Top Banner
1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta, Canada Yiliang Wu Xerox Research Centre of Canada Redox-gated Molecular Memory Devices based on Dynamic Doping of Polythiophene
29

1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

Dec 31, 2015

Download

Documents

Gordon Booker
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

1

Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreeryUniversity of Alberta

National Institute for NanotechnologyEdmonton, Alberta, Canada

Yiliang WuXerox Research Centre of Canada

Redox-gated Molecular Memory Devices based on Dynamic Doping of Polythiophene

Page 2: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

2

Today’s solid state memory (>$100 billion annually):

Dynamic Random AccessMemory (DRAM)

Static RAM

Flash (cameras, USB stick)

write/erase cell retention cycle life speed size

< 10 nsec 1T1C* 65 msec >1015

< 1 nsec 6T long with >1015

power on

1 µsec- 10 msec 1T > 10 yrs 103 - 105

No “universal” memory- we need different types for different needs

T = transistor, C = capacitor*

Page 3: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

3

Cell Phones

IEEE Nanotech Magazine, December 2009

• enabled mobile electronics (cell phones, MP3 players, etc)• ~$65 billion/year (not counting disk drives)• 16 billion units (i.e. chips) sold in 2009

Nonvolatile solid state Memory Devices:

Scifinder hits: “nonvolatile memory”: 31,800 “resistance memory”: 9,900 “conductance switching”: 10,560

“Alternative” nonvolatile memory in ITRS roadmap:

Phase Change RAM

Magnetic RAM

Polymer memory

Fuse/antifuse

Molecular memory

Nanomechanical

Page 4: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

4

ethyl viologen ClO4 + polyethylene oxide

read

write/erase

SiO2

SD

G

PQT

EVpolythiophene

PQT from Xerox Canada

S

S

S

S

C12H25

H25C12

nS

S

S

S

C12H25

H25C12

n

more to scale:

1000 nm

25 nm

D S

initial (neutral) σ ≈ 10-7 S/cm

PQT+ “polaron” σ ≈ 10 S/cm

+

-

“Redox gated” molecular memory:

Page 5: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

5

-2 -1 0 1 2-10

0

10

20

30

40

50

VSG (V)

PEOStart

EV(ClO4 )2 +PEO

I SG, µ

A-

G

S DPQT

+

V SG

-2 -1 0 1 2

-0.04

-0.02

0.00

0.02

0.04

I S-D

(mA)

VS-D (V)

S D -PQT+

VS-D

-2 -1 0 1 2

-0.01

0.00

0.01

0.02

I S-G

(mA)

VS-G (V)

S D

-

PQT

+

PEO

G

Substrate

VS-G

PEO or PEO/EV

NHE

PQT+/PQT

EV+2/EV+

0.0

+0.76

Eo’ , V

-0.45

VSG

S

G

VSG drives a redox reaction:

PQT + EV+2 → PQT+ + EV+

“write”

“erase”

Page 6: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

6

-1.0 -0.5 0.0 0.5 1.0

-20

-10

0

10

20

I S

-D(n

A)

VS-D

(V)

Initial

read

write/erase

SiO2

SD

G

= -2VAfter VSG

+

-I S

D (

0.5

V)

-3 “erase” pulse

“ON” state

“OFF” state

+3 “write” pulse

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

0 100 200 300 400 500time (s)

ON/OFF > 104

PQT

EV

= +2VAfter VSG

Page 7: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

7

0 40 80 120 160 20010-9

10-7

10-5

10-3

I SD(0

.5V

), A

mp

s

Time(s)

+ Write

- Erase

0 2000 4000 6000 8000

10-9

10-7

10-5

10-3

I SD(0

.5V

), A

mp

s

Time(s)

100 W/R/E/R cycles

ACS Appl. Mater. Interfaces 2013, 5, 11052.

Note:

• resistance readout• low energy W/E• nondestructive “read”• should scale well• potentially longer cycle life than “flash”

Page 8: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

8

σ ~ 10 S/cm

σ ~ 10-8 S/cm

800 1000 1200 1400 1600 1800

PQT(neutral)

Raman shift, cm-1 (vs. 780 nm)

1460 cm-1

PQT+

(polaron)

1405 cm-1

Raman permits monitoring of PQT+ formation in working memory device

Raman spectroelectrochemistry of PQT:

Page 9: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

9

800 1000 1200 1400 1600 1800

σ ~ 10 S/cm

σ ~ 10-8 S/cmPQT

PQT+

Drain, initial

750 1000 1250 1500 1750

Raman shift (cm-1

)

Ram

an in

ten

sity

(a.

u.)

Source, VSG = +2

*

*Source, VSG = -2

Drain, VSG = +2

Drain, VSG = -2

140

5 cm

-1

146

0 cm

-1

1405 cm-11460 cm-1

S D

-

PQT

+

EV(ClO4 )2 +PEO

G

Substrate

VS-G

Raman laser

VSG pulses are “switching” polymer

between high and lowconductance states

..top view

Source, initial1460

Solid state spectroelectrochemistry:

Page 10: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

10

VS-G

S

D

G

D

S

+

-

(a)

Initial

neutral

1600 1500 1400 1300

Drain

Source

(under)Gate

VSG = +2V

polaron

1600 1500 1400 1300

Drain

Source

(under)Gate

GateVSD = -2V

neutral

1600 1500 1400 1300

Raman shift (cm -1)

Drain

Source

(under)Gate

• polaron generation mediates conductance and “memory”

• polaron is produced in entire source/channel/drain region

J. Am. Chem Soc. 2012, 134, 14869

Page 11: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

11

SD

VSG

-

+

NP+ P+ P+A¯ A¯ NN

P+NNNN

N

A¯ EV+ A‾EV+2

SD

VSG25 nm

1000 nm

-

+

P+P+ P+ P+

EV+ A‾A¯ A¯

Ne¯

Polythiophene is not only a redox polymer but also a conducting polymer, so electron transport “laterally” is quite efficient.

e¯A¯A¯

N N

NN

NNN

EVA2

SD

VSG

-

+

P+ P+ P+A¯ A¯

P+P+P+

P+

P+P+

A¯A¯

A¯ A¯

EV+ A‾EV+ A‾EV+ A‾

A‾ = ClO4‾

Page 12: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

12

Read

W/E

Now, monitor S-D current during +3 V S-G “write” pulse

0 V

-3 V

+0.5 V

~1 µmPEO-viologen

PQT

SD30 nm

A closer look at dynamics, using a circuit equivalent to a bi-potentiostat:

Page 13: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

13

I SD

(m

A)ISD (right axis)

0

1

2

3

4

I SG

A)

Time (s)

(b)

ISG (left axis)

0

1

2

3

4

0 0.5 1 1.5 2

G

SD

Read

W/E

0 V

-3 V

+0.5 V

RC “charging”

current generating conducting polaron

SD conduction(“readout”)

note 1000x“gain”

P+P+P+

• P+ generation

P+

• P+ propagation

+ + + +

• charging (RC)

- - --

Which one(s) control speed?

Page 14: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

14

Time (s)

I SG

µ(A

)

(a)

I SG

A)

An interesting effectof atmosphere:

vacuum(right scale)

-5

-4

-3

-2

-1

0

1

2

3

4

-80

-60

-40

-20

0

20

40

60

0 2 4 6 8

ACN vapor (left scale)

air (right scale)

ISG, “write”

Time (s)

I SD

(m

A)

ACN vapor

air

vacuum

(b)

ISD, “read”

0

1

2

3

4

5

0 2 4 6 8

RC charging?ionic mobility?propagation speed?

RC (msec)

Ambient 0.18

Vacuum 0.037

ACN vapor 0.081

all < 1 msec, can’t be theproblem

G

SD

R

W/E

0 V

-3 V

+0.5 V

Page 15: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

15

G

Read

W/E

0 V

-3 V

+0.5 V

PEO-viologen

SD

Propagation of polarons into channel:

+++++++++

Propagation is essential, could it be the slow step?

Page 16: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

16

“Propagation” experiment:

SD

GiSG

iSD

iSG “write”

iSD “read”,10 µm gap

-10 0 10 20 30 40

propagation delay

-10 0 10 20 30 40

iSD “read”,1 µm gap

iSD “read”,10 µm gap

+3 V

Page 17: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

17Canadian ECS- 23

Page 18: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

18Canadian ECS- 24

Page 19: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

19Canadian ECS- 25

Page 20: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

20Canadian ECS- 26

Page 21: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

21Canadian ECS- 27

Page 22: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

22Canadian ECS- 28

Page 23: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

23Canadian ECS- 29

Page 24: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

24Canadian ECS- 30

Page 25: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

25

PEO + ClO4ˉ

-----

close-up of S electrode:

-

+3 V++

• “W” pulse generates polarons

• anions move toward polarons, compensate + charge

• polarons “fill” the Source region

+++

+ + ++ --- • polarons propagate throughout

PQT layer, anions continue to migrate from PEO

++ +

+

- -

--

the bad news: iR losses in PEO layer reduce “write” current, thus requiring ~ 500 msec to “fill” source region.

the good news: there are solid electrolytes with conductivity >1000x higher than PEO-ClO4, which should reduce “write” time to 10 - 100 μsec. We can also make the electrolyte at least 10x thinner

Page 26: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

26

Some progress:

G

SD

drop cast PEO-EV

1-2 μmG

SD

spin coated PEO-EV

~0.3 μm

PEO-EV Drop Cast

PEO-EV Spin Coated

“write” pulse

PEO-EV Drop Cast

PEO-EV Spin Coated

“write” pulse

Page 27: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

27

0 1 2 3 4 t, msec

26 oC

57 oC

47 oC

ISG, “write”

~100 X higher“write” currentthan drop cast,ambient

acetronitrile vapour:

Note: effective “write”speed of ~2 msecinstead of ~500 msec

0 1 2 3 4 t, msec

26 oC

57 oC

47 oC

ISD, “read”

Page 28: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

28

XRCC polymer

CMOS with support electronicsThin film transistor

substrate

Target: high “value added”to CMOS by integratingmolecular nonvolatile

memory

Page 29: 1 Bikas Das, Nikola Pekas, Rajesh Pillai, Bryan Szeto, Richard McCreery University of Alberta National Institute for Nanotechnology Edmonton, Alberta,

29

Low density prototype tester: