Top Banner
1 Ordinary Differential Equations Jyun-Ming Chen
67
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 Ordinary Differential Equations Jyun-Ming Chen.

1

Ordinary Differential Equations

Jyun-Ming Chen

Page 2: 1 Ordinary Differential Equations Jyun-Ming Chen.

2

Contents

• Review• Euler’s method• 2nd order methods

– Midpoint

– Heun’s

• Runge-Kutta Method

• Systems of ODE• Stability Issue• Implicit Methods• Adaptive Stepsize

Page 3: 1 Ordinary Differential Equations Jyun-Ming Chen.

3

Review

• DE (Differential Equation)– An equation specifying the relations among the

rate change (derivatives) of variables

• ODE (Ordinary DE) vs. PDE (Partial DE)– The number of independent variables involved

)( 2

2

txxdt

xd ),( 1 yxf

y

f

x

f

Page 4: 1 Ordinary Differential Equations Jyun-Ming Chen.

4

Review (cont)

• Solution of an equation:

• Solution of DE vs. Solution of Equation

0)1(1 :Solution

01)( 2

fx

xxf

• Geometrically,

f(x)

x

Page 5: 1 Ordinary Differential Equations Jyun-Ming Chen.

5

Review (cont)

• Solution of an differential equation:

• Geometrically:

solutions validall are

,2,

is,That

:Solution

tt

ttt

exex

ecececx

xdt

dx

t

x

Need additional conditions to

specify a solution

Page 6: 1 Ordinary Differential Equations Jyun-Ming Chen.

6

Review (cont)

• Order of an ODE– The highest derivative in the equation

• nth order ODE requires n conditions to specify the solution– IVP (initial value problem): All conditions

specified at the same (initial) point– BVP (boundary value problem): otherwise

Page 7: 1 Ordinary Differential Equations Jyun-Ming Chen.

7

IVP VS. BVPRevisit Shooting Problem

t

g

y

(2) 5

(1) 10

10

)10(let

)(

212

1

2

2

ctcty

ctdt

dydt

yd

ggy

tfy

Page 8: 1 Ordinary Differential Equations Jyun-Ming Chen.

8

IVP vs. BVP

ttty

c

c

ty

ty

55)(

5

0

5)0(

0)0(

:IVP

2

1

2

tty

ccy

cy

ty

ty

605

6010010500)10(

0)0(

100)10(

0)0(

:BVP

2

11

2

Physical meaning

Page 9: 1 Ordinary Differential Equations Jyun-Ming Chen.

9

Maxima on ODE

Ode2: solves 1st and 2nd order ODEIc1, ic2, bc: setting conditions‘ do not evaluate

2)0(, yydx

dy0)0(,1)0(,sin

2

2

xxtxdt

dx

dt

xd

Page 10: 1 Ordinary Differential Equations Jyun-Ming Chen.

10

Linear ODE

• Linearity:– Involves no product nor nonlinear functions of

y and its derivatives

• nth order linear ODE

)()()()()( 011

1

1 xbyxadx

dyxa

dx

ydxa

dx

ydxa

n

n

nn

n

n

Page 11: 1 Ordinary Differential Equations Jyun-Ming Chen.

11

Focus of This Chapter

• Solve IVP of nth order ODE numerically

• e.g.,

0 ),( Solve

0)0(

1)0( conditions initial ,

2

2

xxy

yx

dx

yd

dxdy

Page 12: 1 Ordinary Differential Equations Jyun-Ming Chen.

12

ODE (IVP)

• First order ODE (canonical form)

• Every nth order ODE can be converted to n first order ODEs in the following method:

0)0(),,( yxyyxfdx

dy

Page 13: 1 Ordinary Differential Equations Jyun-Ming Chen.

13

)()()()()( 011

1

1 xbyxadx

dyxa

dx

ydxa

dx

ydxa

n

n

nn

n

n

1

11

2

22

3

12

1

)(

)(

)(

)()(

n

nn

n dx

yd

dx

dyxy

dx

yd

dx

dyxy

dx

dy

dx

dyxy

xyxy

1

11

2

22

3

12

1

)(

)(

)(

)()(

n

nn

n dx

yd

dx

dyxy

dx

yd

dx

dyxy

dx

dy

dx

dyxy

xyxy

)()()()()( 10211

1

32

21

xbyxayxayxadx

dyxa

ydx

dy

ydx

dy

ydx

dy

nnn

n

nn

Page 14: 1 Ordinary Differential Equations Jyun-Ming Chen.

14

Example

xdx

dyx

dx

yd

dx

yd52 2

2

2

3

3

2

22

1

3

2

1

Let

dx

yddxdy

dxdy

dxdy

y

y

yy

21

32

22

33 52

ydx

dy

ydx

dy

xyxydx

dy

xyyx

y

y

yfy

y

y

y

y

52

)( ,Let

322

3

2

3

2

1

Page 15: 1 Ordinary Differential Equations Jyun-Ming Chen.

15

End of Review

Page 16: 1 Ordinary Differential Equations Jyun-Ming Chen.

16

xyxfxyxxy

xyxfyxyxxy

xyxfy

yxfdx

dy

x

y

yxyyxfdx

dy

),()()(

),()()(

),(

),(

)(),,( 00

The Canonical Problem

dx

dy

x

yx

,0

This is Euler’s method

Page 17: 1 Ordinary Differential Equations Jyun-Ming Chen.

17

Example

1)0(, yydx

dy

729.0081.081.01.0)81.0()2.0()3.0(

81.009.09.01.0)9.0()1.0()2.0(

9.01.011.0)1()0()1.0(

1.0 Choose

1)1,0(,),(

yy

yy

yy

x

fyyxfCompare with exact sol:

Page 18: 1 Ordinary Differential Equations Jyun-Ming Chen.

18

Example (cont)

1)0(

ln

:SolutionExact

x

x

ey

cyecy

cxy

dxy

dy

1.0

1

x

y

y=e–x

Page 19: 1 Ordinary Differential Equations Jyun-Ming Chen.

19

Error Analysis(Geometric Interpretation)

xyxfyy

xyxfyyy

xyxfy

yxfdx

dy

x

y

yxyyxfdx

dy

),(

),(

),(

),(

)(),,(

0001

0001

00

If the true solution were a straight line, thenEuler is exact

Think in terms of Taylor’s

expansion

Page 20: 1 Ordinary Differential Equations Jyun-Ming Chen.

20

Error Analysis(From Taylor’s Expansion)

2

62

2

32

),(),()(

)()()()()(x

dxd

xx

yxfxyxfxy

xyxyxxyxyxxy

Euler’sEuler’s truncation errorO(x2) per step

1st order method

Page 21: 1 Ordinary Differential Equations Jyun-Ming Chen.

21

Cumulative Error

x

y

x = 0 x = T

Number of steps = T/xCumulative Err. = (T/x) O(x2) = O(x)

Remark:x Error But computation time

Page 22: 1 Ordinary Differential Equations Jyun-Ming Chen.

22

Example (Euler’s)

xexyyydx

dy )(:exact 1, 0

)(9.0)1)(()(

1.0Let

)()()(

)(),(

xyxxyxxy

x

xxyxyxxy

xyyxf

,...729.0)3.0(,81.0)2.0(,9.0)1.0( yyy

Page 23: 1 Ordinary Differential Equations Jyun-Ming Chen.

23

Methods Improving Euler

Motivated by

Geometric Interpretation

Page 24: 1 Ordinary Differential Equations Jyun-Ming Chen.

24

Midpoint Method

xxyxfxyxxy

xyxfxyxyxx

xx

))(,()()(

))(,()()(

22

22

xxyxfxyxxy

xyxfxyxyxx

xx

))(,()()(

))(,()()(

22

22

Page 25: 1 Ordinary Differential Equations Jyun-Ming Chen.

25

Example (Midpoint)

xxyxy

xxyxfxyxxy

xyxyxy

yxfxyxy

yyxf

x

xx

xx

xx

2

22

22

22

1)( )(

))(,()()(

1)()()(

),()()(

),(

)(905.0)1.0)(05.01)(()()1.0(

1.0Let

1)()()( 2

xyxyxyxy

x

xxyxyxxy x

xexyyydx

dy )(:exact 1, 0

,...741.0)3.0(,819.0)2.0(,905.0)1.0( yyy

Page 26: 1 Ordinary Differential Equations Jyun-Ming Chen.

26

Heun’s Method

xxxyxxfyxfxyxxy

xxyxfxyxxy

))(,(),()()(

)(Predictor ))(,()()(0

21

0

xxxyxxfyxfxyxxy

xxyxfxyxxy

))(,(),()()(

)(Predictor ))(,()()(0

21

0

Page 27: 1 Ordinary Differential Equations Jyun-Ming Chen.

27

Example (Heun’s)

)(905.01.09.011)()1.0(

1.0Let

1)()()(

)()( )(

))(,(),()()(

1)()()(

),()()(

),(

21

21

021

021

0

xyxyxy

x

xxxyxyxy

xxxyxyxy

xxxyxxfyxfxyxxy

xxyxxyxy

xyxfxyxxy

yyxf

xexyyydx

dy )(:exact 1, 0

,...741.0)3.0(,819.0)2.0(,905.0)1.0( yyy

Note the result is the same as

Midpoint!?

Page 28: 1 Ordinary Differential Equations Jyun-Ming Chen.

28

Remark

• Comparison of Euler, Heun, midpoint– 1st order: Euler

– 2nd order: Heun, midpoint

• “order”:• All are special cases of

RK (Runge-Kutta) methods

ExactEuler (error)

Midpoint (error)

y(0.1) 0.9050.9 (0.0

05)0.905

(0)

y(0.2) 0.8190.81 (0.

009)0.819

(0)

y(0.3) 0.7410.729 (0.

012)0.741

(0)

Page 29: 1 Ordinary Differential Equations Jyun-Ming Chen.

29

RK Methods

)1 to from slope (estimate

function lincrementa :),,(

)( ),(

where

),,(

1

1

ii

hyx

hxyyxyy

hhyxyy

ii

iiii

iiii

Page 30: 1 Ordinary Differential Equations Jyun-Ming Chen.

30

RK Methods (cont)

expansion sTaylor'match chosen to are ),,( Constants

constants:,

),(

),(

),(

),(

constant:'

11,111,1

22212123

11112

1

2211

ijii

iji

nnnniiin

ii

ii

ii

nn

qpa

qp

nkqnkqyhpxfk

hkqhkqyhpxfk

hkqyhpxfk

yxfk

sa

kakaka

Page 31: 1 Ordinary Differential Equations Jyun-Ming Chen.

31

Taylor’s Expansion

fy

f

x

f

yy

f

x

f

dx

dy

y

f

dx

dx

x

fyxf

dx

d

'),(

)(][

)(][),()(

)()()()()(

32

32

32

2

2

2

hOfhfy

hOfhyxfxy

hOxyhxyxyhxy

hiiy

f

ixf

ii

hiiy

f

ixf

iii

hidx

diii

Page 32: 1 Ordinary Differential Equations Jyun-Ming Chen.

32

RK 1st Order

method sEuler' ),(

1

expantion sTaylor' with Compare

),(

),(

1

1

1

11

111

hyxfyy

a

hyxfayy

yxfaka

n

iiii

iiii

ii

)(][)( 32

2

hOfhfyhxy hiiy

f

ixf

iii

Page 33: 1 Ordinary Differential Equations Jyun-Ming Chen.

33

RK 2nd Order

)(

)(][

)()()(),(

: Expand

32112

21221

311112111

211112

2

hOhfqahpahfahfay

hOhhkqhpfahkayy

hOhkqy

fhp

x

fyxfk

k

iyf

xf

iii

yf

xf

iii

iiii

hkakayy

hkqyhpxfk

yxfk

kakan

ii

ii

i

)(

),(

),(

2

22111

11112

11

2211

)(][)( 32

2

hOfhfyhxy hiiy

f

ixf

iii

21

1122

21

122

21

:

:

1 :

qahf

pah

aahf

iyfxfi

Page 34: 1 Ordinary Differential Equations Jyun-Ming Chen.

34

RK 2nd Order (cont)

unknowns 4

eqns, 3

:

:

1 :

21

1122

21

122

21

qahf

pah

aahf

iyfxfi

21

1121

112 , ,01 qpaa

hyxfyhxfyy

hhkqyhpxfyhky

hkakayy

iiiiii

iiii

ii

)),(,(

),(

)(

21

21

1

11112

22111

),(),,(

)( )(

21

2121

22111

hfyhxfkyxfk

hkkyhkakayy

iiiii

iii

Page 35: 1 Ordinary Differential Equations Jyun-Ming Chen.

35

RK 4th Order

• Mostly commonly used one

• Higher order … more evaluation, but less gain on accuracy

Classical 4th order

RK

)(

)(

)(

)(

where

)22(

34

221

21

3

121

21

2

1

432161

1

hkh,yxfk

hkh,yxfk

hkh,yxfk

,yxfk

hkkkkyy

nn

nn

nn

nn

nn

Page 36: 1 Ordinary Differential Equations Jyun-Ming Chen.

36

Classical 4th order RK

Page 37: 1 Ordinary Differential Equations Jyun-Ming Chen.

37

System of ODE

• Convert higher order ODE to 1st order ODEs

• All methods equally apply, in vector form

Page 38: 1 Ordinary Differential Equations Jyun-Ming Chen.

38

Example (Mass-Spring-Damper System)

• Governing Equation

• After setting the initial conditions x(0) and x’(0), compute the position and velocity of the mass for any t > 0

0 kxxcxm

c

k

Initial Condition

x

m

Page 39: 1 Ordinary Differential Equations Jyun-Ming Chen.

39

0)0(

1)0(:IC

)(10

then

,

2

1

212

21

122

21

x

x

cxkxm

x

xxkxcxxm

xxxx

Example (cont)

0)0(,),()()(

Euler Dim

yyxyxfxyxxy

n

0)0(,),()()(

Euler Dim

yyxyxfxyxxy

n

Page 40: 1 Ordinary Differential Equations Jyun-Ming Chen.

40

set t=0.1

27.0

971.01.0

)19.0(99.0

19.0

19.0

99.01.0)2.0),2.0(()2.0()3.0(

19.0

99.01.0

)1.0(1

1.0

1.0

11.0)1.0),1.0(()1.0()2.0(

1.0

11.0

01

0

0

11.0)0.0),0.0(()0.0()1.0(

xfxx

xfxx

xfxx

Example (cont)

)(),(

211

2

2

1

cxkx

xtxf

x

xx

m

Assume m=1,c=1, k=1 (for ease of computation)

21

2

xx

xf

Page 41: 1 Ordinary Differential Equations Jyun-Ming Chen.

41

Stability: Symptom

xexy

yydx

dy

10)( :solutionexact

1)0(,10

Page 42: 1 Ordinary Differential Equations Jyun-Ming Chen.

42

Symptom: Unstable Spring System

Start with this …

Become unstable instantly …

Cause by stiff (k=4000) springsCause by stiff (k=4000) springs

Page 43: 1 Ordinary Differential Equations Jyun-Ming Chen.

43

Stability (cont)• Example Problem:

xexy

yydx

dy

)( :solutionexact

0,1)0(,

xexy

yydx

dy

)( :solutionexact

0,1)0(,

Conditionally stablex

iiii

exy

h

hh

hh

h

h

yhhyyy

)( :solutionexact

2limit stability

2 0

1 1or ,1 1

is,That

11 if unstable

11 if stable

)1(

:Euler

*

1

Page 44: 1 Ordinary Differential Equations Jyun-Ming Chen.

44

Discussion

• Different algorithm different stability limit– Check Midpoint Method

• Different problem different stability limit– use the previous problem as benchmark

Page 45: 1 Ordinary Differential Equations Jyun-Ming Chen.

45

Review: Numerical DifferentiationTaylor’s expansion:

Forward difference

Backward difference

Page 46: 1 Ordinary Differential Equations Jyun-Ming Chen.

46

Numerical Difference (cont)

Central difference

Page 47: 1 Ordinary Differential Equations Jyun-Ming Chen.

47

Implicit Method (Backward Euler)

)(),(

)(),(

),()(

)1,(:Euler Backward

2111

21

1

hOyhyxfy

hOyhyxfy

yxfhOh

yy

ii

iiiii

iiii

iiii

)(),(

),()(

),1( :Euler

),(

21

1

hOhyxfyy

yxfhOh

yy

ii

yxf

iiii

iiii

dxdy

Forward difference

Backward difference

Page 48: 1 Ordinary Differential Equations Jyun-Ming Chen.

48

Example

• Remark:– Always stable (for this problem)– Truncation error the same as Euler (only

improve the stability)

ihi

ii

iiiiii

yy

hOyyh

hOyhyyhyxfy

yyxf

11

1

21

211111

)()1(

)(),(

),(

Page 49: 1 Ordinary Differential Equations Jyun-Ming Chen.

49

Stiff Set of ODE

Stability limit

Use the change of variable

101)0(

121)0(

1000210002

2

2121

21

100021

ccccv

ccu

eczecy

zvuzvu

yvuyvu

zyvzyu

xx

101)0(

121)0(

1000210002

2

2121

21

100021

ccccv

ccu

eczecy

zvuzvu

yvuyvu

zyvzyu

xxGet the following solution:

A stiff equation is a differential equation for which certain numerical methods for solving the equation are numerically unstable, unless the step size is taken to be extremely small

Page 50: 1 Ordinary Differential Equations Jyun-Ming Chen.

50

Page 51: 1 Ordinary Differential Equations Jyun-Ming Chen.

51

Linear System of ODE with Constant Coefficients

ii

ii

iii

yhCIy

hOyyhCI

hOhCyyy

11

21

21

)(

)(

EulerImplicit

ii

ii

iii

yhCIy

hOyhCIy

hOhCyyy

1

21

21

)()(

)(

EulerExplicit

Cyy

Do not really use (..)-

1. Solve linear system instead

Page 52: 1 Ordinary Differential Equations Jyun-Ming Chen.

52

Analysis

222111)(

22221

211222111222111

)1()2(

22211122112211)0()1(

2211)0(

)()1(

xcxcx

xcxcAxcAxcxcxcAAxx

xcxcAxcAxcxcxcAAxx

xcxcx

Axx

nnn

ii

x will converge if |i| 1

represent x(0) in eigen basis

Explicit and implicit Euler both in the form: Ayy

Page 53: 1 Ordinary Differential Equations Jyun-Ming Chen.

53

Analysis (cont)

• Stiff equations have large eigenvalues• Explicit Euler requires small h to converge• Implicit Euler always converges (in this problem)

hCIh

hCh

C

i

i

i

of values-e: 1

of values-e:

of values-e :

11 of values-e: 1 hCIh i

ii yhCIy 1

EulerExplicit

ii yhCIy 11

EulerImplicit

Page 54: 1 Ordinary Differential Equations Jyun-Ming Chen.

54

Example

v

u

v

u

vuv

vuu

1999999

1998998

1999999

1998998

Explicit

002.021000

1100011

110001 if

hh

h

hstable

Implicit

110001

1 if

hstable

Page 55: 1 Ordinary Differential Equations Jyun-Ming Chen.

55

Semi-Implicit Euler• Not guaranteed to be stable, but usually is

Solving implicit methods by linearization is called a “semi-implicit” method

nnn

nnnnn

yhfyy

fhIy

y

fhI

yy

fhy

y

fhyhfyy

1

11

Jacobian

Page 56: 1 Ordinary Differential Equations Jyun-Ming Chen.

56

About Jacobian

h

xx

fffxfhxf

hOh

h

xxf

xxf

xxf

hxhxf

hxhxf

hxhxf

hOhhxxfhxhxf

hOhhxxfhxhxf

hOhhxxfhxhxf

xf

xf

xf

xf

xf

xf

xf

xf

xf

xf

xf

xf

21

321

2

213

212

211

213

212

211

2213213

2212212

2211211

,

,,

)(

,

,

,

,

,

,

)(,,

)(,,

)(,,

2

3

1

3

2

2

1

2

2

1

1

1

2

3

1

3

2

2

1

2

2

1

1

1

Jacobian

Taylor’s expansion:

Page 57: 1 Ordinary Differential Equations Jyun-Ming Chen.

57

c

k

Initial Condition

x

m

0

:Motion ofEquation

kxxcxm

xmkxxcxmf

nn yhh

hy

yy

xxx

xx

xx

xx

kcm

1

1

212

21

2

1

1

1

11

10

1Let

xc

force damping

Implicit Euler

ii yhCIy

Cyy1

1

Page 58: 1 Ordinary Differential Equations Jyun-Ming Chen.

58

c

k

Initial Condition

x

m

0

:Motion ofEquation

2

2

kxxcxm

xmkxxcxmf

221

2

1

21

2

2212

21

2

1

21

1

21

10

)(

1Let

xx

x

hxh

hhyy

xy

f

yfy

xxx

xx

xx

xx

kcm

nn

2

force damping fake

xc

Semi-Implicit Euler

Page 59: 1 Ordinary Differential Equations Jyun-Ming Chen.

59

Ex: Semi-Implicit Euler

g

ty

h

hh

ty

ty

hty

hty

fh

hyfh

hyy

yy

ff

y

fJ

yygy

yyyygy

nnnnn

)(

0)(

)(

)(

)(

10

1

10

1

00

10

,

,

3)0(,0)0(,3)0(,0)0(,

22

2

1

2

1

1

1

21

21

212

21

hg

ty

ty

ty

hty

hty

hfyy

Euler

nnn

)(

)(

)(

)(

)(

Compare

2

2

1

2

1

1

Page 60: 1 Ordinary Differential Equations Jyun-Ming Chen.

60

Amazingly, this translates to…

tgtvttv

tgttvtytty

g

ty

h

hh

ty

ty

hty

hty

)()(

)()()(

)(

0)(

)(

)(

)(

2

22

2

1

2

1

Very similar to Verlet integration formula… no

wonder Verlet is pretty stable

Page 61: 1 Ordinary Differential Equations Jyun-Ming Chen.

61

Adaptive Stepsize

• Solving ODE numerically … tracing the integral curve y(x)

• what’s wrong with uniform step size– Uniformly small:

waste effort

– Uniformly large: might miss details

Page 62: 1 Ordinary Differential Equations Jyun-Ming Chen.

62

Step Doubling

• Idea:– Estimate the truncation error by taking each

step twice: one full step, two half steps– control the step size such that the estimated

error is not too big.

1(2h1)

2(h1)Desired h0

Page 63: 1 Ordinary Differential Equations Jyun-Ming Chen.

63

Ex: RK 2nd Order

00

11

11

00

3

1

0

1

0

3312

432

431

432

431

error desired theproduce tostepsize the:

stepby error estimated the:

error)n truncatio(the 6

)()(2)()2(

)()(2)2(

)()2()2(

31

h

h

hhh

h

hchyy

hOhcyhOhcy

hOhcyhxy

hOhcyhxy

Overhead: # of f(x,y) evaluations24–2 = 6

Overhead: # of f(x,y) evaluations24–2 = 6

Page 64: 1 Ordinary Differential Equations Jyun-Ming Chen.

64

Adaptive Step with RK4 (NR)

Page 65: 1 Ordinary Differential Equations Jyun-Ming Chen.

GSL

65

Page 66: 1 Ordinary Differential Equations Jyun-Ming Chen.

Initialization

66

Page 67: 1 Ordinary Differential Equations Jyun-Ming Chen.

Iteration

67