Top Banner
1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany
17

1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

Jan 29, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

1 MC Group Regensburg

Spin and Charge Transport in Carbon-based Molecular Devices

Rafael GutierrezMolecular Computing Group University of RegensburgGermany

Page 2: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

2 MC Group Regensburg

Carbon-based electronics

A. Rochefort et al, PRB 60,13824 (1999)

P. W. Chiu et al. Appl. Phys. Lett. 80,3811 (2002)

H. Watanabe et al.,Appl. Phys. Lett. 78, 2928 (2001)

nanoscaleelectrodes

http://www.pa.msu.edu/cmp/csc/nanotube.html

Page 3: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

3 MC Group Regensburg

Outline

elastic transport kBT=0

Charge CNT-C60-CNT transport

Spin FM-MWCNT-FM transport

linear conductance

Contact effects

Structural modifications of the junction

Page 4: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

4 MC Group Regensburg

Methodology

F. Grossmann, RG and R. Schmidt, ChemPhysChem 3, 101 (2002)

Density-functional (DF)-based tight-binding approach:• Expand eigenstates into valence LCAO basis• Extended Hückel-like Hamiltonian ~ Hab ,Sab via DFT

G. Seifert and H. Eschrig Z. Phys. Chem. 267, 529 (1986)D. Porezag et al. Phys. Rev. B 51, 12947 (1995)

Green function techniques

2-terminal Transmission T conductance g

Elastic scattering

Landauer

Page 5: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

5 MC Group Regensburg

CNT-C60-CNT junctionsMotivation:C. Joachim et al. Phys. Rev. B 58, 16407 (1998)  ~ compression J. J. Palacios et al. Nanotechnology 12, 160 (2001) ~ charge transfer doping

Alternative way to modify the transmission ?

Rotate the molecule

RG, G. Fagas, G. Cuniberti, F. Grossmann, K. Richter, and R. Schmidt, Phys. Rev. B65, 11341 (2002)

Page 6: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

6 MC Group Regensburg

HOMO LUMO

• Structural optimization is essential• Strong mixing of CNT-states with C60 molecular orbitals

~ lifting of degeneracies

Page 7: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

7 MC Group Regensburg

• Strong orientational dependence of the

conductance!

• ~ Variations of 2-3 orders of magnitude

near EF

Page 8: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

8 MC Group Regensburg

Do the caps introduce something new ?

Molecular state?

Page 9: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

9 MC Group Regensburg

Evolution of the projected DOS with increasing (a->d) CNT-C60 separation

PDOS onCNT-caps

PDOS on C60

Page 10: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

10 MC Group Regensburg

Molecular state?

Metallisation via

”unconventional” MIGS

pentagonal defect

NO !

RG, G. Fagas,K. Richter, F. Grossmann and R. Schmidt, Europhys. Lett. 62, 90 (2003)

Do the caps introduce something new ?

Page 11: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

11 MC Group Regensburg

GeVHH 0

Switching behaviour

Page 12: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

12 MC Group Regensburg

GMR in FM-MWCNT-FM junctions

Experiments : K. Tsukagoshi et al. Nature 401, 572 (1999), B. Zhao et al. APL 80, 3141 (2002)

• Spin-coherent transport ls ~ 200 nm-1m

• Negative GMR ~ 30 %

P

APP

gggGMR

DOS

Page 13: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

13 MC Group Regensburg

Co(111) Co(111)

(2,2)@(6,6)

)(Im1 EGdEn r

Charge neutrality

A minimal model

• No mixing of up- and down-spin channels

• electrodes ~ single-band model

• MWCNT ~ -orbitals, inter-wall inter. tin = const.• (2,2)@(6,6) ~ perfect interface matching

Page 14: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

14 MC Group Regensburg

• Conductance(EF ,tin=0) ~ 2G0 for full contacted MWCNT

expected value for infinite metallic DWCNT ~ 4G0 (tin=0)• channel blocking ~ charge transfer+CNT-metal contact

symmetry

Paramagnetic case P=0

~4e2/h=2G0 ~2e2/h=1G0

see also e.g., S. Sanvito et al. Phys. Rev. Lett. 84, 1974 (2000);J. J. Palacios et al. Phys. Rev. Lett. 90, 106801 (2003)

Page 15: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

15 MC Group Regensburg

• full contact: GMR < 0• partial contact: GMR > 0 • GMR weakly affected by tin

• Charge neutrality essential

S. Krompiewski, RG and G. Cuniberti, cond-mat/0402359

Ferromagnetic case P=0.5

Page 16: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

16 MC Group Regensburg

Elastic transport

Inelastic transport: electron-vibron couplingKeldysh NEGF techniques

Incommensurability~structural disorder

charge spin

CNT-C60-CNT

(capped)CNT-C60-CNT

GMR in FM-DWCNT-FMjunctions

Page 17: 1 MC Group Regensburg Spin and Charge Transport in Carbon-based Molecular Devices Rafael Gutierrez Molecular Computing Group University of Regensburg Germany.

17 MC Group Regensburg

G. Cuniberti (MC-Group,Uni Regensburg)G. Fagas (NMRC, Cork, Ireland, Poster)K. Richter (Uni Regensburg)S. Krompiewski (IfMP-Poznan, Poster)M. Hartung (Uni Regensburg, Poster)N. Ranjan (TU-Dresden, Poster)G. Seifert (TU Dresden, Talk Fri. 1135)F. Grossmann (TU-Dresden)R. Schmidt (TU-Dresden)A. Di Carlo (Tor Vergata, Rome, Talk Wed.

1430)A. Pecchia (Tor Vergata, Rome, Poster)M. Gheorghe (Uni Regensburg, Poster)C. Böhme (Uni Marburg)

MPIPKS+ADMOL

Acknowledgements