Top Banner
COMPLEX NUMBERS COMPLEX NUMBERS
25

1 complex numbers

Jul 19, 2015

Download

Education

JITENDRA THAKOR
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 complex numbers

COMPLEX NUMBERSCOMPLEX NUMBERS

Page 2: 1 complex numbers

In this unit we will discuss ……

� Introduction and basic definition of Complex numbers.

� Algebraic properties of Complex numbers.

� De Moivre’s theorem and its expansion.

� Exponential form of Complex numbers.

� Logarithm of a Complex numbers.

� Hyperbolic and Inverse hyperbolic functions.

Page 3: 1 complex numbers

DEFINITION OF COMPLEX NUMBERS

i=−1

Complex number Z = a + bi is defined as an

ordered pair (a, b), where a & b are real numbers

and . a = Re (z) b = im(z))

� Two complex numbers are equal iff their real as well as

imaginary parts are equal

� Complex conjugate to z = a + ib is z = a - ib

� (0, 1) is called imaginary unit i = (0, 1).

Page 4: 1 complex numbers

ALGEBRA OF COMPLEX NUMBERS

� Addition and subtraction of complex numbers is defined asidbcadicbia )()()()( ±+±=+±+

� Multiplication of complex numbers is defined as

iadbcbdacdicbia )()())(( ++−=++

� Division of complex numbers is defined as� Division of complex numbers is defined as

idc

adbc

dc

bdac

dic

bia2222

)(

)(

+

−++

+=+

+

� Relation between z and z

(((( )))) )Z(Z

Z

Z

Z;ZZZZ

,zzz;zz;z)z(

i

zzzIm,

zzzRe

0

22

2

2

1

2

12121

2

≠≠≠≠====

====

============

−−−−====

++++====

Page 5: 1 complex numbers

GEOMETRICAL REPRESENTATION OF COMPLEX NUMBERS

If z = a + ib, is a complex

number than in cartesian form

it is as good as (a, b)

For polar form, let us take

a = r cos θ and b = r sin θ

z = rcos θ + i rsin θ

= r(cos θ + i sin θ),

= r cis θ

πθπb

tanθ

π

bar

≤≤≤≤<<<<========

±±±±±±±±====++++====

====++++====

−−−− - , a

Arg(z)

...2.........1,0,K k,2Arg(z)arg(z)

, z

1

22

Page 6: 1 complex numbers

Geometrically, IzI is distance of point z from origin.

� θ is directed angle from positive X – axis to (0, 0) – (a, b)

� θ between - π < θ < π is called principal argument and

denoted by Arg (z)

Page 7: 1 complex numbers

The absolute value or modulus o the number z = a + bi is

denoted by |z| given by 22baz +=

2121 )inequalitytriangular(zzzz ++++≤≤≤≤++++

ABSOLUTE VALUE & DISTANCE

Distance between the points z1 = a1+b1i and z2 = a2+b2i is

denoted by 2

21

2

2121 ) ()( bbaazz −+−=−

1212 zzzz −−−−≤≤≤≤−−−−

Page 8: 1 complex numbers

An important interpretation regarding multiplication

given by polar form of complex number

z1 = r1 (cos θ1 + i sin θ1 )

z2 = r2 (cos θ2 + i sin θ2 )

z1z2= r1 r2 (cos θ1 + i sin θ1 ) (cos θ2 + i sin θ2)

=r1r2(cos θ1cos θ2 - sin θ1sin θ2)+i(sin θ1cos θ2+cos θ1sin θ2)

= r1r2 [cos(θ1 + θ2)+i sin (θ1 + θ2)] = r1r2 cis (θ1 + θ2)

Page 9: 1 complex numbers

� The modulus of the product is product of the moduli

� The argument of the product is sum of the argument

|z1z2|=|z1 || z2|

arg (z1z2)= arg z1 + arg z2

z1

z2

θ1 + θ2

θ2

θ1

z1 z2

Page 10: 1 complex numbers

EXAMPLES

Q. Find the complex conjugate of i

i

−−−−

++++

1

23

Q. Determine Region in z – plane represented by

)z

z(argand)zz(arg

,izandizIf

2

121

21 32231

++++====++++−−−−====Q.

1<|z-2|<3

Page 11: 1 complex numbers

Q. Express the

complex number

in polar form

and find the

principle argument.

i++++−−−− 3

Q. Express the

complex number

in polar form

and find the

principle argument.

31 i++++

Page 12: 1 complex numbers

De Moivre’s Theorem

If n is a rational number than the value or one of the

values of (cos θ + i sin θ)n is cos nθ + i sin nθ.

In particular, (cos θ + i sin θ)n = cos nθ + i sin nθ

for n = 0, ±1, ±2 ………….

For any complex number z = r e i θ

and n = 0, ±1, ±2 …………., we have zn = rn e i nθ

Page 13: 1 complex numbers

Q. 90903131 )i()i(Evaluate −−−−++++++++

θsiniθcos

)θsiniθ(cos)θsiniθ(cos

)θsiniθ(cos)θsiniθ(costhatovePr 77

5533

22

31

2

232

++++====

−−−−−−−−

−−−−++++Q.

Examples - De Moivre’s Theorem

)θsiniθ(cos)θsiniθ(cos 5533 −−−−−−−−

Q. 4311

311

58

46i

)i()i(

)i()i(thatovePr ====

++++−−−−

−−−−++++

Q.

−−−−

−−−−====−−−−++++++++++++++++

++++

2424211

1 θnπncos

θπ)θcosiθsin()θcosiθsin(

nnn Cos

n

Page 14: 1 complex numbers

Roots of a complex number

n

θsini

n

θcos)θsiniθ(cos n ++++====++++

1

If n is a positive integer than is one of the root of

that is

n

θsini

n

θcos ++++

n)θsiniθ(cos1

++++

nn

++++++++

++++====

++++++++++++====++++

n

θπksini

n

θπk[cos

)]θπksin(i)θπk[cos()θsiniθ(cosn

n

22

22

11

Remaining roots can be obtained by periodic nature of sine and cosine

It gives all roots of for K = 0, 1, 2, 3, …(n – 1) n)θsiniθ(cos1

++++

Page 15: 1 complex numbers

Examples:

Q. Solve Z4 + 1 = 0

)i(),i(),i(),i( −−−−−−−−−−−−++++−−−−++++ 12

11

2

11

2

11

2

1

Q. Find fifth root of i++++−−−− 3Q. Find fifth root of i++++−−−− 3

++++

++++

++++

++++

++++

30

53

30

532

30

41

30

412

30

29

30

292

30

17

30

172

662

51

5151

5151

πsini

πcos

siniπ

cos,π

siniπ

cos

siniπ

cos,π

siniπ

cos

Page 16: 1 complex numbers

Q. Solve the equation x 4 – x3 + x2 – x +1 = 0 using De

Moivre’s theorem.

(((( ))))

++++++++

++++

++++

7722

5

3

5

32

552

5151

5151

siniπ

cos,πsiniπcos

siniπ

cos,π

siniπ

cos

(((( ))))

++++

++++++++

5

9

5

92

5

7

5

722

51

5151

πsini

πcos

siniπ

cos,πsiniπcos

Page 17: 1 complex numbers

θsiniz

z,θcosz

z 21

21

====−−−−====++++

Expansion of De Moivre’s Theorem

θsin)i(z

z,θcosz

znnnn

n

21

21

====

−−−−====

++++

θnsiniz

z,θncosz

zn

n

n

n2

12

1====

−−−−====

++++

zz

Page 18: 1 complex numbers

Examples:

Q. Express Cos6 θ in terms of cosines of multiples of θ.

Page 19: 1 complex numbers

Let z is a complex number, then ez is called

exponential function

ez = e x + iy = e x e iy

For each y ∈ R , complex number e iy is defined as

Known as Euler’s formulayiyeiy

sincos +=

EXPONENTIAL FORM OF COMPLEX NUMBER

Known as Euler’s formulayiyeiy

sincos +=

)sin(cos , yiyeeeeeiyxzForxiyxiyxz

+===+=+

(((( )))) (((( )))) ysineeIm,ycoseeRexzxz

========

)zRe(ee),z(imy)earg(xzz

================

Page 20: 1 complex numbers

LOGARITHMIC FORM OF COMPLEX NUMBER

zLogwze,Cw,zIf ew

====⇒⇒⇒⇒====∈∈∈∈

w)z(Log

Ik,kiπw)z(Log

ze,Now

e

iπkw

====

∈∈∈∈++++====

====++++

2

2

iπk)iyxlog()iyx(Log

reiyxzAsθi

2++++++++====++++

====++++====

iπk)iyxlog()iyx(Log 2++++++++====++++

iπktani)yxlog(

iπkθiyxlog

iπk)elog()rlog(

iπk)relog(

θi

θi

22

1

2

2

2

122

22

++++++++++++====

++++++++++++====

++++++++====

++++====

−−−−

x

y

x

ym

1222

2

1 −−−−++++====++++++++====++++ tanπk)]iyx(Log[I),yxlog()]iyx(LogRe[

Page 21: 1 complex numbers

Examples:

Q. Prove that 22

2

ba

ab

iba

ibalogitan

−−−−====

++++

−−−−

Q. Find general value of log (-3) and log (- i).

Q. Separate real and imaginary parts of

1) log (1+i)

2) log (4+3i)

Page 22: 1 complex numbers

Circular functions of complex number

i

eexsin,

eexcos

ixixixix

22

−−−−−−−−−−−−

====++++

====

Hyperbolic functionsHyperbolic functions

xx

xxxxxx

ee

eextanh,

eexsinh,

eexcosh

−−−−

−−−−−−−−−−−−

++++

−−−−====

−−−−====

++++====

22

Page 23: 1 complex numbers

HYPERBOLIC AND CIRCULAR FUNCTIONS

sin h (ix) = i sin x

cos h (ix) = cos x

tan h (ix) = i tan x

cosec h (ix) = -i cosec x

sec h (ix) = sec x

cot h (ix) = -i cot x

Page 24: 1 complex numbers

HYPERBOLIC IDENTITIES

1

1

1

22

22

22

====−−−−

====++++

====−−−−

zheccoszhcot

zhtanzhsec

zhsinzhcos

1====−−−− zheccoszhcot

Page 25: 1 complex numbers

INVERSE HYPERBOLIC FUNCTIONS

++++

====

−−−−++++====

++++++++====

−−−−

−−−−

−−−−

x1 an

os

ln)x(ht

)xx(ln)x(hc

)xx(ln)x(hsin

1

1

1

1

21

21

====−−−−

x-1 an ln)x(ht

2

1