

Long-Term ’19-’26

16nm

2011 ITRS Figure 4 – ORTC Table 1 Graphical Trends – Logic (MPU and high-performance ASIC) Half Pitch and Gate Length

Source: 2011 ITRS - Executive Summary Fig 4

UNCHANGEDFOR 2012 CTSG

WORK; butProposals to

be Considered

Page 15: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

15

1

10

100

1000

1995 2000 2005 2010 2015 2020 2025 2030

Nan

om

eter

s (1

e-9)

Year of Production

2011 ITRS - Technology Trends

2009/10/11 ITRS MPU/ASIC Metal 1 (M1) ½ Pitch (nm) [historical trailing at 2-yr cycle; extended to 2013; then 3-yr cycle]

2009/10/11 ITRS MPU Printed Gate Length (GLpr) (nm) [3-yr cycle from 2011/35.3nm]

2009/10/11 ITRS MPU Physical Gate Length (nm) [begin 3.8-yr cycle from 2009/29.0nm]

2011 ITRS: 2011-2026

Long-Term ’19-’26

16nm

2011 ITRS Figure 4 – ORTC Table 1 Graphical Trends – Logic (MPU and high-performance ASIC) Half Pitch and Gate Length

Source: 2011 ITRS - Executive Summary Fig 4

Flash Trends

DRAM Trends

UNCHANGEDFOR 2012 CTSG

WORK; butProposals to

be Considered

[ MPUvs. Memory ]

Page 16: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

16

1

10

100

1000

1995 2000 2005 2010 2015 2020 2025 2030

Nan

om

eter

s (1

e-9)

Year of Production

2011 ITRS - Technology Trends

2009/10/11 ITRS MPU/ASIC Metal 1 (M1) ½ Pitch (nm) [historical trailing at 2-yr cycle; extended to 2013; then 3-yr cycle]

2009/10/11 ITRS MPU Printed Gate Length (GLpr) (nm) [3-yr cycle from 2011/35.3nm]

2009/10/11 ITRS MPU Physical Gate Length (nm) [begin 3.8-yr cycle from 2009/29.0nm]

2011 ITRS: 2011-2026

Long-Term ’19-’26

16nm

2011 ITRS Figure 4 – ORTC Table 1 Graphical Trends – Logic (MPU and high-performance ASIC) Half Pitch and Gate Length

Source: 2011 ITRS - Executive Summary Fig 4

Flash Trends

DRAM Trends

?

2012 ITRS Work:“22nm” (ITRS 2011 Planar M1=38nm ; GL=24nm)

MugFET M1=??nm; 3D Physical Gate Length = ??nm?

2-yearM1 pace

extension to

2017 ; then 3yrs

again

2012 ITRS Work Consider: “7nm” pull-in to 2017 (ITRS 2011 Planar M1=14nm);2019 ITRS GLph = 11.7nm unchanged; except for

MugFET M1=??nm; 3D and FDSOI Physical Gate Length = ??nm?Logic and Flash (3yr cycle) both drive Lithography after 2017; Logic M1 after 2022?

MuG-FET

FDSOI

Page 17: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

2011 ITRS Figure 5 “Equivalent Scaling” Roadmap for Logic (MPU and high performance ASIC)Figure 5 ORTC Table 1 Graphical Trends (including overlay of 2009 industry logic “nodes” and ITRS trends for comparison); also including proposals for MugFET and III/V Ge acceleration for 2012 ITRS Update work

Metal

High kGate-stack material

2009 2012 2015 2018 2021

Bulk

FDSOI

Multi-gate(on bulk or SOI)Structure

(electrostatic control)

Channelmaterial

Metal

High k

2nd generation

Si + Stress

S D

High-µ InGaAs; Ge

S D

PDSOI

Metal

High k

nth generation

PossibleDelay

Possible Pull -in

17

68nm 45nm 32nm 22nm 16nm2011 ITRS DRAM M1 :

2011 ITRS MPU/hpASIC M1 : 76nm 65nm 54nm 45nm 38nm 32nm 27nm 19nm 13nm

MPU/hpASIC “Node”: “45nm” “32nm” “22/20nm” “16/14nm” “11/10nm” “8/7nm”

2011 ITRS hi-perf GLph : 32nm 29nm 29nm 27nm 24nm 22nm 20nm 15nm 12nm

2011 ITRS hi-perf GLpr : 54nm 47nm 47nm 41nm 35nm 31nm 28nm 20nm 14nm

45nm 32nm 11nm2011 ITRS Flash Poly : 54nm2011 ITWG Table Timing: 2007 2010 2013 2016 2019 2021

Proposals - for 2013 ITRS preparation

22-248nm

20248nm

22nm 15nm

11nm

Source: 2011 ITRS - Executive Summary Fig 5

*Proposal Note:Leadership company First Manu-facturingcould set more Aggressive first production target, since “fast followers” may trail 1-3 years

With 2012 ITRS IRC Guidance Update Proposal Note*:

[ PIDS/FEP/DesignHP/LOP/LSTP

Sub-Team Transistor

Modeling Work Underway ]

450mm1st Production

Page 18: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

Source: 2011 ITRS - Executive Summary Fig 5

2011 ITRS Figure 5 “Equivalent Scaling” Roadmap for Logic (MPU and high performance ASIC)Figure 5 ORTC Table 1 Graphical Trends (including overlay of 2009 industry logic “nodes” and ITRS trends for comparison); also including proposals for MugFET and III/V Ge acceleration for 2012 ITRS Update work

Metal

High kGate-stack material

2009 2012 2015 2018 2021

Bulk

FDSOI

Multi-gate(on bulk or SOI)Structure

(electrostatic control)

Channelmaterial

Metal

High k

2nd generation

Si + Stress

S D

High-µ InGaAs; Ge

S D

PDSOI

Metal

High k

nth generation

PossibleDelay

Possible Pull -in

18

68nm 45nm 32nm 22nm 16nm2011 ITRS DRAM M1 :

2011 ITRS MPU/hpASIC M1 : 76nm 65nm 54nm 45nm 38nm 32nm 27nm 19nm 13nm

MPU/hpASIC “Node”: “45nm” “32nm” “22/20nm” “16nm/14nm” “11/10nm” “8/7nm”

2011 ITRS hi-perf GLph : 32nm 29nm 29nm 27nm 24nm 22nm 20nm 15nm 12nm

2011 ITRS hi-perf GLpr : 54nm 47nm 47nm 41nm 35nm 31nm 28nm 20nm 14nm

45nm 32nm 11nm2011 ITRS Flash Poly : 54nm2011 ITWG Table Timing: 2007 2010 2013 2016 2019 2021

Proposals - for 2013 ITRS preparation

22-248nm

20248nm

22nm 15nm

11nm

Proposal - for 2013 ITRS prep.

2012MPU =DRAM

2015 onM1 2-yrCycle?

2013-14 MPU <DRAM

2017 onM1 2-yrCycle?

FDSOI MugFET pull-in to “14nm”/2014?

Multiple companies with Bulk MugFET pull-in to “14nm”/2014?

*Proposal Note:Leadership company First Manu-facturingcould set more Aggressive first production target, since “fast followers” may trail 1-3 years

Page 19: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

19

1

10

100

1000

1995 2000 2005 2010 2015 2020 2025 2030

Nan

om

eter

s (1

e-9)

Year of Production

2011 ITRS - Technology Trends

2009/10/11 ITRS MPU/ASIC Metal 1 (M1) ½ Pitch (nm) [historical trailing at 2-yr cycle; extended to 2013; then 3-yr cycle]

2009/10/11 ITRS MPU Printed Gate Length (GLpr) (nm) [3-yr cycle from 2011/35.3nm]

2009/10/11 ITRS MPU Physical Gate Length (nm) [begin 3.8-yr cycle from 2009/29.0nm]

2011 ITRS: 2011-2026

Long-Term ’19-’26

16nm

2011 ITRS Figure 4 – ORTC Table 1 Graphical Trends – Logic (MPU and high-performance ASIC) Half Pitch and Gate Length

Source: 2011 ITRS - Executive Summary Fig 4

2009/2010 ITRS Unchanged (except extend to new end period): 2011 ITRS: 2011-2026; also includes 2012 Update “Equivalent Scaling” Proposals

Equiv. ScalingGate Length

Trade-off

Strain

HK/MG

MuG-FET

Hi-u,(tbd)

ITRS 1999P. Gargini

“EquivalentScaling”Concept

FDSOI

PDSOI

2011ITRS:

Extend M1;

& GLpr;to 2026

on3-yearCycle

GLph

versus M

1 in 2026

- analyzing

implic

ations

1995->2015“Nodes”

“360-11(10)”

ITRS M1 hp303-21nm

ITRS GLph‘95-’99-’03-’15360nm-90nm90nm-45nm45nm-17nm

Gate Length +

“EquivalentScaling”

=Power &

Performance

Half-Pitch +

“Design Factor”Scaling

[6t SRAM = 60f2;

4t Logic =175f2]

Enables“Moore’s

Law”

Functions/chip

Also III/V; Ge from 2019 -> 2015?

Proposal for 2013 ITRSPreparation Work

MugFET from 2015 -> 2011;Proposal for 2012 ITRS

Work for 2013 ITRS prep.

Updated “Equivalent Scaling” Proposal - for 2012 work

450mm 2015-16

MPU:EUVIntro.2015

ERD/ERM : What is Next?Optical interconnect?

Carbon NanoTubes/Graphene?; MRAM?; Quantum Dots Memory?

Half-Pitch +

“Design Factors”

Xf2=

“Moore’s Law”

?

2012 ITRS Work:“22nm” (ITRS 2011 Planar M1=38nm ; GL=24nm)

MugFET M1=??nm; 3D Physical Gate Length = ??nm?

2-year “Node” Cycle (@ 0.7071/2yrs = 0.8409/yr

2-yearM1 pace

extension to

2017 ; then 3yrs

again

Page 20: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

20

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1995 2000 2005 2010 2015 2020 2025 2030

Sq

uar

e M

illi

met

ers

Year of Production

2011 ITRS - Function Size

2009 DRAM Cell area per bit (1 bits/cell) (um2)

2009 Flash SLC area per bit (1 bits/cell) [SLC cell area/1] (um2)

2009 Flash MLC Ave area per bit (2 bits/cell) [SLC cell area/2] (um2)

2009 Flash MLC Ave area per bit (3 bits/cell) [SLC cell area/3] (um2)

2009 Flash MLC Ave area per bit (4 bits/cell) [SLC cell area/4] (um2)

2011 SRAM Cell (6-transistor) Area (um2)

2011 Logic Gate (4-transistor) Area (um2)

Long-Term ’19-’26

2011 ITRS: 2011-2026

PIDS NAND Flash Multi-Layer 3D Model

Plus “Slower” Dimensional Reduction Rate Trend Tradeoff

2011 ORTC Figure 6Product* Function Size Trends; plus

[transistor + capacitor]

Source: 2011 ITRS - Executive Summary Fig 6

Updated04/23/12

FOR 2012 CTSGWORKMPU/ASIC

AlignmentDesign TWG

Actual SRAM [60f2]& Logic Gate [175f2]

DRAM4f2

AddedWAS:Begin in

2011IS: DelayedTo 2013 ‘14

Flash [4f2]1) 2-yr CycleExtended to 2010;2) 3 bits/cell added2009-2011[and extended to 2026 in the 2011 ITRS];3) 4 bits/cell movedfrom 2012 [to 2021 in the 2011 ITRS]

3D - 8 layers

3D - 128 layers

3D -16layers/48nm?

3D -256layers/24nm?

4-yr cycle?

5.5-yr cycle

Flash Impact of:

Vs:

Page 21: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

1995 2000 2005 2010 2015 2020 2025 2030

Gig

abit

s (1

e9)

and

Sq

uar

e M

illi

met

ers

Year of Production

2009 ITRS - Functions/chip and Chip Size

2011 ITRS DRAM Functions per chip (Gbits)

2011 ITRS Flash (Gbits) SLC [2-year cycle]

2011 ITRS Functions per chip (Gbits) MLC (2 bits/cell)

2011 ITRS Functions per chip (Gbits) MLC (3 bits/cell)

2011 Functions per chip (Gbits) MLC (4 bits/cell)

2011 Flash Chip size at production (mm2)

2011 DRAM Chip size at production (mm2)

Flash"Hwang's

Law"~ 2x/1yr

Flash~ 2x/3yrs

Flash MLCExceeds1Tera-bit

Average "Moore's Law" = 2x/2yrs

<160mm2(18 x 9)

<30mm2(8 x 4)

DRAM~ 2x/2.5yrs

Flash~ 2x/1.25yrs

Long-Term ’19-’26

2011 ITRS: 2011-2026

2011

21

Figure 7 2011 ITRS Product Technology Trends: Memory Product Functions/Chip and Industry Average “Moore’s Law” and Chip Size Trends

Source: 2011 ITRS - Executive Summary Fig 7

4Tbits Possible with PIDS NAND Flash Multi-Layer

3D Model Scenario Option3D - 128 layers/ ‘25

2025/32nm/3bits/cell4Tbits =128x33Gbits

2025/18nm/3bits/cell13Tbits =128x99Gbits

DRAM4f2

AddedWAS:Begin in

2013IS: DelayedTo 2013 ‘14

Page 22: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

22

10

100

1000

10000

100000

1000000

10000000

1995 2000 2005 2010 2015 2020 2025 2030

Mil

lio

n T

ran

sist

ors

(1e

6) a

nd

Sq

uar

e M

illi

met

ers

Year of Production

2011 ITRS - Functions/chip and Chip Size

2011 ITRS Cost-Performance MPU Functions per chip at production (Mtransistorst)

2011 ITRS High-Performance MPU Functions per chip at production (Mtransistors)

2011 Cost-Performance MPU Chip size at production (mm2)

2011 High-Performance MPU Chip size at production (mm2)

<260mm2

<140mm2

MPU= 2x/3yrsMPU

= 2x/2yrs

Average "Moore's Law"

= 2x/2yrs

Long-Term ’19-’26

2011 ITRS: 2011-2026

2011ITRS:

Unchanged, but Extend ed

Transistors/chip& Chip Size

Modelsto 2026

On 3-yearCycle

MPU/hpASICM1 Technology Cycle and MPUTransistors/chip

areOn 3-year

Cycle after 2013

vs.Average

2-yearHistorical

Moore’s Law

“22nm”/(38nm M1)MPU Model Generations

Figure 8 2011 ITRS Product Technology Trends: MPU Product Functions/Chip and Industry Average “Moore’s Law” and Chip Size Trends [unchanged from 2009, except extended to 2026]

Source: 2011 ITRS - Executive Summary Fig 8

2012 Unchanged- Must evaluate

Impact of04/23/12

ProposalsFOR 2012 IRC &

CTSG ConsensusWork

for 2013 ITRSConsideration

Page 23: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

Backup for IRC and ITWG Plenary1. (23-26) Litho Mask Count (3 Foils)

2. (27-29) 4% Design/PIDS Frequency vs. PIDS 8% 1/(CV/I) Proposal

3. (30) MOS Transistor Scaling and Scaling Calculator

4. (31) SICAS Capacity analysis update

5. (32,33) DRAM Functions/Chip 2009 ITRS vs. 2011 ITRS (2 foils)

6. (34) Planar Transistor Diagram

7. (35) Interconnect with Flash M1 Diagram

8. (36) 2008 Consortium FinFET IEDM Paper Analysis

9. (37) Wikipedia Tri-Gate references

23

Page 24: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

ORTC Table 5 Update: Litho TWG model for Mask Count – MPU survey-based, mask counts peak 2014/(54 masks peak) EUV

expected 2015 – DRAM referenced to MPU, mask counts peak 2012/(41 masks peak)

EUV expected 2013 – Flash survey-based, mask counts peak 2012/(43 masks peak) EUV

expected 2013 – Sidewall image transfer technology IEDM papers should be evaluated– Table 5 also includes NEW IC Knowledge (ICK)

www.icknowledge.com modeled comparison targeting ITRS 2011 Litho EUV timing; but extended out through 2024 using 2009-10 ITRS (www.itrs.net ) assumptions

– Limited YE Defect Density modeling resources requires delay of update response to 2012 ITRS Update work

24

Page 25: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

25

Fig 7a - Litho 2011 Survey vs ICK 2011 ITRS-based* Model[*extended to 2024 based on 2009-24 ITRS www.itrs.net ]

20

30

40

50

60

70

80

1995 2000 2005 2010 2015 2020 2025

DRAM

Flash

MPU

SEMATECHSurvey

EUV timing:MPU

in 2015;

DRAM& Flash in

2013

Lit

ho

Mas

k C

ou

nt

by P

rod

uct

Cat

ego

ry

Actual < - > Forecast

Source: 2011 ITRS - Executive Summary Fig. 7a

450mm 2015-2016

ICKITRS-basedv2001MPU

300mm/”32nmNode”

59-54nm M1

2008-0951-52Masks

Page 26: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

26

Fig. 7b - Litho 2011 Survey vs ICK 2011 ITRS-based* Model (cont.)[*extended to 2024 based on 2009-24 ITRS www.itrs.net ]

20

30

40

50

60

70

80

1995 2000 2005 2010 2015 2020 2025

DRAM

Flash

MPU

ICK Strategic Model*

*Based onITRS

2009-10 editions

EUV timing:MPU

in 2015;

DRAM & Flash EUV in

2013

Flash Charge Trap

in 2012;Multi-layer 3D begins

2016

MPU Delay EUV to

2017

Lit

ho

Mas

k C

ou

nt

by P

rod

uct

Cat

ego

ry

Actual < - > Forecast

Source: 2011 ITRS - Executive Summary Fig. 7b

450mm 2015-2016

ICKITRS-basedv2001MPU

300mm/”32nmNode”

59-54nm M1

2008-0951-52Masks

Page 27: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

ORTC Table 4: Design TWG Model for On-Chip Frequency – Lower model starting point 2010/3.6Ghz– 4% growth rate through 2026– *Unchanged 2011 ITRS 13% PIDS target

model Intrinsic Transistor Frequency Growth;– *However, proposal for 2012 ITRS 8% PIDS

target model Intrinsic Transistor Growth (work preparation in 2011)

27

Table ORTC-4 Performance and Packaged Chips Trends

Year of Production 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026Chip Frequency (MHz)                                     

WAS On-chip local clock [2] 5.454 5.875 6.329 6.817 7.344 7.911 8.522 9.180 9.889 10.652 11.475 12.361 13.315 14.343 15.451 16.640    Design /

ISOn-chip local clock [2] 3.462 3.600 3.744 3.894 4.050 4.211 4.380 4.555 4.737 4.927 5.124 5.329 5.542 5.764 5.994 6.234 6.483 6.743

Ghz

Table FreqTopic tbd - 2011 Chip Frequency Model Trend vs.2009/2010 ITRS Frequency

Source: 2011 ITRS - Executive Summary Table tbd

Page 28: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

28

Fig 8a - PIDS 2009/11 ITRS CV/I Trends vs. 2012 ITRS MUG-FET 4-year Pull-In and Lower Intrinsic Freq. Trend Proposals

0.10

1.00

20

00

20

05

20

10

20

15

20

20

20

25

20

30

Extended Planar Bulk

UTB FDSOI

Multiple Gate 2010 ITRS; 2011 ITRS Unchanged

Multiple Gate Pull-in Scenario - 2012 ITRSC

V/I

(ps)

Year of Production Ramp

PIDS Table 2: CV/I – 2009-2011 ITRS Unchanged

100

1000

20

00

20

05

20

10

20

15

20

20

20

25

20

30

Extended Planar Bulk

UTB FDSOI

Multiple Gate 2010 ITRS; 2011 ITRS Unchanged

Multiple Gate Pull-in Scenario - 2012 ITRS

1/(

CV

/I )(

Gh

z)

Year of Production Ramp

Note: 1/(CV/I) frequency is reduced by a factor of 1/22.4 in a PIDS model of a Ring Oscillator (inverter chain) 101 stages; 1001 stages, etc.;FO 1 (capacitance example .1pf);FO 4 (capacitance example .4pf)

Note: 1/(CV/I) frequency is reduced by a factor of 1/22.4 in a PIDS model of a Ring Oscillator (inverter chain) 101 stages; 1001 stages, etc.;FO 1 (capacitance example .1pf);FO 4 (capacitance example .4pf)

1/(CV/I) (Ghz) ~ ~ 13%CAGR

PIDS 2012 FDSOI Scenario:‘15/294 – ’26/686 @8.0% CAGR

2011 ITRS2011 - 2026

PIDS 2011 ITRS Table:1/(CV/I) (Ghz) =‘11/156 – ‘26/1000 @ ~ 13% CAGR

‘11/ 313 – ’26/686 @ 5.4% CAGR – MugFET Trend

[2012 Proposal: MugFET 4-year Leading Co. pull-in]

PIDS 2011 ITRS Table:CV/I) (ps) =‘11/0.64 – ‘26/0.10 @ ~ -12% CAGR

‘11/ 0.319 – ’26/0.146 @ - 4.8% CAGR – MugFET Trend

[2012 Proposal: MugFET 4-year Leading Co. pull-in]

CV/I (ps) ~~ -12%CAGR

PIDS 2012 FDSOI Scenario:‘15/0.340 - ’26/0.146-7.4% CAGR

Figure 8a 2012 Update Model Trend versus 2009/2011 ITRS PIDS TWG Transistor Intrinsic Frequency (1/(CV/I)) Performance Trends

Source: 2011 ITRS - Executive Summary Fig. 8a

Page 29: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

29

Fig. 8b - ORTC Table 4:On Chip Local Clock Frequency Trend Comparisons to PIDS

vs. 2012 ITRS MUG-FET 4-year Pull-In and Lower Intrinsic Freq. Trend Proposals

Figure 8b Design On-Chip Frequency vs. PIDS Intrinsic Transistor and Ring Oscillator Model Frequency

2011 ITRS2011 - 2026

Source: ITRS Test TWG compilation, ca 4Q 2010; 2011 ITRS PIDS, Design TWGs

2012 Update Scenario:FDSOI

at 8% CAGR

ORTC Table 4:On-Chip Local Clock Frequency:

2011 Design TWG trend:at 4% CAGR

2009/11 PIDS/FEPRing Oscillator Model

101 invertor stagesWith equivalent Fan-out 4

Capacitance load; Results in Frequency of

~ 1/22 x 1/(CV/I)at ~13% CAGR

DesignH’room

~ 1/22

2009/11 ITRS PIDS/FEPIntrinsic Transistor Frequency

1/(CV/I) at 13% CAGR

2007 Des TWG Actual History of Average On-Chip

1999 - 20071Ghz – 4.9Ghz~22% CAGR

On-Chip Clock Frequency:Performance Improvement tradeoffs between dimensional EOT and Gate Lengthwith “Equivalent Scaling,” both process-related(ie Strain, FDSOI, MugFET, III/V Ge, etc);and also Including design-related tradeoffs:

-Multi-Core Architecture-Memory Architecture-Software Power Management-etc.]

1Thz

2012 Update Scenario: MugFET : 4yr Pull-in 1/(CV/I) to 2011; then 5% CAGR

2012 Update Scenario: MugFET

at 5% CAGR

2012 Update Scenario – FDSOI:Beginning 2015 at 8% CAGR

Co.A Actual

Co.B Actual

Co.C Actual

Source: 2011 ITRS - Executive Summary Fig 8b

Page 30: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

Work in Progress - Do Not Publish30

MOS Transistor Scaling(1974 to present)

S=0.7[0.5x per 2 nodes]

Pitch Gate

[0.5x per 2 Technology Cycles]

MOS Transistor ScalingMOS Transistor Scaling(1974 to present)

S=0.7[0.5x per 2 nodes]

Pitch Gate

[0.5x per 2 Technology Cycles]

MOS Transistor Scaling(1974 to present)

S=0.7[0.5x per 2 nodes]

Pitch Gate

[0.5x per 2 Technology Cycles]

MOS Transistor Scaling

Figure 10 MOS Transistor Scaling—1974 to present

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

0.5x

0.7x 0.7x

0.5x

0.7x0.7x 0.7x0.7x

N N+1 N+2N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrsL

og H

alf-

Pit

ch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

N-1 N N+1

Cycle T ime

Cycle T ime:

(DRAM M1 Example)

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

0.5x

0.7x 0.7x

0.5x

0.7x0.7x 0.7x0.7x

N N+1 N+2N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrsL

og H

alf-

Pit

ch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

N-1 N N+1

Cycle T ime

Cycle T ime:

(DRAM M1 Example)

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

0.5x

0.7x 0.7x

0.5x

0.7x0.7x 0.7x0.7x

N N+1 N+2N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrsL

og H

alf-

Pit

ch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

N-1 N N+1

Cycle T ime

Cycle T ime:

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

0.5x

0.7x 0.7x

0.5x

0.7x0.7x 0.7x0.7x

N N+1 N+2N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrsL

og H

alf-

Pit

ch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

N-1 N N+1

Cycle T ime

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

0.5x

0.7x 0.7x

0.5x

0.7x0.7x 0.7x0.7x

N N+1 N+2N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrsL

og H

alf-

Pit

ch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

N-1 N N+1

Cycle T ime

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

0.5x

0.7x 0.7x

0.5x

0.7x0.7x 0.7x0.7x

N N+1 N+2N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrsL

og H

alf-

Pit

ch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

N-1 N N+1

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

0.5x

0.7x 0.7x

0.5x

0.7x0.7x 0.7x0.7x

N N+1 N+2N N+1 N+2

Node Cycle T ime (T yrs):

*CARR(T) =

[(0.5) (̂1/ 2T yrs)] - 1

CARR(3 yrs) = - 10.9%

CARR(2 yrs) = - 15.9%

* CARR(T) = Compound Annual Reduct ion Rate

(@ cycle t ime per iod, T )

Log

Hal

f-P

itch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrsL

og H

alf-

Pit

ch

Linear Time

1994 NTRS -.7x/3yrs

Actual -.7x/2yrs

Scaling Calculator +Node Cycle T ime:

N-1 N N+1N-1 N N+1

Cycle T ime

Cycle T ime:

(DRAM M1 Example)

Figure 11 Scaling Calculator

Source: 2011 ITRS - Executive Summary ORTC Fig 1, 2

Page 31: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

*Note: The data for the graphical analysis were supplied by the Semiconductor Industry Association (SIA) from their Semiconductor Industry Capacity Statistics (SICAS). The SICAS data is collected from worldwide semiconductor manufacturers (estimated >90% of Total MOS Capacity) and published by the Semiconductor Industry Association (SIA), as of 1Q11. The detailed data are available to the public online at the SIA website, www.sia-online.org, and data is located at http://www.sia-online.org/industry-statistics/semiconductor-capacity-utilization-sicas-reports/

31

* Note: The wafer production capacity data are plotted from the SICAS* 4Q data for each year, except 1Q data for 2011.  The width of each of the production capacity bars corresponds to the MOS IC production start silicon area for that rangeof the feature size (y-axis). Data are based upon capacity if fully utilized.

2.5-Year DRAM Cycle ; 2-year Cycle Flash and MPU

2010 2013

2-Year DRAM

Cycle

3-Year Cycle

Fea

ture

Siz

e (H

alf P

itch)

(m

)

Year

>0.7m

0.7-0.4m

0.4-0.3m

0.3- 0.2m

0.2- 0.16m

0.16-0.12m

0.08-0.06m

0.12-0.08m

0.2- 0.12m

0.4-0.2m

<0.06m

W.P.C.= Total Worldwide Wafer Production Capacity* Sources:SICAS

0.01

0.1

1

10

200620052004

W.P.C.

2000

W.P.C.

2001

W.P.C.

2002

W.P.C.

2003

W.P.C. W.P.C.

2007 2008 2009

W.P.C. W.P.C. W.P.C. W.P.C. W.P.C.

2010 2011

W.P.C.

1998 2015

= 2003/04 ITRS DRAM Contacted M1 Half-Pitch Actual = 2007/09/11 ITRS DRAM Contacted M1 Half-Pitch Target = 2009/11 ITRS Flash Un-contacted Poly Half Pitch Target = 2009/11 ITRS MPU/hpASIC Contacted M1 Half-Pitch Target

4-Year Cycle for Flash after2010 Flash pull-in;

MPU 3-yr cycle after 20133-yr cycle for DRAM after pull-in

Technology Cycle Timing Compared to Actual Wafer Production Technology Capacity Distribution

Source: 2011 ITRS - Exec. Summary Fig. 3

Page 32: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

Work in Progress – Do Not Publish!32

Flash (NAND) Product Size Generations

2009 ITRS Renewal:

PIDS Flash Size: 2007 2011 2016 2020

2007 ??? ??? ??? ???

4x/4-5yrs WAS'09 16G 64G 256G 1T

Interim Generations: 2009 2014 2018 2022

??? 2007 ??? ??? ??? ???

4x/4-5yrs WAS'09 32G 128G 512G 2T

5yrs 4yrs 4yrs

2011 ITRS Renewal (PIDS 2010 Update Proposal):              

PIDS Flash Size: 2007 2010 2011 2014 2016 2019 2020      

4x/4-5yrs WAS'09 16G   64G   256G   1T      

4x/4-5yrs IS'11   64G   256G   1T        

                       

Interim Generations: 2008 2009 2012 2014 2017 2018 2021 2022   2026

4x/4-5yrs WAS'09   32G   128G   512G   2T   n/a

4x/4-5yrs IS'11 32G   128G   512G   2T     2T

      4yrs   5yrs   4yrs     ??yrs  

Poly uncontacted half pitch = 1-year pull-in 2010/23.8nm; then 4-year cycle to 2020; then 3-year cycle; then flat at 8nm/2022-26

Product memory size: 2 years cycle for introducing 2x product; pull-ins: 1-yr for 32G, 64G, 512G, 1T, 2T; and 2-year for 128G, 256G

128Gbit chip will be available in 2012.

NAND Cell Array Efficiency unchanged from 56% in ITRS 2010

Page 33: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

Work in Progress – Do Not Publish!33

DRAM Product Size Generations

2009/10 ITRS Renewal:

PIDS DRAM Size: 2010 2011 2016 2017 2022 2023

4x/6yrs 2007 4G 16G 64G

WAS'09/10 4G 16G 64G

Interim Generations: 2008 2013 2014 2019 2020

4x/5-6yrs 2007 2G 8G 32G

4x/6yrs WAS'09/10 2G 8G 32G

5yrs 6yrs

2011 ITRS Renewal (PIDS 2010 Update Proposal):          

PIDS DRAM Size:   2011   2017 2018   2023 2025

4x/6yrs WAS'09/10   4G   16G     64G n/a

4x/7yrs IS'11   4G     16G     64G

                   

Interim Generations: 2008   2014     2020    

4x/6yrs WAS'09/10 2G   8G     32G    

4x/6yrs IS'11 2G   8G     32G    

      6yrs     6yrs   7yrs?  

DRAM M1 half pitch = 1-year pull-in; then 3-year cycle to 2026

DRAM Product Size; Keep ITRS 2009: 2G, 4G, 8G; but 16G delay 1 yr to 2017; add 64G/2025

DRAM Cell size factor: 4F2 cell will be available in 2013. Delay 2years from ITRS2009/10

DRAM Cell Array Efficiency = 59%; versus 56.1% in ITRS 2010

Page 34: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

Work in Progress - Do Not Publish 34

2012 ITRS Definition Work – Need Clarification of the M1 Half Pitch To clarify the ORTC Table 1 relationship to Gate Length*

And for consistency with Interconnect TWG Transistor M1 contacted half-pitch [and public - sometimes presented (IEDM, etc) as “Transistor Pitch” or

“Gate Pitch”] ; *vs. Printed Gate Length (GLpr) (sometimes also known as “CD” or Critical Dimension); and finally the publically-measurable Physical Gate Length, (GLph)

[Note: The ITRS does not utilize any single-product “node” designation reference; Flash Poly and DRAM M1 half-pitch are still litho drivers; however, other product technology trends may be drivers on

individual TWG tables]

Contacted Contacted M1 Half-Pitch vs. M1 Half-Pitch vs.

0.5 x 0.5 x “Transistor or Gate Pitch?”“Transistor or Gate Pitch?”

[>M1 h-p?][>M1 h-p?][GLpr][GLpr]

[GLph][GLph]

ContactContact

Width Width

Metal 1 Pitch [Interconnect TWG Example; Dec’10

= 2x M1 Half-Pitch]

Metal 1 half-pitch = 0.5 x M1 Pitch]

Other ITRS MPU Model Consideration:

[SRAM (6-transistor) Cell Area = 60f2 =

60 x (M1 h-p)^2]

32 nm”/56.25nm h-p, 0.171 um2 [= 62.0 x 0.05625^2]

[IDF 2009]

Page 35: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

MPU Cross-Section

Dielectric Capping

LayerCopper

Conductor with

Barrier / Nucleation

Layer

Pre-Metal Dielectric

Tungsten Contact

Plug

Inter-Mediate(=M1x1)

Inter-Mediate(=M1x1)

Metal 1Metal 1

Passivation

DielectricEtch Stop Layer

ASIC Cross-Section

Semi-Global (=M1x2)

Semi-Global (=M1x2)

Metal 1 Pitch

Via

Wire

Via

Wire

Via

Wire

Metal 1 Pitch

Global (=IMx1.5~2µm)Global (=IMx1.5~2µm)

Inter-Mediate(=M1x1)

Inter-Mediate(=M1x1)

Metal 1Metal 1

Global (=IMx1.5~2µm)

Global (=IMx1.5~2µm)

1) MPU: Revised hierarchy2) ASIC: No drastic change, however semi-global should be kept at 2 x

M1 3) Flash: The new technology driver for M1

2011 Interconnect TWG -Hierarchical Cross Sections

Flash Cross-Section

Metal 3

Metal 0Metal 1

Metal 2

Poly Pitch

Metal 1 Pitch

Page 36: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

36

2008 Consortium FinFET Design Factor = 42? vs. ITRS = 60 for planar SRAM 2009 60x0.05351u^2 = 171.8u2; also 60 for planar SRAM 2011 60x0.03784u^2 = 85.9u2and vs. actual IDF’09 54 @ 56.25nm/”32nm” 0.171u2 area;and calc. from .092u2 area IDF’09: 58 @ 39.78nm/”22nm” :

Source : http://www.eetasia.com/ART_8800557135_480100_NT_77e3414c.HTM :“…announced Dec. 16 at the 2008 International Electron Devices Meeting [IEDM] in San Francisco, California…”

I. Researchers from the three companies [AMD, IBM, Toshiba] fabricated a highly scaled FinFET SRAM cell using HKMG. 1) It is the smallest non-planar-FET SRAM cell yet achieved: At 0.128µm², a. the integrated cell is more than 50 percent smaller than the 0.274µm² non-planar-FET cell previously reported. b. To achieve this goal, the team optimized the processes, especially for depositing and removing materials, c. including HKMG from vertical surfaces of the non-planar FinFET structure.

II. The researchers also investigated the stochastic variation of FinFET properties within the highly scaled SRAM cells and simulated SRAM cell variations at an even smaller cell size. 2) They verified that FinFETs without channel doping improved transistor characteristic variability by more than 28 percent. a. In simulations of SRAM cells of 0.063µm² area, equivalent to or beyond the cell scaling for the 22nm node, b. the results confirmed that the FinFET SRAM cell is expected to offer a significant advantage in stable operation c. compared with a planar-FET SRAM cell at this generation

2008IEDM:110nmPitch55nmHalf-Pitch

“32 nm”/55nm h-p, 0.128 um2 [= 42.3 x 0.055^2]

[IEDM 2008]

“22 nm”/38.9nm h-p, 0.063 um2 [= 41.6 x 0.028^2]

[Simulation ca. 2008]

ITRS MPU Model :[SRAM (6-transistor) Cell Area

= 60f2 = 60 x (M1 h-p)^2]

vs. actual “32 nm”/56.25nm h-p, 0.171 um2 [= 54.0 x 0.05625^2]

[ca. 2009]

4x20

= 8

0nm

Eq.GLph=

???nm !?

http://www.slideshare.net/finance6/intel-pdf-32nm-technology-update-mark-bohrhttp://download.intel.com/pressroom/kits/events/idffall_2009/pdfs/IDF_MBohr_Briefing.pdf

Page 37: 1 ORTC 2012/13 ITRS Work IRC and CTSG Plenary Alan Allan 04/23/2012 Based on [WAS] ORTC Final Rev 1a, 12/13/11 [plus backup] CORRECTED/ UPDATED 04/23/12.

Work in Progress - Do Not Publish37

http://en.wikipedia.org/wiki/Tri-gate_transistors_(Intel)#Tri-gate_transistors_.28Intel.29 http://arstechnica.com/business/news/2011/05/intel-re-invents-the-microchip.ars/2

^ "Intel Reinvents Transistors Using New 3-D Structure". Intel. http://newsroom.intel.com/community/intel_newsroom/blog/2011/05/04/intel-reinvents-transistors-using-new-3-d-structure. Retrieved 5/4/2011.

- http://newsroom.intel.com/docs/DOC-2032 ^ a b "Transistors go 3D as Intel re-invents the microchip". Ars Technica. 5 May 2011. http://arstechnica.com/business/news/2011/05/intel-re-invents-the-microchip.ars. Retrieved 7 May 2011