Top Banner
1 Oculus Superne Andy C ottle Sean D uncan Lin H aack AfzaalH assan Brian R oth D ave Stinson JeffStudtm an Justin W heeler 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim 9.) Propulsion 10.) Structures 11.) Cost 12.) Summary
33

1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

Jan 15, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

1

Oculus Superne

Andy Cottle Sean DuncanLin Haack Afzaal Hassan Brian Roth Dave Stinson Jeff Studtman Justin Wheeler

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 2: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

2

CoDR Overview

• Introduction• Mission Statement

& Market• Operations• Walk Around• Payload and

Capabilities

• Aircraft Sizing• Aerodynamics• Stability/Trim• Propulsion• Structures• Cost Analysis• Summary

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 3: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

3

Mission Statement

• To provide a multi-service UAS which acts as the primary detection method for third party infringement of pipelines, performs power-line equipment inspection, and detects threats to forested areas. The system will also facilitate a rapid response in the event of a complete system failure or natural disaster.

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 4: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

4

Target Market

Mission• Power Line• Pipeline• Forest Monitoring

• Business Plan• Target Customers

• DOT• NPS• Private Oil/Gas Companies

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 5: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

5

Customer Attributes

• Patrolling the Right-of-

Way

– Third Party Infringement

• Constant Coverage

• Cost Reduction

• Safety Factors

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 6: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

6

Engineering RequirementsEngineering

AttributesImportance (Absolute)

Improtance (Relative)

GPS Accuracy 243 10.90%Number of Operators

225 10.09%

Sense and Avoid Accuracy

211 9.47%

Engine Efficiency 201 9.02%Communication

Relay Time 190 8.52%

Empty Weight 162 7.27%Number of Systems

162 7.27%

Operational Altitude

134 6.01%

Endurance 124 5.56%

Payload Capability 123 5.52%

Time between Overhauls

118 5.29%

Operational Speed

107 4.80%

Stall Speed 93 4.17%T/O Length 87 3.90%

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 7: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

7

Operation Profile• Type of Equipment

– Ground Stations– Relay Stations– UAV

• Takeoff/Landing on Rough Airfield• Operate from 1000 ft (AGL)• Observe & Transmit to Local Relay Stations• Relay Stations Transmit Information Back to

Operator• Number and Frequency of UAV Flight Completely

Customer Defined

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 8: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

8

Walk Around1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 9: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

9

Internal Walk Around1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 10: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

10

Sensors• LIDAR (Laser Imaging

Detection and Ranging)– Corridor Mapping– Land Surveying– Vegetation Growth / Density LiteMapper 5600 components

Airborne Lidar Terrain Mapping System

• IR/Visual Camera

- Thermal Imaging

- Video Tracking

- Detailed Pictures

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 11: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

11

Payload RequirementsWeight (lbs) Dimensions (ft) W hp

LIDAR 13 1.8x.66x.71 30 0.04CCNS 9 .82x.69x.43 25 0.034

IR / Visual Camera 20 .66(d)x1.1(h) 100 0.134Total 42 1.5 ft3 155 0.21

Power From Alternator N/A N/A 1500 2

Installation Weight (40% of Total Payload Weight)

Power Consumption

17 N/A N/A N/A

• LIDAR

– Operates Optimally at 650-1300ft AGL

– Used Only During Inspection

• IR / Visual Camera – Runs Throughout Mission– @ 1000 ft AGL

• 271,212 ft2

– @ 12 x Zoom• 1462 ft2

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 12: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

12

Sizing Information and Assumptions

• Sizing Code: Avid ACS v4.1

• Equation Sets– General Aviation Component Weight

Equations– Tail Volume Coefficient

• Fixed Engine – Weight – Horsepower

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 13: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

13

Carpet Plot Constraints and Inputs

• Constraints– 925 ft takeoff

constraint (ground roll + 50 ft obstacle clearance)

– 550 ft landing constraint

– Stall speed, ceiling and 2g maneuver not influential

CLmax 1.5

Cruise altitude 5000

Velocity [kts] 100

Range [n.m.] 1300

Payload Weight [lbs] 60

Engine Weight [lbs] 48

Power [hp] 40

Propeller Diameter [ft] 2.5

[ft] MSL

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 14: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

14

Carpet Plot

250

252

254

256

258

260

262

264

266

268

Wing Loading [lbs/ft2]

Gro

ss

Ta

ke

Off

We

igh

t [l

bs

]

AR =10 AR = 12 AR = 14

AR = 16 Landing Constraint Take Off Constraint

Sto = 925 SL = 550ft

AR = 10

AR = 12

AR = 14

AR = 16

W/S = 18 [lbs/ft2]

W/S = 20 [lbs/ft2]

W/S = 22 [lbs/ft2]

Design Point

Feasible area

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 15: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

15

Sizing Code OutputGross Weight [lbs] 255

W/S 20.3

Aspect Ratio 10

Wing Area [ft2] 12.55

Endurance [hrs] 14.388

Take off Distance [ft] 915.6

Landing Distance [ft] 537.7

Fuel Weight [lbs] 39

L/D 13

Power/Weight [hp/lbs] 0.15ηp 0.821

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 16: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

16

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 17: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

17

Compliance MatrixParameter Targets Threshold CurrentGross Weight [lbs] 300 500 255Payload Capability Installed [lbs] 30 50 60Endurance [hrs] 24 12 14

SFC at Cruise [lb/bhp/hr] 0.4 0.6 0.48

Operational Altitude [ft AGL] 1000 2000 1000

Loiter Velocity [kts] 150 100 100

Stall Speed [kts] 30 40 60

Takeoff Length w / 50ft obstacle [ft] 500 1500 936

GPS Accuracy [in] 4 20 4

Propeller Efficiency 0.9 0.7 0.82

Number of Operators 2 4 2

Communication Relay Time [secs] 5 10 -

Sense and Avoid Accuracy [ft] 1 5 -

Time between Overhauls [hrs] 2000 750 600

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 18: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

18

0 50 100 150 200

-1

-0.5

0

0.5

1

1.5

2

Ve (knots)

n

V-n diagramPerformance

Takeoff Velocity

Landing Velocity

75 kts

80 kts

60 ktsStall Velocity @ 5000 ft MSLand 85% GTOW

Operational Velocity 100 kts

50 100 150 200 2500

0.5

1

1.5

2

2.5

3

3.5

4

4.5x 10

4

Airspeed (knots)

Alti

tude

Flight Envelope

n=1

n=2

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

(ft

MSL)

Page 19: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

19

Lift Distribution

• Ideal Elliptical Lift(Too costly)

• Linear distribution cost effective

• Still gives acceptable performance

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

(ft2

/sec)

Page 20: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

20

Airfoil selection

Alpha Versus L/D

-25

0

25

50

75

100

125

150

175

200

-5 0 5 10 15

Alpha

L/D

NLF1015

LNV109a

NACA 642-415

• Considered 3 airfoils– NASA NLF-

1015– Liebeck

LNV109a– NACA 642-415

(baseline)

• Chose NLF-1015– Superior L/D at

operating conditions (Low alpha)

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 21: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

21

Drag Buildup• Component CD0 build for major components

of aircraft

• CD0 - parasite drag on the aircraft

CD,misc 0.015CD0,wing 0.000635CD0,tail 0.000224CD0,Fuselage 0.0017CD0 0.0176

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 22: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

22

Lift curve slope

-0.5

0

0.5

1

1.5

2

-5 0 5 10 15

alpha

Cl

LNV109a

NACA 642-415

NLF1015

Aerodynamic performance, lift, and drag from XFoil at Mach number for cruise

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 23: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

23

Longitudinal Stability Analysis

• Static margin for a fully loaded aircraft 34%

• Static margin with no fuel 41%

Xcg .467 %

CLα .14

Xac,wing .46 %

Xac,ht .932%

Cmα -.048

Static Margin

.343

(Percentages of Aircraft Length)

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 24: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

24

Cruise Trim: V = 100 kts, q = 32.46 => C_L = .4467

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 25: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

25

Lateral Trim• Crosswind correction

– Capable of steady level flight in a crosswind that is 30% of takeoff speed at a 11.5o side slip angle with no more than 20o of rudder deflection.

• Final sizes:– Rudder: cf/c = 0.8– Aileron: cf/c = 0.2

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 26: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

26

Engine Selection

• UAV Engines Ltd– Model AR741

Max Power [hp] 40

Cruise RPM 7000

Engine weight [lbs] 23.5

Installed Weight w/ Generator [lbs] 48.2

Generator Capacity [V] 28

Generator Output [W] 1500

Fuel Type Auto Gasoline

Engine Specifications

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 27: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

27

Propeller Selection• Helices Halter

– Model HH yr7022fa

• Specifically designed for the AR741 Engine

• Fixed Pitch• Beech Wood

Composite

C_Root [in] 2.5Diameter [ft] 2.5Advance Ratio 0.675Coefficient of Power 0.083Taper Ratio 0.52Activity factor 80Blades 2Twist 22.5Propeller Efficiency 0.824

Propeller Specifics

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

[deg]

Page 28: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

28

Material Selection• Al-2024 for the fuselage

and Al-7075 landing gear.• Aluminum inexpensive,

$3-4/lb• Strong (E = 106 psi) and

light • Resists corrosion and has

good fracture toughness properties

• AS4/3501 -6 Carbon Epoxy for the wing and tail skin

Mechanics of Materials, James Gere

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 29: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

29

Weight StatementWeight (lb)

Wing 25

Fuselage 25

V-Tail 8

Nacelles 5

Landing gear 7

Total 70

Engines 48

Fuel Systems 3

Total 51

Hydraulics 3

Electrical 15

Avionics 12

Flight Controls 5

Total 35

Propulsion

Fixed Equipment

Airframe StructureWeight (lb)

Unusable Fuel and Oil 1Fuel 39

Lidar 13CCNS 9Camera 20

Total 42

Operating Items

Payload

Total Component Weight (lb)

Empty Weight 155

Fuel 40

Installed Payload 60

Total 255

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 30: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

30

Reliability and Maintainability

• Minimal Maneuvers

• Steady Static Margin

• Minimal Parts– Non-retractable Landing Gear– Few Payload Parts

• Highly Reliable Data from Sensors

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 31: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

31

Cost Analysis Life-Cycle

• Modified around DAPCA IV Cost Model• Scaled to a UAV application• Analysis based off of Trans-Alaskan Pipeline

Customer

Break Down CostProduction Cost $50,000.00RDT&E $993,000.00Cost Per Aircraft $62,600.00Break Even Point 80 UAVs @ 5 years

Operation & Maintenance cost (per year) $154,000.00Operation Cost Per Day $428.00Cost Per Mile (1600 Miles of Pipeline) $0.27

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 32: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

32

Summary• Future Work

– More Structural Analysis

– CFD Analysis– More Research In

Operation Costs

Parameter Targets Threshold Current

Gross Weight [lbs] 300 500 255Endurance [hrs] 24 12 14Takeoff Length [ft] 500 1500 936Payload Capability Installed [lbs] 30 50 60Loiter Velocity [kts] 150 100 100

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary

Page 33: 1 Oculus Superne 1.) Introduction 2.) Mission & Market 3.) Operations 4.) Walk Around 5.) Payload 6.) Aircraft Sizing 7.) Aerodynamics 8.) Stability/Trim.

33

Questions?

1.) Introduction

2.) Mission & Market

3.) Operations

4.) Walk Around

5.) Payload

6.) Aircraft Sizing

7.) Aerodynamics

8.) Stability/Trim

9.) Propulsion

10.) Structures

11.) Cost

12.) Summary