Top Banner
1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley) Debra Fischer (Yale) Andrew Howard (Berkeley) John Johnson (Caltech) Howard Isaacson (Berkeley) Jason Wright (PSU) Jay Anderson (STScI) Nikolai Piskunov (Uppsala)
21

1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

Jan 05, 2016

Download

Documents

Evelyn King
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

1

Neptune Mass Exoplanets

Jeff Valenti

MJupiter / 19 = MNeptune = 17 MEarth

Geoff Marcy (Berkeley) Debra Fischer (Yale)

Andrew Howard (Berkeley) John Johnson (Caltech)

Howard Isaacson (Berkeley) Jason Wright (PSU)

Jay Anderson (STScI) Nikolai Piskunov (Uppsala)

Page 2: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

2

Key Points

Core-Accretion planet formation scenario

Metal-rich stars have more Jupiter mass planets

Msini sensitivity has steadily improved

Largest Msini in a system constrains models

Measuring [Fe/H] for M dwarfs is hard

Known systems with Msini < MNep are metal poor

Core-Accretion predicts “planet desert” below MNep

Set limits on Msini of undetected planets

Extrapolating mass function to super-Earths

Radial velocities affected by “jitter”

Improving velocity precision with “grand solution”

Host

meta

llicityM

ass

functio

n

Page 3: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

3

Core Accretion Planet Formation

Early PhaseSticking andCoagulation

Middle PhaseGravitational

Attraction

Late PhaseGas Sweeping

Page 4: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

4

Synthetic Spectrum Fits

6223 K5770 K5277 K4744 K

Valenti & Fischer (2005, ApJ, 159, 141)

Page 5: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

5

Metal rich stars have more Jupiter-mass planets

Core-Accretion!

Page 6: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

6

Msini sensitivity has steadily improved

Mass ofNeptune

Lowest Massin FV (2005)[K < 30 m/s]

exoplanets.org

Page 7: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

7

[Fe/H] of host star vs. lowest Msini in system

Page 8: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

8

[Fe/H] of host star vs. highest Msini in system

Page 9: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

9

G+M binaries constrain photometric [Fe/H] for M dwarfs

[Fe/H]+0.24

+0.45

+0.28+0.31

+0.21

+0.21Jupiters

Neptunes

Binaries

Johnso

n &

Apps (2

00

9, A

pJ, 6

99

, 933)

IR: Barbara Rojas-Ayala

Page 10: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

10

Improve [Fe/H] for M dwarfs

Page 11: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

11

Known systems with Msini < MNep are metal poor

Star Max MsinI [Fe/H]

HD 156668 4.2 +0.05

CoRot-7b 5.0 +0.05

GJ 1214 6.5 ?

HD 1461 8 +0.18

HD 97658 8.2 -0.23

GJ 176 8.3 -0.1

HD 7924 9 -0.15

HD 40307 9.1 -0.31

GJ 674 11.1 -0.3

HD 4308 15 -0.31

GJ 581 15.7 -0.2

HD 69830 18 -0.06

HD 125612 19 0.24

HD 190360 19 0.21

HD 219828 19.8 0.19

Mass ofNeptune

Mean[Fe/H]

is-0.13

Still needto evaluate sample bias

Page 12: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

12

Current models predict a “planet desert”

Gas GiantsGas Giants

Ice GiantsIce GiantsMass ofNeptune

Snow Line

Page 13: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

13

Set Limits on Mass of Undetected Planets

Bad Case, N=22

Good Case, N=131

Page 14: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

14

Dete

ctio

ns

Can

did

ate

sFA

P <

0.0

5

Planets

Page 15: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

15

Observations Disprove Current Models

Page 16: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

16

Planetary Mass Function (P < 50 days)H

ow

ard

et a

l. (20

10, S

cien

ce, 3

30

, 6

53

)

Page 17: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

HD 179079 – Apparent Uncertainties

Error bars = stddev(vseg-vmean)/√Nseg

M sin i = 27.5 MEarth

Page 18: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

Radial velocities affected by “jitter”V

ale

nti e

t al. (2

009, A

pJ, 7

02, 9

89)

Analysis componentStellar component

Page 19: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

Plenty of Constraints for Grand Solution

Page 20: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

Radial Velocities for GJ 412a

Page 21: 1 Neptune Mass Exoplanets Jeff Valenti M Jupiter / 19 = M Neptune = 17 M Earth Geoff Marcy (Berkeley)Debra Fischer (Yale) Andrew Howard (Berkeley)John.

21

Key Points

Core-Accretion planet formation scenario

Metal-rich stars have more Jupiter mass planets

Msini sensitivity has steadily improved

Largest Msini in a system constrains models

Measuring [Fe/H] for M dwarfs is hard

Known systems with Msini < MNep are metal poor

Core-Accretion predicts “planet desert” below MNep

Set limits on Msini of undetected planets

Extrapolating mass function to super-Earths

Radial velocities affected by “jitter”

Improving velocity precision with “grand solution”

Host

meta

llicityM

ass

functio

n