Top Banner
DWDM Principles V1.1
82

1) Dwdm Bc en Dwdm Principles 94p 1 Ppt 20100729 88p

Aug 16, 2015

Download

Documents

Mayank Gamit

DWDM Basic And DWDM Principles
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

DWDM PrinciplesV1.1ContentWDM OverviewOptical Fiber Transmission characterKey technologies of DWDMTechnical SpecificationsSDM TDM WDM ac!gro"n#PDHSDHDWDM155M 622M 2.5G 10GG.957 G.691G.692PD$% SD$ an# DWDMIPIPATMATMSDHSDHDWDMPhysical i!erDWDMPhysical i!erO"e# O"$icalI#$er%aceO"e# O"$icalI#$er%aceSDHSDHATMATMIPIPO$herO$her&elationship bet'een DWDM an# Other Ser(icesWDM DefinitionWDM technology is a fiber comm"nication technology transmitting m"ltiple optical carriers 'ith information )analog or #igital* on one fiber.N21N21N21OM&OD&OAWDM Classification'WDM( ')arse Wavele#*$h Divisi)# M+l$i"le,i#*DWDM + De#se Wavele#*$h Divisi)# M+l$i"le,i#* DWDM ConceptDense 'a(elength #i(ision m"ltiple,ing )DWDM*P)wer )#m*1529 - 1561#./)nm*wavele#*$h i#$erval0.0 2#.OT-1I#"+$ Ch 1 Ch . Ch 1 Ch ./1/n OT-nOM-0 10 P0OD-/1/n OT-1OT-n/s /s/s/sOSCOSC OSCO+$"+$2MSO"$icalTra#s.i$$erO10O"$ical1eceiverDWDM systemCommon .2 in DWDM SystemClient sideLine side1 n 1 n OTMLine sideLine sideOLAClient sideLine sideLine side/1 /n /1 /nOADMTT&&l12lec$rical M+l$i"le, 2lec$rical De.+l$i"le,Tra#s.i$$er1eceiver2lec$rical 1e*e#era$)rl.l3l1l.l3l1l.l3l1O"$ical M+l$i"le,erO"$ical De.+l$i"le,erOATDM( 2lec$rical 1e*e#era$)r %)r Si#*le Wavele#*$hDWDM( M+l$i-wavele#*$h )# Si#*le i!er3 %)r O"$ical A."li%ica$i)#Difference bet'een DWDM an# SD$DWDM Feat"res1arge transparent transmission capacity greatly sa(es fiber reso"rces.2ach 'a(elength can carry #ifferent signal+ SD$ 3.45bps% 16 5bps% 0TM% 7P.DWDM technology pro(i#es m"ltiple (irt"al fiber channels in one physical fiber channel.DWDM Feat"resSDHThro"gh s"per8long #istance transmission technologies% the transmission cost is re#"ce#.DWDM2lectrical &egenerator1ight 0mplifierWDM Pro#"cts Deploy in .et'or!Me$r) ')re A**re*a$e 4ayerC&S&&0SS'itchDS10MSplitterO1TMS052nterprise C"stomer359:5 ase statione.S85WS85WSC9&.C2nterprise C"stomer2nterprise C"stomerFTT;W10.7PTV DC.7nternet7nternet &a#i"s Ser(erm"lticast2P5Ser(erWDM 5e"l)y i# #e$w)r6PT78IP 1A7 MSTPi, 7e$w)r6 9ac6!)#e:0,100GOT7008:0,100GOT700,10GOT7e.e.e. OADMOTMO;'O;'l1l3l.l1l3l.lilil!l!DWDM De(elopment Tren#F"llopticalnet'or!isthe#e(elopmenttren#ofopticaltransport net'or!. DWDM De(elopment Tren#S+s$ai#a!le I#$elli*e#$ 4ar*e 'a"aci$yr). 10G $)000GM+l$i-Services access +i".e#$ "r)$ec$i)#WASO7 "r)$ec$i)#< 1arge transparent transmission capacity greatly sa(es fiber reso"rces.< Thro"ghs"per8long#istancetransmissiontechnologies%thetransmissioncostis re#"ce#.ContentWDM O(er(ie'O"$ical i!er Tra#s.issi)#charac$erKey technologies of DWDMTechnical SpecificationsOptical Fiber = Type CoatingCladdingCoren2n1Opticalfiberconsistsofacylin#rical glasscore%aglasscla##ingan#a plastic 'ear8resisting coating. ' 4' S'Transport Characteristics of Optical Fibers7)#-li#er 2%%ec$Dis"ersi)#A$$e#+a$i)#1. 0tten"ation7t is the re#"ction of signal strength or light po'er o(er the length of the light8carrying me#i"m. Fiber atten"ation is meas"re# in #ecibels per !ilometer )#9!m*.7ntrinsic = 7mp"rity 0bsorbency 0tten"ationScattering 0bsorbency 0tten"ation0##itional 0tten"ation66 1666 1366 1?66 1@661anb#a nm Fiber 1oss#9!m A1?6T$BA46T$BO$8 assimilate pea!O$8O$8O 2SC 177 7 777 7V V:501@10

1550 assimilate pea!O 9a#5 Original 13@681:@6 nm2 9a#5 2,ten#e# 1:@681?@6 nmS 9a#5 Short 1?@6814:6 nm' 9a#5 Con(entional 14:6814@4 nm4 9a#5 1ong 14@481@34 nm& 9a#5 -ltra8long 1@3481@C4 nm assimilate pea!Di(ision of 1o'8loss Win#o' 2DA9a#5wi5$h1.3 1.: 1.? 1.4 1.@ 1.CWa(elength )nm*0tten"ation )#

9!m*6.16.36.?6.>1.668368161636Dispersion )ps9nm8!m* 0tten"[email protected]"re Comparison bet'een 1o'81oss Win#o's Win#o' 7 77 777 7V VMar! )nm* >46 1:16 )O ban#* 1446 )C ban#* 1@66 )1 ban#*1:@6 A 14:6 )2 D S ban#s*Wa(elength range )nm*@66AE66 13@6A1:@6 14:6A14@4 14@4A1@34 1:@6A14:6Fiber type MMF MMF95.@4395.@4: 5.@4395.@4:95.@445.@4395.@4:95.@44F"ll8'a(e fiber 0pplicationsShort #istance an# lo' rateShort #istance an# lo' rate1ong #istance an# high rateDispersiontimepo'er7np"t optical p"lseSMFtimepo'erO"tp"t optical p"lse0s the optical p"lse signals are transmitte# for long #istance% the p"lse 'a(e shape sprea#s by time at the fiber o"tp"t en#% this phenomenon is calle# #ispersion.Dis"ersi)#Kin# of Dispersion'D ---- 'hr).a$ic Dis"ersi)#PMD ---- P)lariCa$i)# M)5e Dis"ersi)# TChromatic DispersionOptical signals of #ifferent 'a(elength ha(e #ifferent spee#s in the optical fiber% an# this 'ill ca"se a phenomena calle# #ispersion.Chromatic #ispersion is the res"lt of material #ispersion% 'a(eg"i#e #ispersion.1 0 1 0 1 0 1 1 0 11 0 1 0 1 0 1 1 0 1InputOutputTimeTime7nfl"ences of Chromatic Dispersion1* P"lse sprea#ing 0 maFor infl"ence of chromatic #ispersion to system performance. When transmission #istance is longer than fiber #ispersion length% p"lse sprea#ing is too large. 0t this time% the system 'ill ha(e serio"s inter8symbol interference an# bit errors. 3* Chirp effectDispersion not only res"lts in p"lse sprea#ing b"t also ma!es p"lse generate phase mo#"lation. S"ch phase mo#"lation ma!es #ifferent parts of the p"lse ma!e #ifferent offset from the central freG"ency 'ith #ifferent freG"encies.Dispersion ToleranceParameter of #ispersion tolerance for laser so"rce )Ds*Dispersion parameter for optical fiber )D*1ongest transmission #istance+ Ds9D 2,ample7f Ds H 13>66 ps9nm% SMF 5.@43 #ispersion is D H 36 ps9!m9nm an# then the longest transmission #istance of this optical so"rce is @?6!m. PolariBation Mo#e DispersionThis problem occ"rs beca"se the fiber is not consistent along its length. D"e to ben#ing an# t'isting% as 'ell as temperat"re changes% the fiber core is not e,actly circ"lar. The res"lt is that the mo#es in the fiber e,change po'er 'ith each other in a ran#om fashion #o'n the fiber length% 'hich res"lt in #ifferent gro"p (elocitiesI the signal brea!s "p. 7n effect% the light tra(els faster on one polariBation plane than another.D"e to geometrical an# press"re asymmetry% t'o polariBation mo#es ha(e #ifferent transmission rates% res"lting in #elay an# PMD.7n #igital transmission system% PMD 'ill res"lt in p"lse separation an# p"lse sprea#ing% #egra#e transmission signal an# limit transmission rate of carriers.)+r Wave Mi,i#* +aliCa$i)# %)r each cha##el G!e$$er s"ec$r+. charac$eris$ic.Spectr"m &eG"irements for OM9ODO"$ical A."li%ier Tech#)l)*yOptical 0mplifier7ts #e(elopment o(ercame the biggest barrier on high spee# long #istance transmission 8 recei(ing optical po'er limit.7t amplifies all the 'a(elength at once an# 'itho"t optical8electrical8optical con(ersion.Classifications of Optical 0mplifierSemicon#"ctor O0K&esonance TypeProgressi(e Wa(e TypeFiber amplifier1anthanon Dope# F0.on8linear F01446 nm fiber amplifier )2DF0*1:16 nm fiber amplifier )PDF0*&aman F0 )S&0*rillo"in F0 )S0*KKKK2DF0 Composition-se#tos"ppresslight reflectiontoens"re stable'or!ingofthe optical amplifier Theopticalsignalstim"lates the"nstable2rbi"mionsto releasethee,cessenergyas photonsinphasean#atthe same 'a(elength.0s this process contin"es #o'n thefiber%thesignalgro's stronger.5eneratesp"mplightthat stim"lates the erbi"m atomstoreleasetheirstore#energy as a##itional 1446 nm-se#tocombine signallight'ith p"mp light Is)la$)r')+"lerIs)la$)r2r!i+.D)"e5 i!erPI7PO&TP+."4aserP"mplightistypically 1?>6 nm or E>6 nm Wor!ing Principle980 nmpump light1550 nmsignal light1480nm1550 nmstimulatedemissionN1N3~0N22rbi"m Dope# Fiber 0mplifier )2DF0*2DF0 incl"#es+Optical ooster 0mplifier )O0* 8 high optical o"tp"t po'erOptical 1ine 0mplifier )O10* 8 compensate the loss of the transmission lineOptical Pre 0mplifier )OP0* 8 lo' noise12n OBA12n OLAOPAOLAOMUOMUKey Performance 7n#ices1.5ain )5*The ratio bet'een o"tp"t optical signal po'er an# inp"t optical signal po'er.3..oise Fig"re ).F*The ratio bet'een S.& at 2DF0 inp"t en# an# S.& at o"tp"t en#.:.an#'i#thThe 'or!ing 'a(elength range of DWDM system co(ers C an# 1 ban#s. The optical amplifier nee#s to amplify all the m"ltiple,ing channel signals of the system% so its ban#'i#th sho"l# be 'i#e eno"gh.?.5ain flatnessThe allo'e# fl"ct"ation of 2DF0 gain 'ithin the specifie# 'or!ing ban# range. For the sa!e of so"n# flatness% al"min"m #ope# technology is "s"ally "se# in the 2DF.Key Performance 7n#ices1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570-50-40-30-20-10010wavelength/nmspectrum/dbmoutput spectrum of EDFA,Psignal=93.2766 PASE+=0.56514 Ptotal=93.8417mw1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570-45-40-35-30-25-20-15-10-505wavelength/nmspectrum/dbmoutput spectrum of EDFA,Psignal=81.3068 PASE+=0.46032 Ptotal=81.7671mw9e%)re +si#* Gai# %la$#essA%$er +si#* Gai# %la$#essKey Performance 7n#ices?.Total inp"t9o"tp"t po'er rangeThe optical po'er range at the inp"t9o"tp"t en# of the 2DF0 .4.7np"t9o"tp"t optical reflectance The ratio bet'een optical po'er at the 2DF0 inp"t9o"tp"t en# an# reflection optical po'er.Problems of 2DF0.on8liner effectan#'i#thOptical s"rgeDispersionProblems of 2DF01. .on8linear effectWhen the optical po'er is increase# to a certain #egree% fiber non8linear effect 'ill occ"r. Therefore% in the "se of fiber amplifier% it is reG"ire# to control the (al"e of the in8fiber optical po'er in a single channel.3. an#'i#than#'i#th refers to the range of the optical 'a(elength 'hich can be amplifie# flatly. The 'or!ing 'a(elength range of the 2DF0 in C ban# is 14:6 nm A 14@1 nm% an# in 1 ban# is 14@4 nm A 1@34 nm. Contin"ation:. Optical s"rge-n#er normal con#ition% the erbi"m ions stim"late# by the p"mp light are carrie# off by the signal light% an# th"s implement amplification of the signal light. 7f the signal light is interr"pte#% the metastable ions still con(erge contin"o"sly% so energy transient 'ill occ"r lea#ing to optical s"rge.To sol(e this% 0"tomatic Po'er &e#"ction )0P&* or 0"tomatic Po'er Sh"t#o'n )0PSD* f"nction is implemente# in the 2DF0.Contin"ation?. Dispersion0s transmission #istance increase% the total #ispersion increases correspon#ingly. Therefore% the c"rrent8free relay segment in WDM system cannot be prolonge# limitlessly. We can prolong the c"rrent8free relay #istance of the m"ltiple,ing section thro"gh #ispersion compensation meas"res.S+"ervisi)# Sys$e. Tech#)l)*yS"per(ision SystemDetection% control an# management are basic reG"irements of all net'or! operations.To ens"re sec"re operation of DWDM system% physically% the monitoring system is #esigne# as an in#epen#ent system separate# from 'or!ing channels an# #e(ices.-se# to transmit the .2 management an# s"per(ision information relate# to DWDM systemF"nctions1. Fa"lt alarm3. Fa"lt location:. L"ality parameter s"per(ision in the operation?. Control o(er bac!"p line "pon line interr"ption4. 2DF0 s"per(ision. &eG"irements of OSC1. 7t cannot restrict the optical 'a(elengths )E>6 nm an# 1?>6 nm* of the p"mp light so"rce in the optical amplifier.3. 7t cannot restrict the transmission #istance bet'een t'o 10s.:. 7t cannot restrict the ser(ices on the 1:16 'a(elength.?. 7t sho"l# still be a(ailable "pon fail"re of the 10. 4. OSC transmission is bi#irectional to ens"re the s"per(ision information can be recei(e# by the line terminal 'hen one fiber is bro!en. @. OSC transmission segment can be #roppe# on each optical amplifier relay station an# DWDM system office station an# a##e# 'ith ne' s"per(ision signals. OM& OD&O9AOPAOPAO9AOD& OM&O4AO4AO4AO4AO4AO4AOS' OS' OS'OS' OS'OS' OS'OS'OS'OS'Optical S"per(ision Control )OSC*3M OSC1416nmSignal spee# + 3.6?>Mb9s&ecei(ing sensiti(ity + 8?>#bmTransmission po'er + 6 A 8C #bmContentWDM O(er(ie'Optical Fiber TransmissioncharacterKey Technologies of DWDMTech#ical S"eci%ica$i)#sDWDM Technical Specifications7ntegrate# DWDM System Open DWDM SystemWor!ing Wa(elengthMain Optical Parameter OT&(O"$ical Tra#s")#5er i$OM&( O"$ical M+l$i"le,i#* i$I#$e*ra$e5OM&G.692O"e#OT&G.692155MSDH622MSDH2.5G SDH10G SDHPDHIPATM155MSDH622MSDH2.5G SDH10G SDHPDHIPATM7ntegrate# System = Open SystemWor!ing Wa(elength in 1446nm Win#o'Wor!ing Wa(elength of DWDM System:8168@2800-wavele#*$h sys$e.Wor!ing 'a(elength range+ C ban# )14:6 nm A 14@4 nm*FreG"ency range+ 1E3.1 T$B A [email protected] T$B Channel inter(al+ 166 5$BCentral freG"ency offset+ M36 5$B )at rate lo'er than 3.4 5bit9s*I M13.4 5$B )at rate 16 5bit9s*Wa(elength 0llocation of ?6C$91665$B 7nter(al on C an#.o. Central FreG"ency )T$B* Wa(elength )nm*1 1E3.1 14@6.@13 1E3.3 144E.CE: 1E3.: 144>.E>? 1E3.? 144>.1C4 1E3.4 144C.:@@ 1E3.@ [email protected] 1E3.C 1444.C4> 1E3.> 144?.E?E 1E3.E 144?.1:16 1E:.6 144:.::11 1E:.1 1443.4313 1E:.3 1441.C31: 1E:.: 1446.E31? 1E:.? 1446.1314 1E:.4 14?E.:31@ 1E:.@ 14?>.411C 1E:.C 14?C.C31> 1E:.> [email protected] 1E:.E [email protected] 1E?.6 14?4.:3Wa(elength 0llocation of ?6C$91665$B 7nter(al on C an#31 1E?.1 14??.4:33 1E?.3 14?:.C:3: 1E?.: 14?3.E?3? 1E?.? 14?3.1?34 1E?.4 14?1.:43@ 1E?.@ 14?6.4@3C 1E?.C 14:E.CC3> 1E?.> 14:>.E>3E 1E?.E 14:>.1E:6 1E4.6 14:C.?6:1 1E4.1 14:@.@1:3 1E4.3 14:4.>3:: 1E4.: 14:4.6?:? 1E4.? 14:?.34:4 1E4.4 14::.?C:@ 1E4.@ 14:3.@>:C 1E4.C 14:1.E6:> 1E4.> 14:1.13:E 1E4.E 14:6.::?6 [email protected] 143E.44Wor!ing Wa(elength of DWDM System:0-wavele#*$h sys$e.Wor!ing 'a(elength range+ C ban# )14:6 nm A 14@4 nm*FreG"ency range+ C ban# )1E3.64 T$B A [email protected] T$B* Channel inter(al+ 46 5$BCentral freG"ency offset+ M4 5$BWa(elength 0llocation of >6C$9465$B 7nter(al on C an#.o. Central FreG"ency )T$B* Wa(elength )nm*1 [email protected] 143E.1@ 3 [email protected] 143E.44 : 1E4.E4 143E.E? ? 1E4.E6 14:6.:: 4 1E4.>4 14:6.C3 @ 1E4.>6 14:1.13 C 1E4.C4 14:1.41 > 1E4.C6 14:1.E6 E 1E4.@4 14:3.3E 16 1E4.@6 14:3.@> 11 1E4.44 14::.6C 13 1E4.46 14::.?C 1: 1E4.?4 14::.>@1? 1E4.?6 14:?.3414 1E4.:4 14:?.@?1@ 1E4.:6 14:4.6?1C 1E4.34 14:4.?:1> 1E4.36 14:4.>31E 1E4.14 14:@.3336 1E4.16 14:@.@1Wor!ing Wa(elength of DWDM System160-wavele#*$h sys$e.Wor!ing 'a(elength range+ C ban# )14:6 nm A 14@4 nm* D 1 ban# )14@4 nm A 1@34 nm*FreG"ency range+ C ban# )1E3.1 T$B A [email protected] T$B* D 1 ban# )1E6.E6 T$B A 1>@.E4 T$B* Channel inter(al+ 46 5$BCentral freG"ency offset+ M4 5$BOptical Parameter Po'erWatt )W*The "nit of po'er. 7n optical transmission% po'er is small% hence% it is e,presse# in milli'att )mW*.Decibel )#*The logarithmic ratio bet'een the o"tp"t po'er to the inp"t po'er. # H16log16 )PO-TP-T 9 P7.P-T*#mMeas"rement of po'er in #ecibels "sing 1mW as the reference point.Po'er in #m H16log16 )P 9 1mW*Optical Parameter 0tten"ationi!er Ty"e M+l$i.)5e Si#*le.)5eWa(elength )nm* >46 1:16 1:16 14460tten"ation Coefficient )#9!m*:A:.4 1A1.4 6.:A6.? 6.3A6.34Cable 1ength )!m* 3 3 3 3Total Fiber 1oss )#* @AC 3A: 6.@A6.> 6.?A6.4Optical Parameter 5ainP1 P30mplifer0mplifer 5ainHP39P1Optical Parameter OS.&OSNR:Optical signal-to-noise ratioOSNR = Pout 10log(M - L + 58 - N! - 10logNPout: "n-#i$er optical po%er (&'(!)M: Nu($er o# (ultiple*ing c+annels o# t+e ,-M s.ste( L: Loss $et%een an. t%o optical a(pli#iers/ t+at is/ sectional loss (&'! N: Noise in&e* o# t+e 0-1) N: Nu($er o# t+e 0-1s $et%een optical (ultiple*er an& optical &e-(ultiple*er o# t+e ,-M s.ste()