Top Banner
1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008
24

1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

Mar 27, 2015

Download

Documents

Alex Combs
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

1

GOES-12 Eccentricity Control(Co-Location with Brasilsat B1)

Richard McIntosh

a.i. solutions, Inc.

AIAA SOSTC Workshop

April 15, 2008

Page 2: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

2

Co-Location Requirements• GOES-12 located at 75 deg W +/- 0.5 deg longitude.• Brasilsat B1 given OK to move from 70 deg W to 75 deg W and

maintain +/- 0.1 deg longitude.• B1 now occupies the middle 0.2 deg of GOES-12 box.• StarOne (B1 owners) suggested eccentricity vector control to avoid

close approaches.• GOES maneuver control software not capable of planning East-

West stationkeeping (EWSK) maneuvers that include eccentricity vector control.

• NOAA desires to not perform any extra maneuvers for eccentricity control.

• Analysis performed to determine how eccentricity control could be incorporated into the normal 1-burn EWSK operations.

Page 3: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

3

B1 and G-12 Longitude vs Time With EWSK Maneuvers

284.5

284.6

284.7

284.8

284.9

285

285.1

285.2

285.3

285.4

285.5

0 30 60 90 120 150 180 210 240 270 300 330 360 390

Days

Lo

ng

itu

de

(deg

E)

GOES-12

B1

Page 4: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

4

Eccentricity Control Strategy Recommended By StarOne

0

20

40

60

20 40 60-20-40

-60

-20

-40

-60

ex (*10-5)

ey (

*10-5

)

Eccentricity

B1

GOES 12

? @ γΔeseparation

X

Eccentricity Vector

ex = e cos(Ω+ω)ey = e sin(Ω+ω)

Page 5: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

5

V

V

ECCVECTOR

ΔV from SRPRaises Apogee

ΔV from SRPLowers Perigee

SRP

Effect of Solar Radiation Pressure on Eccentricity

Page 6: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

6

-0.0004

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

-0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005

EX

EY Eccentricity Vector Over 1 Year

2-Body Only + SRP

EX = e cos(Ω+ω)

EY = e sin(Ω+ω)

Natural Eccentricity Circle(size depends on Area/Mass)

Page 7: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

7

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

-0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005

EX

EY Eccentricity Vector Over 1 Year

2-Body Only + SRP + Sun + Moon

Page 8: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

8

Eccentricity Control• Eccentricity vector will tend to follow the natural

circle throughout the year.• Desired control circle size is usually smaller.• Objective is to try to make a short arc of the

natural circle closely follow the control circle over the next EWSK cycle.

• EWSK frequency:– GOES-12 every 11 or 12 weeks– B1 every 3 weeks

Page 9: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

9

β

β

Control Circle

Natural Circle

Δα

Δα = Change in Sun RA over 1 East-West Maneuver Cycle

Sun at Start

Sun at End

0e

1e

EX

EY

Page 10: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

10

Δe

Control Circle

Natural Circle

Δα

β

β

EY

EX

Next E-W Cycle

Page 11: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

11

Equations (1 of 3) coseex

sineey

00032.0nr Natural radius for GOES-12 m

ACr rn 01115.0

0003.0cr (or 0.0002) Control radius

= Sun RA at burn time = Change in Sun RA over one EW cycle (75.9 deg in 77 days)

2

2sin

arcsin

c

n

r

r

= 3.0 deg for cr = 0.0003

= 41.9 deg for cr = 0.0002

Page 12: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

12

Equations (2 of 3)For circle centered on Y-axis at Y = +0.0002 targets are

cosarg cetT rex

0002.0sinarg cetT rey

Required change

0arg exexex etT

0arg eyeyey etT

ex

eyRA arctan1 RA2 = RA1 + 180

22 eyexe

ΔeRA1

Page 13: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

13

Equations (3 of 3)

eV = Delta-V to change eccentricity

dV = Delta-V to change drift (SMA change)

2

eVVe

SMARgeo

VVd

2

1

Compute two delta-Vs

ed VVV 2

1

2

11

ed VVV 2

1

2

12

Note: Delta-Vs are normally in negative velocity direction for 75 West

Page 14: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

14

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005

PREBURN GOES-12

1 BURNONLY

2 BURNS

Ex, Ey Achieved With 1 Burn vs 2 Burns

TARGET

1-Burn vs 2-Burn Control

1-Burn-0.268 m/s

2-Burns-0.478 and +0.211 m/s

Page 15: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

15

-0.0006

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008

Current GOES StrategyBurns at Perigee

Single Burn atPerigee

Page 16: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

16

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

-0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008

CONTROL CIRCLE RADIUS 0.00032-BURN CONTROLBETA OFFSET -3 DEG

2-Burn Control0.0003 Circle

Page 17: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

17

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

-0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008

CONTROL CIRCLE RADIUS 0.00022-BURN CONTROLBETA OFFSET -42 DEG

2-Burn Control0.0002 Circle

Page 18: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

18

GOES-12 4-Year Simulation1-Burn East-West Maneuvers

Page 19: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

19

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-0.0006 -0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

GOES-12 SINGLE BURN CONTROL84 DAY FIRST CYCLEREMAINING CYCLES 77 DAYSYEAR 1

1-DAY AVERAGE EX, EY

1

NO N-S BURNS

Page 20: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

20

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-0.0006 -0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

GOES-12 SINGLE BURN CONTROL77 DAY CYCLE

YEAR 2

1-DAY AVERAGE EX, EY

2

NO N-S BURNS

Page 21: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

21

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-0.0006 -0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

GOES-12 SINGLE BURN CONTROL77 DAY CYCLE

YEAR 3

1-DAY AVERAGE EX, EY

3

NO N-S BURNS

Page 22: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

22

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-0.0006 -0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

GOES-12 SINGLE BURN CONTROL77 DAY CYCLE

YEAR 4

1-DAY AVERAGE EX, EY

4

NO N-S BURNS

Page 23: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

23

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

-0.0006 -0.0005 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

GOES-12 SINGLE BURN CONTROL84 DAY FIRST CYCLEREMAINING CYCLES 77 DAYS4 YEARS

1-DAY AVERAGE EX, EY

12

3

4

NO N-S BURNS

Page 24: 1 GOES-12 Eccentricity Control (Co-Location with Brasilsat B1) Richard McIntosh a.i. solutions, Inc. AIAA SOSTC Workshop April 15, 2008.

24

Conclusions• Analysis has shown that sufficient eccentricity control can be

accomplished by GOES-12 with little or no impact to the normal EWSK operations (single-burn).

• Only requirement is a change in the time of the burn (move from the normal perigee burn location).

• NOAA has incorporated the equations presented here into a spreadsheet that computes the nominal time of the burn.

• GOES-12 successfully performed the first EWSK maneuver with eccentricity control on July 24, 2007.

• Subsequent EWSK maneuvers have shown that the single-burn strategy provides adequate eccentricity control.

• Further analysis needs to be done to verify that the desired spacecraft separation can be maintained in the long term.