Top Banner
1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024
126

1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

Dec 26, 2015

Download

Documents

Scarlett Harmon
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

1

Neuromuscular Fundamentals

Anatomy and Kinesiology

420:024

Page 2: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

2

Outline Introduction Structure and Function Fiber Arrangement Muscle Actions Role of Muscles Neural Control Factors that Affect Muscle Tension

Page 3: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

3

Introduction Responsible for movement of body and all of its

joints Muscles also provide:

Over 600 skeletal muscles comprise approximately 40 to 50% of body weight

215 pairs of skeletal muscles usually work in cooperation with each other to perform opposite actions at the joints which they cross

Aggregate muscle action:

Page 4: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

4

Muscle Tissue Properties

Irritability or Excitability

Contractility

Extensibility

Elasticity

Page 5: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

5

Outline Introduction Structure and Function Fiber Arrangement Muscle Actions Role of Muscles Neural Control Factors that Affect Muscle Tension

Page 6: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

6

Structure and Function

Nervous system structure Muscular system structure Neuromuscular function

Page 7: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

7

Figure 14.1, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 8: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

8

Nervous System Structure

Integration of information from millions of sensory neurons action via motor neurons

Figure 12.1, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 9: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

9

Nervous System Structure Organization

Brain Spinal cord

Nerves Fascicles

Neurons

Figure 12.2, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Figure 12.7, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 10: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

10

Nervous System Structure Both sensory and motor neurons in nerves

Figure 12.11, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 11: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

11

Nervous System Structure

The neuron: Functional unit of nervous tissue (brain, spinal cord, nerves) Dendrites: Cell body: Axon:

Myelin sheath: Nodes of Ranvier: Terminal branches: Axon terminals: Synaptic vescicles: Neurotransmitter:

Page 12: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

12

DendritesCell body

Axon

Myelin sheath

Node of Ranvier

Terminal branch

Terminal ending

Figure 12.4, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 13: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

13

Figure 12.8, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Terminal ending

Synaptic vescicle

Neurotransmitter: Acetylcholine (ACh)

Page 14: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

14

Figure 12.19, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 15: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

15

Structure and Function

Nervous system structure Muscular system structure Neuromuscular function

Page 16: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

16

Classification of Muscle Tissue Three types:

1. Smooth muscle

2. Cardiac muscle

3. Skeletal muscle

Page 17: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

17

Muscular System Structure Organization:

Muscle (epimyseum) Fascicle (perimyseum)

Muscle fiber (endomyseum) Myofibril Myofilament Actin and myosin

Other Significant Structures: Sarcolemma Transverse tubule Sarcoplasmic reticulum Tropomyosin Troponin

Page 18: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

18

Figure 10.1, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 19: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

19

Figure 10.4, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 20: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

20

http://staff.fcps.net/cverdecc/Adv%20A&P/Notes/Muscle%20Unit/sliding%20filament%20theory/slidin16.jpg

Page 21: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

21

Figure 10.8, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 22: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

22

Structure and Function

Nervous system structure Muscular system structure Neuromuscular function

Page 23: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

23

Neuromuscular Function

Basic Progression:

1. Nerve impulse

2. Neurotransmitter release

3. Action potential along sarcolemma

4. Calcium release

5. Coupling of actin and myosin

6. Sliding filaments

Page 24: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

24

Nerve Impulse

What is a nerve impulse?

-Transmitted electrical charge

-Excites or inhibits an action

-An impulse that travels along an axon is an ACTION POTENTIAL

Page 25: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

25

Nerve Impulse

How does a neuron send an impulse?

-Adequate stimulus from dendrite

-Depolarization of the resting membrane potential

-Repolarization of the resting membrane potential

-Propagation

Page 26: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

26

Nerve Impulse

What is the resting membrane potential?-Difference in charge between inside/outside of the neuron

-70 mV

Figure 12.9, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 27: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

27

Nerve Impulse

What is depolarization?

-Reversal of the RMP from –70 mV to +30mV

Propagation of the action potential

Figure 12.9, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 28: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

28

Nerve Impulse

What is repolarization?

-Return of the RMP to –70 mV

Figure 12.9, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 29: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

29

-70 mV

+30 mV

Page 30: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

30

Neuromuscular Function

Basic Progression:

1. Nerve impulse

2. Neurotransmitter release

3. Action potential along sarcolemma

4. Calcium release

5. Coupling of actin and myosin

6. Sliding filaments

Page 31: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

31

Release of the Neurotransmitter

Action potential axon terminals

1. Calcium uptake

2. Release of synaptic vescicles (ACh)

3. Vescicles release ACh

4. ACh binds sarcolemma

Page 32: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

32

Ca2+

ACh

Figure 12.8, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 33: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

33Figure 14.5, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 34: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

34

Neuromuscular Function

1. Nerve impulse

2. Neurotransmitter release

3. Action potential along sarcolemma

4. Calcium release

5. Coupling of actin and myosin

6. Sliding filaments

Page 35: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

35

Ach

Page 36: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

36

AP Along the Sarcolemma

Action potential Transverse tubules

1. T-tubules carry AP inside

2. AP activates sarcoplasmic reticulum

Page 37: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

37

Figure 14.5, Marieb & Mallett (2003). Human Anatomy. Benjamin Cummings.

Page 38: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

38

Neuromuscular Function

1. Nerve impulse

2. Neurotransmitter release

3. Action potential along sarcolemma

4. Calcium release

5. Coupling of actin and myosin

6. Sliding Filaments

Page 39: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

39

Calcium Release

AP T-tubules Sarcoplasmic reticulum

1. Activation of SR

2. Calcium released into sarcoplasm

Page 40: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

40

Sarcolemma

CALCIUM

RELEASE

Page 41: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

41

Neuromuscular Function

1. Nerve impulse

2. Neurotransmitter release

3. Action potential along sarcolemma

4. Calcium release

5. Coupling of actin and myosin

6. Sliding filaments

Page 42: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

42

Coupling of Actin and Myosin

Tropomyosin Troponin

Page 43: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

43

Blocked Coupling of actin and myosin

Page 44: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

44

Neuromuscular Function

1. Nerve impulse

2. Neurotransmitter release

3. Action potential along sarcolemma

4. Calcium release

5. Coupling of actin and myosin

6. Sliding filaments

Page 45: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

45

Sliding Filament Theory

Basic Progression of Events

1. Cross-bridge

2. Power stroke

3. Dissociation

4. Reactivation of myosin

Page 46: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

46

Cross-Bridge

Activation of myosin via ATP

-ATP ADP + Pi + Energy

-Activation “cocked” position

Page 47: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

47

Power Stroke

ADP + Pi are released Configurational change Actin and myosin slide

Page 48: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

48

Dissociation

New ATP binds to myosin Dissociation occurs

Page 49: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

49

Reactivation of Myosin Head

ATP ADP + Pi + Energy Reactivates the myosin head

Process starts over Process continues until:

-Nerve impulse stops-AP stops-Calcium pumped back into SR-Tropomyosin/troponin back to original position

Page 50: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

50

Page 51: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

51

Outline Introduction Structure and Function Fiber Arrangement Muscle Actions Role of Muscles Neural Control Factors that Affect Muscle Tension

Page 52: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

52

Shape of Muscles & Fiber Arrangement

Muscles have different shapes & fiber arrangements

Shape & fiber arrangement affects

Page 53: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

53

Shape of Muscles & Fiber Arrangement

Two major types of fiber arrangements

Page 54: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

54

Fiber Arrangement - Parallel

Parallel muscles

Categorized into following shapes: Flat Fusiform Strap Radiate Sphincter or circular

Page 55: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

55

Fiber Arrangement - Parallel

Flat muscles

Modified from Van De Graaff KM: Human anatomy, ed 6, Dubuque, IA, 2002, McGraw-Hill.

Page 56: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

56

Fiber Arrangement - Parallel

Fusiform muscles

Figure 3.3. Hamilton, Weimar & Luttgens (2005). Kinesiology: Scientific basis for human motion. McGraw-Hill.

Page 57: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

57

Fiber Arrangement - Parallel

Strap muscles

Figure 8.7. Hamilton, Weimar & Luttgens (2005). Kinesiology: Scientific basis for human motion. McGraw-Hill.

Page 58: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

58

Fiber Arrangement - Parallel

Radiate muscles

Modified from Van De Graaff KM: Human anatomy, ed 6, Dubuque, IA, 2002, McGraw-Hill.

Page 59: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

59

Fiber Arrangement - Parallel

Sphincter or circular muscles

Modified from Van De Graaff KM: Human anatomy, ed 6, Dubuque, IA, 2002, McGraw-Hill.

Page 60: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

60

Fiber Arrangement - Pennate

Pennate muscles

Page 61: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

61

Fiber Arrangement - Pennate

Categorized based upon the exact arrangement between fibers & tendon

Modified from Van De Graaff KM: Human anatomy, ed 6, Dubuque, IA, 2002, McGraw-Hill.

Page 62: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

62

Fiber Arrangement - Pennate

Unipennate muscles

Page 63: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

63

Fiber Arrangement - Pennate

Bipennate muscle

Page 64: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

64

Fiber Arrangement - Pennate

Multipennate muscles

Bipennate & unipennate produce more force than multipennate

Page 65: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

65

Outline Introduction Structure and Function Fiber Arrangement Muscle Actions Role of Muscles Neural Control Factors that Affect Muscle Tension

Page 66: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

66

Muscle Actions: Terminology

Origin (Proximal Attachment):

Page 67: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

67

Muscle Actions: Terminology

Insertion (Distal Attachment):

Page 68: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

68

Muscle Actions: Terminology

When a particular muscle is activated:

Examples: Bicep curl vs. chin-up Hip extension vs. RDL

Page 69: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

69

Muscle Actions Action:

Contraction:

Page 70: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

70

Muscle Actions Muscle actions can be used to cause,

control, or prevent joint movement or

Page 71: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

71

Types of Muscle Actions

IsometricIsometric IsotonicIsotonic

EccentricEccentricConcentricConcentric

MUSCLE ACTION (under tension)MUSCLE ACTION (under tension)

Page 72: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

72

Types of Muscle Actions

Isometric action:

Page 73: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

73

Types of Muscle Actions

Isotonic (same tension):

Isotonic contractions are either concentric (shortening) or eccentric (lengthening)

Page 74: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

74

Types of Muscle Actions

Concentric contractions involve muscle developing tension as it shortens

Eccentric contractions involve the muscle lengthening under tension

Page 75: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

75

Modified from Shier D, Butler J, Lewis R: Hole’s human anatomy & physiology, ed 9, Dubuque, IA, 2002, McGraw-Hill

What is the role of the elbow extensors in each phase?

Page 76: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

76

Types of Muscle Actions Isokinetics:

Page 77: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

77

Types of Muscle Actions

Movement may occur at any given joint without any muscle contraction whatsoever

Page 78: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

78

Outline Introduction Structure and Function Fiber Arrangement Muscle Actions Role of Muscles Neural Control Factors that Affect Muscle Tension

Page 79: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

79

Role of Muscles

Agonist muscles

Page 80: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

80

Role of Muscles

Antagonist muscles

Page 81: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

81

Page 82: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

82

Role of Muscles

Stabilizers

Page 83: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

83

Role of Muscles

Synergist

Page 84: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

84

Role of Muscles

Neutralizers

Page 85: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

85

Outline Introduction Structure and Function Fiber Arrangement Muscle Actions Role of Muscles Neural Control Factors that Affect Muscle Tension

Page 86: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

86

Factors That Affect Muscle Tension

Number Coding and Rate Coding Length-Tension Relationship Force-Velocity Relationship Angle of Pull Uniarticular vs. Biarticular Muscles Cross-sectional Diameter Muscle Fiber Type Pennation

Page 87: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

87

Number Coding & Rate Coding

Difference between lifting a minimal vs. maximal resistance is the number of muscle fibers recruited (crossbridges)

The number of muscle fibers recruited may be increased by

Page 88: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

88

Number Coding & Rate Coding

Number of muscle fibers per motor unit varies significantly

Page 89: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

89

Number Coding & Rate Coding As stimulus strength increases from threshold,

more motor units (Number Coding) are recruited & overall muscle contraction force increases in a graded fashion

From Seeley RR, Stephens TD, Tate P: Anatomy & physiology, ed 7, New York, 2006, McGraw-Hill.

Page 90: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

90

Number Coding & Rate Coding

Greater contraction forces may also be achieved by increasing the frequency or motor unit activation (Rate Coding)

Phases of a single muscle fiber contraction or twitch Stimulus Latent period Contraction phase Relaxation phase

Page 91: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

91

Number Coding & Rate Coding

Latent period

Contraction phase

Relaxation phase

From Powers SK, Howley ET: Exercise physiology: theory and application to fitness and performance, ed 4, New York, 2001 , McGraw-Hill.

Page 92: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

92

Number Coding & Rate Coding

Summation When successive stimuli are provided before

relaxation phase of first twitch has completed, subsequent twitches combine with the first to produce a sustained contraction

Generates a greater amount of tension than single contraction would produce individually

As frequency of stimuli increase, the resultant summation increases accordingly producing increasingly greater total muscle tension

Page 93: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

93

Number Coding & Rate Coding Tetanus

From Powers SK, Howley ET: Exercise physiology: theory and application to fitness and performance, ed 4, New York, 2001 , McGraw-Hill.

Page 94: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

94

All or None Principle

Motor unit

Typical muscle contraction

All or None Principle

Page 95: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

95

Factors That Affect Muscle Tension

Number Coding and Rate Coding Length-Tension Relationship Force-Velocity Relationship Angle of Pull Uniarticular vs. Biarticular Muscles Cross-sectional Diameter Muscle Fiber Type Pennation

Page 96: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

96

Length - Tension Relationship

Maximal ability of a muscle to develop tension & exert force varies depending upon the length of the muscle during contraction

Active Tension

Passive Tension

Page 97: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

97

Length - Tension Relationship Generally, depending upon muscle

involved

Page 98: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

98

Length - Tension Relationship

Generally, depending upon muscle involved

Page 99: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

99Figure 20.2, Plowman and Smith (2002). Exercise Physiology, Benjamin Cummings.

Page 100: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

100

Factors That Affect Muscle Tension

Number Coding and Rate Coding Length-Tension Relationship Force-Velocity Relationship Angle of Pull Uniarticular vs. Biarticular Muscles Cross-sectional Diameter Muscle Fiber Type Pennation

Page 101: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

101

Force – Velocity Relationship When muscle is contracting (concentrically or

eccentrically) the rate of length change is significantly related to the amount of force potential

Page 102: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

102

Force – Velocity Relationship

Maximum concentric velocity = minimum resistance

As load increases, concentric velocity decreases

Eventually velocity = 0 (isometric action)

Page 103: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

103

Force – Velocity Relationship As load increases beyond muscle’s ability to

maintain an isometric contraction

As load increases

Eventually

Page 104: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

104

Muscle Force – Velocity Relationship

Indirect relationship between force (load) and concentric velocity

Direct relationship between force (load) and eccentric velocity

Page 105: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

105

Factors That Affect Muscle Tension

Number Coding and Rate Coding Length-Tension Relationship Force-Velocity Relationship Angle of Pull Uniarticular vs. Biarticular Muscles Cross-sectional Diameter Muscle Fiber Type Pennation

Page 106: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

106

Angle of Pull Angle between the line of pull of the muscle & the

bone on which it inserts (angle toward the joint) With every degree of joint motion, the angle of

pull changes Joint movements & insertion angles involve

mostly small angles of pull

Page 107: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

107

Angle of Pull Angle of pull changes as joint moves

through ROM Most muscles work at angles of pull less

than 50 degrees Amount of muscular force needed to

cause joint movement is affected by angle of pull – Why?

Page 108: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

108

Angle of Pull Rotary component - Acts perpendicular to

long axis of bone (lever)

Modified from Hall SJ: Basic biomechanics, New York, 2003, McGraw-Hill.

Page 109: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

109

Angle of Pull If angle < 90 degrees,

the parallel component is a stabilizing force

If angle > 90 degrees, the force is a dislocating force

Modified from Hall SJ: Basic biomechanics, New York, 2003, McGraw-Hill.

What is the effect of >/< 90 deg on ability to rotate the joint forcefully?

Page 110: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

110

Factors That Affect Muscle Tension

Number Coding and Rate Coding Length-Tension Relationship Force-Velocity Relationship Angle of Pull Uniarticular vs. Biarticular Muscles Cross-sectional Diameter Muscle Fiber Type Pennation

Page 111: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

111

Uni Vs. Biarticular Muscles

Uniarticular muscles

Ex: Brachialis

Ex: Gluteus Maximus

Page 112: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

112

Uni Vs. Biarticular Muscles Biarticular muscles

May contract & cause motion at either one or both of its joints

Advantages over uniarticular muscles

Page 113: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

113

Advantage #1

Can cause and/or control motion at more than one joint

Page 114: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

114

Advantage #2

Can maintain a relatively constant length due to "shortening" at one joint and "lengthening" at another joint (Quasi-isometric)

- Recall the Length-Tension Relationship

Page 115: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

115

Advantage #3

Prevention of Reciprocal Inhibition This effect is negated with biarticular

muscles when they move concurrently Concurrent movement:

Countercurrent movement:

Page 116: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

116

What if the muscles of the hip/knee were uniarticular?

Hip

Knee

Ankle

Muscles stretched/shortened to extreme lengths!

Implication?

Page 117: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

117Figure 20.2, Plowman and Smith (2002). Exercise Physiology, Benjamin Cummings.

Page 118: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

118

Hip

Knee

Ankle

Quasi-isometric action? Implication?

Page 119: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

119

Active & Passive Insufficiency Countercurrent muscle actions can reduce the

effectiveness of the muscle

As muscle shortens its ability to exert force diminishes

As muscle lengthens its ability to move through ROM or generate tension diminishes

Page 120: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

120

Factors That Affect Muscle Tension

Number Coding and Rate Coding Length-Tension Relationship Force-Velocity Relationship Angle of Pull Uniarticular vs. Biarticular Muscles Cross-sectional Diameter Muscle Fiber Type Pennation

Page 121: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

121

Cross-Sectional Area

Hypertrophy vs. hyperplasia Increased # of myofilaments

Increased size and # of myofibrils Increased size of muscle fibers

http://estb.msn.com/i/6B/917B20A6BE353420124115B1A511C7.jpg

Page 122: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

122

Factors That Affect Muscle Tension

Number Coding and Rate Coding Length-Tension Relationship Force-Velocity Relationship Angle of Pull Uniarticular vs. Biarticular Muscles Cross-sectional Diameter Muscle Fiber Type Reflexes Pennation

Page 123: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

123

Muscle Fiber Characteristics

Three basic types:

1. Type I:

-Slow twitch, oxidative, red

2. Type IIb:

-Fast twitch, glycolytic, white

3. Type IIa:

-FOG

Page 124: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

124

Factors That Affect Muscle Tension

Number Coding and Rate Coding Length-Tension Relationship Force-Velocity Relationship Angle of Pull Uniarticular vs. Biarticular Muscles Cross-sectional Diameter Muscle Fiber Type Reflexes Pennation

Page 125: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

125

Effect of Fiber Arrangement on Force Output

Concept #1: Force directly related to cross-sectional area more fibers

Example: Thick vs. thin longitudinal/fusiform muscle?

Example: Thick fusiform/longitudinal vs. thick bipenniform muscle?

Concept #2: As degree of pennation increases, so does # of fibers per CSA

Page 126: 1 Neuromuscular Fundamentals Anatomy and Kinesiology 420:024.

126