Top Banner
1 CHEMISTRY 161 Chapter 10 Chemical Bonding II www.chem.hawaii.edu/Bil301/welcome.html
69

1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

1

CHEMISTRY 161

Chapter 10

Chemical Bonding II

www.chem.hawaii.edu/Bil301/welcome.html

Page 2: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

2

MOLECULAR ORBITAL THEORY

electrons occupy orbitals each of which spans the entire molecule

molecular orbitals each hold up to two electrons

and obey Hund’s rule, just like atomic orbitals

Page 3: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

3

H2 molecule:

1s orbital on Atom A 1s orbital on Atom B

the H2 molecule’s molecular orbitals can be

constructed from the two 1s atomic orbitals

1sA + 1sB = MO1

1sA – 1sB = MO2

constructive interference

destructive interference

Page 4: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

4

0r/a-3/2

01 e

12)(

a

rRs

Page 5: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

5

ADDITION OF ORBITALSbuilds up electron density in overlap region

1sA + 1sB = MO1

combine them by addition

A B

Page 6: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

6

ADDITION OF ORBITALSbuilds up electron density in overlap region.

1sA + 1sB = MO1

A Bwhat do we notice?

electron density between atoms

Page 7: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

7

SUBTRACTION OF ORBITALSresults in low electron density in overlap region..

1sA – 1sB = MO2

A B

subtract

Page 8: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

8

SUBTRACTION OF ORBITALSresults in low electron density in overlap region..

1sA – 1sB = MO2

A Bwhat do we notice?

no electron density between atoms

Page 9: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

9

COMBINATION OF ORBITALS

1sA + 1sB = MO1

builds up electron density between nuclei

Page 10: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

10

COMBINATION OF ORBITALS

1sA + 1sB = MO1

builds up electron density between nuclei

1sA – 1sB = MO2

results in low electron density between nuclei

BONDING

ANTI-BONDING

Page 11: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

11

Page 12: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

12

THE MO’s FORMED BY TWO 1s ORBITALS

Page 13: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

13

1sA + 1sB = MO1

1sA – 1sB = MO2

sigma anti-bonding = 1s*

sigma bonding = 1s

1s

1s*

Page 14: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

14

E

Energy of a 1s orbital in a free atom

Energy of a 1s orbital in a free atom

A B

COMBINING TWO 1s ORBITALS

Page 15: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

15

E

Energy of a 1s orbital in a free atom

Energy of a 1s orbital in a free atom

A B

1sA+1sB

MO

1s

Page 16: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

16

E

Energy of a 1s orbital in a free atom

Energy of a 1s orbital in a free atom

A B

1sA-1sB

MO

1sA+1sB

MO

1s

1s*

Page 17: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

17

E 1sAA B

1s

1s*

1sB

COMBINING TWO 1s ORBITALS

Page 18: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

18

E1s

1s*

1s

1s

H HH2

bonding in H2

Page 19: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

19

E1s

1s*

1s

1s

H HH2

the electrons are placed in the 1s molecular orbitals

Page 20: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

20

E1s

1s*

1s

1s

H2: (1s)2

H HH2

Page 21: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

21

E1s

1s*

1s

1s

He2

He HeHe2

atomic configuration of He 1s2

Page 22: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

22

E1s

1s*

1s

1s

He2: (1s)2(1s*)2

He HeHe2

bonding effect of the (1s)2 is cancelled by the

antibonding effect of (1s*)2

Page 23: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

23

BOND ORDER

net number of bonds existing after the cancellation of bonds by antibonds

the two bonding electrons were cancelled out by the two antibonding electrons

He2

(1s)2(1s*)2

the electronic configuration is….

BOND ORDER = 0

Page 24: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

24

BOND ORDER

=

measure of bond strength and molecular stability

If # of bonding electrons > # of antibonding electrons

Bondorder

the molecule is predicted to be stable

Page 25: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

25

BOND ORDER

= {

high bond order indicates high bond energy and short bond length

# of bonding electrons(nb)

# of antibonding electrons (na)

– 1/2 }

measure of bond strength and molecular stability

If # of bonding electrons > # of antibonding electrons

Bondorder

the molecule is predicted to be stable

H2+,H2,He2

+

= 1/2 (nb - na)

Page 26: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

26

1s*

1s

Magnetism

Bond order

Bond energy (kJ/mol)

Bond length (pm)

H2+

E

He2+ He2H2

Page 27: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

27

1s*

1s

Magnetism

Bond order

Bond energy (kJ/mol)

Bond length (pm)

H2+

E

He2+ He2H2

Dia-

1

436

74

Page 28: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

28

1s*

1s

Magnetism

Bond order

Bond energy (kJ/mol)

Bond length (pm)

H2+

Para-

½

225

106

E

He2+ He2H2

Dia-

1

436

74

Page 29: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

29

1s*

1s

Magnetism

Bond order

Bond energy (kJ/mol)

Bond length (pm)

H2+

Para-

½

225

106

E

He2+

Para-

½

251

108

He2H2

Dia-

1

436

74

Page 30: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

30

1s*

1s

Magnetism

Bond order

Bond energy (kJ/mol)

Bond length (pm)

First row diatomic molecules and ions

H2+

Para-

½

225

106

E

He2+

Para-

½

251

108

He2

0

H2

Dia-

1

436

74

Page 31: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

31

HOMONUCLEAR DIATOMICS

Li2 Li : 1s22s1

both the 1s and 2s overlap to produce bonding and anti-bonding orbitals

second period

Page 32: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

32

E

1s

1s*

1s

1s

2s

2s*

2s

2s

ENERGY LEVEL DIAGRAM FOR DILITHIUM

Li2

Page 33: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

33

E

1s

1s*

1s

1s

2s

2s*

2s

2s

Li2

ELECTRONS FOR DILITHIUM

Page 34: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

34

E

1s 1s

1s

Electron configuration for DILITHIUM

2s

2s*

2s

2s

(1s)2(1s*)2(2s)2

Li2

Bond Order ?

Page 35: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

35

E

1s 1s

1s

Electron configuration for DILITHIUM

2s

2s*

2s

2s

(1s)2(1s*)2(2s)2

Li2

nb = 4 na = 2

Bond Order = 1

single bond.

Page 36: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

36

E

1s 1s

1s

Electron configuration for DILITHIUM

2s

2s*

2s

2s

(1s)2(1s*)2(2s)2

the 1s and 1s* orbitals can be ignored when

both are FILLED!

Li2

omit the inner shell

Page 37: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

37

E2s

2s*

2s

2s

Li LiLi2

The complete configuration is: (1s)2(1s*)2 (2s)2

Li2 (2s)2 only valence orbitals contribute to molecular bonding

Page 38: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

38

E2s

2s*

2s

2s

Be BeBe2 Be2

Page 39: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

39

E2s

2s*

2s

2s

Be2Be BeBe2

Electron configuration for DIBERYLLIUM

Configuration: (2s)2(2s*)2 Bond order = 0

Page 40: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

40

E2s

2s*

2s

2s

(2s)2(2s*)2Be BeBe2

Be2

Electron configuration for DIBERYLLIUM

nb = 2

na = 2

Bond Order = 1/2(nb - na) = 1/2(2 - 2) =0

No bond!!! The molecule is not stable! Now B2...

Page 41: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

41

B2

the Boron atomic configuration is

1s22s22p1

form molecular orbitals

we expect B to use 2p orbitals to

addition and subtraction

Page 42: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

42

-molecular orbitals

Page 43: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

43

molecular orbitals

Page 44: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

44

ENERGY LEVEL DIAGRAM

E

2s

2s*

2s

2s

Page 45: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

45

2p*

2p

2p

2p*

E2p 2p

Page 46: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

46

E

expected orbital splitting

2s

2s*

2s

2s

2p

2p*

2p

2p

2p

2p*

This pushes the 2p up

Page 47: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

47

E

MODIFIED ENERGY LEVEL DIAGRAM

2s

2s*

2s

2s

2p

2p*

2p2p

2p

2p*

Notice that the 2p and 2p

have changed places!!!!

Page 48: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

48

E

2s

2s*

2s

2s

Electron configuration for B2

2p

2p*

2p2p

2p

2p*

Place electrons from 2s into 2s and 2s*

B is [He] 2s22p1

Page 49: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

49

E

2s

2s*

2s

2s

2p

2p*

2p2p

2p

2p*

Place electrons from 2p into 2p and 2p

Remember HUND’s RULE

Page 50: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

50

E

2s

2s*

2s

2s

2p

2p*

2p2p

2p

2p*(2s)2(2s*)2(2p)2

Abbreviated configuration

Complete configuration

(1s)2(1s*)2(2s)2(2s*)2(2p)2

ELECTRONS ARE UNPAIRED

Page 51: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

51

E

2s

2s*

2s

2s

Electron configuration for B2:

Bond order

2p

2p*

2p2p

2p

2p*(2s)2(2s*)2(2p)2

Molecule is predicted to be stable and paramagnetic.

na = 2

nb = 4

1/2(nb - na)

= 1/2(4 - 2) =1

Page 52: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

52

A SUMMARY OF THE MO’s

Emphasizing nodal planes

Page 53: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

53

ELECTRONIC CONFIGURATION OF THE HOMONUCLEAR DIATOMICS

B2 C2 N2 O2 F2Li2

Page 54: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

54

B2 C2 N2

O2 F2

E

2s

2s*

2s

2s

2p

2p*

2p2p

2p

2p*

2s

2s*

2s

2s

2p*

2p

2p

2p

2p*

2p

Li2

Page 55: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

55

2p*

2p*

2p

2p

2s*

2s

Magnetism

Bond order

Bond E. (kJ/mol)

Bond length(pm)

Second row diatomic molecules

B2 C2 N2 O2 F2

E

Page 56: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

56

2p*

2p*

2p

2p

2s*

2s

Magnetism

Bond order

Bond E. (kJ/mol)

Bond length(pm)

Second row diatomic molecules

B2

Para-

1

290

159

C2 N2 O2 F2

E

Page 57: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

57

2p*

2p*

2p

2p

2s*

2s

Magnetism

Bond order

Bond E. (kJ/mol)

Bond length(pm)

Second row diatomic molecules

B2

Para-

1

290

159

C2

Dia-

2

620

131

N2 O2 F2

E

Page 58: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

58

2p*

2p*

2p

2p

2s*

2s

Magnetism

Bond order

Bond E. (kJ/mol)

Bond length(pm)

Second row diatomic molecules

B2

Para-

1

290

159

C2

Dia-

2

620

131

N2

Dia-

3

942

110

O2 F2

E

Page 59: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

59

2p*

2p*

2p

2p

2s*

2s

Magnetism

Bond order

Bond E. (kJ/mol)

Bond length(pm)

Second row diatomic molecules

B2

Para-

1

290

159

C2

Dia-

2

620

131

N2

Dia-

3

942

110

O2

Para-

2

495

121

F2

E

NOTE SWITCH OF LABELS

Page 60: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

60

2p*

2p*

2p

2p

2s*

2s

Magnetism

Bond order

Bond E. (kJ/mol)

Bond length(pm)

Second row diatomic molecules

B2

Para-

1

290

159

C2

Dia-

2

620

131

N2

Dia-

3

942

110

O2

Para-

2

495

121

F2

Dia-

1

154

143

E

NOTE SWITCH OF LABELS

Page 61: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

61

2p*

2p*

2p

2p

2s*

2s

E

O2 O2+ O2

O2 :

O2+ :

O2– :

O22-:

O22-

Page 62: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

62

2p*

2p*

2p

2p

2s*

2s

E

O2 O2+ O2

– O22-

Page 63: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

63

2p*

2p*

2p

2p

2s*

2s

E

O2 O2+ O2

– O22-

Page 64: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

64

2p*

2p*

2p

2p

2s*

2s

E

O2 O2+ O2

– O22-

Page 65: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

65

2p*

2p*

2p

2p

2s*

2s

E

O2 O2+ O2

– O22-

Page 66: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

66

2p*

2p*

2p

2p

2s*

2s

E

O2 O2+ O2

– O22-

O2 : B.O. = (8 - 4)/2 = 2

O2+ : B.O. = (8 - 3)/2 = 2.5

O2– : B.O. = (8 - 5)/2 = 1.5

O22- : B.O. = (8 - 6)/2 =

1

Page 67: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

67

2p*

2p*

2p

2p

2s*

2s

E

O2 O2+ O2

– O22-

O2 : B.O. = 2

O2+ : B.O. = 2.5

O2– : B.O. = 1.5

O22- : B.O. = 1

O2+ >O2 >O2

– > O22-

BOND ENERGY ORDER

Page 68: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

68

O O

OXYGEN

How does the Lewis dot picture correspond to MOT?

2p*

2p*

2p

2p

2s*

2s

E

12 valence electrons

BO = 2 but PARAMAGNETIC

Page 69: 1 CHEMISTRY 161 Chapter 10 Chemical Bonding II .

69

Homework

Chapter 10

pages 397-409, problem sets