Top Banner
1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz International Centre for Geohazards Norwegian Geotechnical Institute, Norway Dep. of Geosciences, University of Oslo, Norway. .
24

1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

Dec 14, 2015

Download

Documents

Allan Barnett
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

1

High mobility of subaqueous debris flows and

the lubricating layer modelAnders ElverhøiFabio De Blasio

Trygve IlstadDieter Issler

Carl B. Harbitz

International Centre for GeohazardsNorwegian Geotechnical Institute, Norway

Dep. of Geosciences, University of Oslo, Norway..

Page 2: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

2

Debris flow

How can we explain that 10 - 1000 km3 of sediments can

• move100 - > 200 km• on < 1 degree slopes• at high velocities ( -20 - > 60 km/h)

Basic problem!

Page 3: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

3

Experimental settingsSt. Anthony Falls Laboratory

10 m

turbidity current

debris flow

6° slope

Experimental Flume: “Fish Tank”

Video (regular and high speed) and

pore- and total pressure measurements

Page 4: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

4

Page 5: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

5

Flow behavior Clay rich debris flows

Hydroplaning front “Auto-acephalation” 32.5 wt% clay cited from G. Parker

Page 6: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

6

Pressure measurements at the base of a clay rich debris flow as pressure develops during the flow

Page 7: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

7

Flow behavior:Debris flow at high mass fraction of clay

Page 8: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

8

Material from the base of the debris flow is eroded and incorporated into the lubricating layer.

L1

L2

Ls

H1

H2Hs

Downslope gravitational forces

Bottom shear stresses

Page 9: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

9

Grossly simplified detachment/stretching dynamics

• Tensile force in the neck• Viscoplastic stretching of the neck is volume-

conserving– The growth rate of the length is the product of the

stretching rate with the neck length

• Solution of the simplified stretching equations:– The neck stretches and thins at a rate that increases

with time, until the height becomes zero after a finite time

• detachment occurs

Page 10: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

10

Neglected physics:• Changing tension due to slope and velocity

changes• Friction, drag and inertial forces on neck• Changes in material parameters of neck due to

– shear thinning, accumulated strain and wetting, crack formation

More sophisticated treatment is possible Coupled nonlinear equations, use a numerical modelMain difficulty is quantitative treatment of crack

formation and wetting effects

Detachment/stretching dynamics

Page 11: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

11

Tension in the “neck”:

Viscoplastic stretching of the neck is volume-conserving:

Solution of the simplified stretching equations:

Grossly simplified detachment dynamics:

ssss

s

ytyt

LdtdLHdtdH

aH

b

/,/

''

)(sin')(sin' 22222

11111 U

H

Lg

H

HLU

H

Lg

H

HL

sssst

)(

)0()0()(,1)0()(

'/

tH

HLtLeHtH

s

sss

t

y

t

y

tss

y

Page 12: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

12

Simulation of the giant Storegga slide400-500 km runout

• Clay-rich sediments– Visco-plastic

materials:

• Model approach:– “Classical” BING– BING: Remolding of

the sediment during flow

– H-BING: Hydroplaning

Page 13: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

13

Velocity profile of debris flows Bingham fluid

shear stress

yield strength

dynamic viscosity

shear rate

y

uy

Plug layer

Shear layer

Yield strength: constant during flow

Page 14: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

14

Water film shear stress reduction in a Bingham fluid

Water, w, w, uw

Mudm, m, um

Lid(Debris flow)

=1=1-

u=1

Shear layer

Plug layer

1+

R(1+)/

1

1+

1

1

1-

u(R-)/

1

1u

1

1-

Velocity Shear stress

Page 15: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

15

Simulation: final deposit of the large-scale Storegga

Initial deposits

Present deposits

= 10 kPa

= 10 kPa with remoulding to 0,5 kPa

= 10 kPa with remoulding to 0,1 kPa

= 5 kPa with hydroplaning

Page 16: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

16

Conclusions• Experiments

– water enhances the mobility of debris flows via the formation of a lubricating layer/stretching

• The giant Storegga slide – BING

• reproduced with extremely low yield stresses, 200-300 Pa

– R-BING• starting from yield stresses between 6 and 10kPa, residual

stress of 200 Pa

– Hydroplaning • extreme runout distances, even with stiff sediments

independence of sediment rheology

Page 17: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

17

Future directions (II)

• Modification of the existing models– Incorporation of water in the slurry – Detachment mechanism of a hydroplaning

head

• Parameterizations of the rheological properties as a function of water content

Page 18: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

18

Page 19: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

19

Subaqueous conditions -increased mobility

Basic concept – based on experimental studies:– Hydroplaning– Lubricating– Stretching (not yet implemented)

Page 20: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

20

Comparison between Storegga slides and selected cases

Page 21: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

21

Page 22: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

22

Future direction (I)

• Modification of the existing models– Incorporation of water in the slurry – Detachment mechanism of a hydroplaning head

• Parameterizations of the rheological properties as a function of water content (and stretching?)

• Important question: How is the basal “water” layer distributed?

Page 23: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

23

2W ten WD

1 1 1 1

FdU 1gsin C U

dt D L WD 2 L

yten

2 2 2

FdVgsin

dt L WD D

D1

D2

Page 24: 1 High mobility of subaqueous debris flows and the lubricating layer model Anders Elverhøi Fabio De Blasio Trygve Ilstad Dieter Issler Carl B. Harbitz.

24

Velocity profile of debris flows Bingham fluid – with remolding

Plug layer

Shear layer

Yield strength at start: high; 10–20 kPa

Yield strength at stop: low; < 1 kPa

The yield stress is allowed to vary according to:

eyyy )y,0,(,(

initial yield stress

residual yield stress

total shear deformation

dimensionless coefficient quantifying the remolding efficiency

0,y

y,