Top Banner
1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.
32

1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

Dec 20, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

1

D-Space and Deform Closure:A Framework for

Holding Deformable Parts

K. “Gopal” Gopalakrishnan, Ken Goldberg

IEOR and EECS, U.C. Berkeley.

Page 2: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

2

Workholding: Rigid parts

• Summaries of results– [Mason, 2001]

– [Bicchi, Kumar, 2000]

• Form and Force Closure– [Rimon, Burdick, 1995]

– [Rimon, Burdick, 1995]

• Number of contacts– [Reuleaux, 1963], [Somoff, 1900]

– [Mishra, Schwarz, Sharir, 1987], [Markenscoff, 1990]

• Caging Grasps– [Rimon, Blake, 1999]

[Mason, 2001]

Page 3: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

3

Workholding: Rigid parts

• Nguyen regions– [Nguyen, 1988]

• Immobilizing three finger grasps– [Ponce, Burdick, Rimon, 1995]

• C-Spaces for closed chains– [Milgram, Trinkle, 2002]

• Fixturing hinged parts– [Cheong, Goldberg, Overmars, van

der Stappen, 2002]

• Contact force prediction– [Wang, Pelinescu, 2003]

[Mason, 2001]

+ -

+-

++-

-

Page 4: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

4

C-Space

C-Space (Configuration Space):

• [Lozano-P’erez, 1983]

• Dual representation of part position and orientation.

• Each degree of part freedom is one C-space

dimension.

y

x

/3

(5,4)

y

x

q

4

5

/3(5,4,- /3)

Page 5: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

5

Avoiding collisions: C-obstacles

• Obstacles prevent parts from moving freely.• Images in C-space are called C-obstacles.

• Rest is Cfree.

PartObstacle

PartObstacle

Page 6: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

6

Workholding and C-space

• Multiple contacts.

• 1 Contact = 1 C-obstacle.

• Cfree = Collision with no

obstacle.

• Surface of C-obstacle: Contact, not collision.

Page 7: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

7

Form Closure

• A part is grasped in Form Closure if any

infinitesimal motion results in collision.

• Form Closure = an isolated point in C-free.

• Force Closure = ability to resist any wrench.

Part

Page 8: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

8

• Bounded force-closure

- [Wakamatsu, Hirai, Iwata, 1996]

• Manipulation of thin sheets

- [Kavraki et al, 1998.]• Robust manipulation

- [Wada, Hirai, Mori, Kawamura, 2001]

Holding Deformable Parts

[Wada et al]

Page 9: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

9

Deformable parts

• “Form closure” does not apply:

Can always avoid collisions by deforming the part.

Page 10: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

10

• Deformation Space: A Generalization of Configuration Space.

• Based on Finite Element Mesh.

D-Space

Page 11: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

11

Mesh M

Part E

Deformable Polygonal parts: Mesh• Planar Part represented as Planar Mesh.• Mesh = nodes + edges + Triangular elements.• N nodes• Polygonal boundary.

Page 12: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

12

D-Space• A Deformation: Position of each mesh node.• D-space: Space of all mesh deformations.• Each node has 2 DOF.• D-Space: 2N-dimensional Euclidean Space.

Page 13: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

13

D-Space: Example• Simple example:

4-noded mesh.• D-Space: 8-dimensional Euclidean Space.• 2D slices show each mesh node’s position.• Node positions also indicate part orientation.

1 3

42

Page 14: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

14

D-Obstacles

No collision

Collision

Collision

1 3

42

Slice of complement of

D-obstacle (DAi).Nodes 1,2,3 fixed.

Page 15: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

15

Topology violating

deformation

Undeformed part

Allowed deformation

Self collisions and DTopological

TDq

TDq

Page 16: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

16

Free Space: Dfree

Slice with nodes 1-4 fixed

Part and mesh

1

2 3

5

4

x

y

Slice with nodes 1,2,4,5 fixed

x3

y3x5

y5

x5

y5

x5

y5

i

iTfree DADD

Page 17: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

17

Modeling Forces

• Nodal displacement X:

Vector of nodes’ displacement in global frame.

• Distance preserving transformation.

X = T (q - q0)

• Stiffness K:

F = KX.

• Linear Elasticity.

• Nodal displacement X:

Vector of nodes’ displacement in global frame.

• Distance preserving transformation.

X = T (q - q0)

Page 18: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

18

Nominal mesh configuration

Deformed mesh configuration

Potential Energy

• Nodal displacement:

Distance preserving transformation.

X = T (q - q0)

q0

q

• For FEM with linear elasticity and linear interpolation,

U(q q0) = (1/2) XT K X

Page 19: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

19

Equilibrium Deformations

• Equilibrium:

Local minimum of U.

• Stable equilibrium

Strict local minimum of U.

qA

qB

q

U(q)

Page 20: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

20

Releasing the Part.

• Part should slide back to original deformation.

• Minimum work of UA needs to be done to release part.

• Caging grasps, saddle points [Rimon99]

qA

qB

q

U(q)

UA

Page 21: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

21

Deform Closure

• Stable equilibrium = Deform Closure where

• UA > 0.

qA

qB

q

U(q)

Page 22: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

22

• Independence from global coordinate frame.

• Proved by showing invariance of:

- Deformation.

- Potential energy and work.

- Continuity in D-space.

Theorem: Frame Invariance

M

E

x1

y1

x 2

y 2

Page 23: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

23

Form-closure of rigid part

Theorem: Equivalence

Deform-closure of equivalent deformable part.

Page 24: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

24

Numerical Example

4 Joules 547 Joules

Page 25: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

25

• D-Obstacle symmetry

• Obstacle identical for all mesh triangles.

• Prismatic extrusions.

Symmetry in D-Space

1

32

4

5

1

32

4

5

Page 26: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

26

• Topology preservation symmetry.

• Define D'T- No mesh collisions.

- No degenerate triangles.

• DT D'T.

• Mirror images:

- No continuous path.

• D'T identical for pairs of mesh triangles.

Symmetry in D-Space

1

32

4

5

4

23

1

5

Page 27: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

27

Optimal 2-finger deform closure:

• Given jaw positions.

• Determine optimal jaw separation *.

Future work

Page 28: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

28

• If Quality metric Q = UA:

Quality Metric

Page 29: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

29

Quality metric

• Plastic deformation:

Page 30: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

30Q = min { UA, UL }

Stress

Strain

Plastic Deformation

L

Quality metric

Page 31: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

31

Holding multiple parts:

• Fixturing sheet metal parts for welding.

• Relative displacements of nodes.

• Quadratic programming approach.

Future work

Page 32: 1 D-Space and Deform Closure: A Framework for Holding Deformable Parts K. “Gopal” Gopalakrishnan, Ken Goldberg IEOR and EECS, U.C. Berkeley.

32

http://alpha.ieor.berkeley.edu