Top Banner
1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental Research Center, Ada OK In-Situ Fenton Oxidation: A Critical Analysis Fundamental Chemistry Bench-scale Treatability Studies Field-scale Applications (pilot- or full-scale) Fate and Transport Issues 1
29

1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

Dec 26, 2015

Download

Documents

Ezra Wood
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

1

In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids

December 10-12, 2002, Chicago, IL

Scott G. Huling, Ph.D., P.E.USEPA Robert S. Kerr Environmental

Research Center, Ada OK

In-Situ Fenton Oxidation: A Critical AnalysisFundamental ChemistryBench-scale Treatability StudiesField-scale Applications (pilot- or full-scale)Fate and Transport Issues

1

Page 2: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

2

Fenton and Related ReactionsH2O2 + Fe+2 Fe+3 + OH- + ·OH (1)

H2O2 + Fe+3 Fe+2 + ·O2- + 2 H+ (2)

·O2- + Fe+3 Fe+2 + O2 (3)

·OH + Contaminant Products (CO2, Cl-, etc.) (4)Scavenging reactions n

i=1 ki

·OH + ni=1 Si products of scavenging rxn (5)

Nonproductive reactions2 H2O2 + reactants O2 + 2 H2O (6)

Miscellaneous optimum pH 3-4; metals mobility;

exothermic; stabilizers

Page 3: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

3

Potential Limitations of Fenton Oxidation

1. Non-productive reactions2. Scavenging3. Low reaction rates4. Insufficient Fe5. pH adjustment 6. Oxidant, iron, acid, stabilizer transport7. O2(g) production8. Undesirable reaction byproducts9. Enhanced volatilization and transport

10. Unreactive target compounds

Page 4: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

4

Cross-section of hazardous waste spill/release

Page 5: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

5

Page 6: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

6

Bench-scale Treatability Study Objectives

High Priority1. Proof of concept – quantify extent of

oxidation given potential limitations2. Determine reaction byproducts3. Metals mobility

Page 7: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

7

Bench-scale Study Guidelines

1. Components: soil, ground water, reagents 2. Capture and quantify losses from the reactor3. pH change4. Monitoring parameters: target, byproducts,

metals 5. Control6. Establish pre-, post-oxidation concentrations 7. Perform pre-, post-oxidation mass balance

Page 8: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

8

Field-Scale Application Guidelines

1. Injectate volume vs. pore volume target area 2. H2O2 concentration 3. pH adjustment4. Pulse injection of Fe(II) and H2O2

5. Injection strategy

Page 9: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

9

H2O2 Reaction, Subsurface Transport[H2O2(t)] / [H2O2]O = exp(–KH2O2 R2 π Z η / Q)

(After, Clayton, 1998)

Flow, well spacing, pH

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Radial Distance (m)

C (t

) / C

0

12 L/min

4 L/min

kH2O2 = -0.91/hr

Page 10: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

10

Other Chemical Reagents

Reactions/interactions

Fe(II) - precipitation, complexation, oxidationAcid - consumed by acid neutralizing capacity Stabilizers (H2O2, Fe(II)) - precipitation,

complexation, oxidation

Page 11: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

11

Page 12: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

12

Page 13: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

13

K = 100 ft/day

K = .0001 ft/day

K = 0.1 ft/day

Diffusion

Advection

Avg. K = 10 ft/day

K = .01 ft/day

Page 14: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

14

Non-ideal Conditions Need to be Considered

Preferential pathways - greater rate of transport and oxidant delivery occurs through high conductive zones

Lower permeability zones - diffusion dominated transport << H2O2 reaction

Multiple applications

Page 15: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

15

Transport Issues

Representative volume Heat and O2(g) released - impact

Pneumatic transport of ground water Decreased DNAPL visc., increased mobilityDNAPL evaporationVolatilization of DNAPL componentsThermal desorption from the solid phaseEnhanced H2O2 decomposition

Page 16: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

16

Page 17: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

17

Page 18: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

18

Ground waterflow

Page 19: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

19

Page 20: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

20

SVE is a Complimentary Technology to Fenton Oxidation

Capture/treat/dispose volatiles SVE may already be part of the remedyMinimize the transport/uncontrolled lossMinimize potential exposure pathwaysVent wells for deeper systems

Page 21: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

21

Performance Monitoring

Preferred monitoring parameters:target compound - aqueous (rebound: long

term vs. immediate), solidreaction byproducts - aqueousMetals - aqueousH2O2 - aqueous

Off-gas, soil gas samplesEstablish sentry wells

Page 22: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

22

… performance monitoringGround water monitoring

Low priority - limited value for performance evaluation

CO2

DOTOC CODConductivityORPTemperature

Page 23: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

23

Effects of ISFO on Natural Attenuation?

1. H2O2 - antiseptic, heat 2. Heterogeneity - microniches, preferential pathways3. Improvement in post-oxidation biodegradation4. Microbial sensitivity5. Population changes6. Toxicity response

Page 24: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

24

Health and Safety

Heat released O2(g) released + Flammable vaporsEnhanced volatilization Accumulation of vapors (buildings, utilities)

Page 25: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

25

Conclusions

Hydroxyl radical – strong oxidantPotential limitationsNumerous parameters influence success/failureMonitoring parameters/approach – key to successful

performance evaluationEnhanced transport processesRecognize/capture volatile emissions

25

Page 26: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

26

Scavenging Analysis

Target contaminant oxidation reaction: k OH + C reaction byproducts

Scavenger oxidation reaction: ki

OH + Si reaction byproducts

Reaction rate equations: D[C]/dt = k OH [C] D[Si]/dt = iki OH [Si]

Page 27: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

27

Relative Reaction Rates

Relative rate of reaction (RR) between OH and Si, and OH and C

RR = (iki [OH] [Si]) / (k [OH] [C])

Page 28: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

28

Example 1

[TCE ] = 450 g/L (3.42×10-6 M); k = 4.2×109 L/mol-s [Cl-] = 1250 mg/L (3.52×10-2 M); k = 4.3×109 L/mol-

s[CO3

2- ] = 150 mg/L (2.5×10-3 M); k = 3.9×108 L/mol-s[·OH] assume 10-15 M

RR = 10,600

Page 29: 1 In-Situ Treatment of Groundwater with Non-aqueous Phase Liquids December 10-12, 2002, Chicago, IL Scott G. Huling, Ph.D., P.E. USEPA Robert S. Kerr Environmental.

29

Example 2

[PCE ] = 4.15 mg/L (2.5×10-5M); k = 2.6×109 L/mol-s [Cl-] = 45 mg/L (1.27×10-3M); k = 4.3×109 L/mol-s[H2O2]= 50% , 500,000 mg/L (1.47×101M); k = 2.7×107 L/mol-s[·OH] assume 10-15 mol/L

RR = 6,180