Top Banner
1 Basic Numerical Procedure
56

1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

Jan 04, 2016

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

1

Basic Numerical Procedure

Page 2: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

2

Content

1 Binomial Trees

2 Using the binomial tree for options on indices,

currencies, and futures contracts

3 Binomial model for a dividend-paying stock

4 Alternative procedures for constructing trees

5 Time-dependent parameters

6 Monte Carlo simulation

7 Variance reduction procedures

8 Finite difference methods

Page 3: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

3

Binomial Trees

In each small interval of time ( Δt ) the stock price is assumed to move up by a proportional amount u or to move down by a proportional amount d

Su

Sd

S

p

1 – p

Page 4: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

4

Risk-Neutral Valuation

1. Assume that the expected return from all traded assets is the risk-free interest rate.

2. Value payoffs from the derivative by calculating their expected values and discounting at the risk-free interest rate.

Page 5: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

5

Determination of p, u, and d

Mean: e(r-q)t = pu + (1– p )d

Variance:2t = pu2 + (1– p )d 2 – e2(r-q)t

A third condition often imposed is u = 1/ d

Page 6: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

6

A solution to the equations, when terms of higher order than t are ignored, is

where

)( tqr

t

t

ea

ed

eu

du

dap

Page 7: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

7

Tree of Asset Prices

At time iΔt :

S0u 2

S0u 4

S0d 2

S0d 4

S0

S0u

S0d S0 S0

S0u 2

S0d 2

S0u 3

S0u

S0d

S0d 3

i0,1,...,j ,duSS j-ij0i

Page 8: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

8

Working Backward through the Tree

Example : American put optionS0 = 50; K = 50; r =10%; = 40%; T = 5 months = 0.4167;

t = 1 month = 0.0833

The parameters imply : u = 1.1224; d = 0.8909;

a = 1.0084; p = 0.5073

Page 9: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

9

Example (continued)89.070.00

79.350.00

70.70 70.700.00 0.00

62.99 62.990.64 0.00

56.12 56.12 56.122.16 1.30 0.00

50.00 50.00 50.004.49 3.77 2.66

44.55 44.55 44.556.96 6.38 5.45

39.69 39.6910.36 10.31

35.36 35.3614.64 14.64

31.5018.50

28.0721.93

G

F

ED C

B A

39.690.89091.122450duSS 31310A 14.6435.36-50,0)-max(f TG SK 2.665.45)e0.49270(0.5073efp-1pff 0.0833-0.1t-r

duE 9.9014.64)e0.49275.45(0.5073f 0.0833-0.1A

4.496.96)e0.49272.16(0.5073f 0.0833-0.1D

Page 10: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

10

Example (continued)

In practice, a smaller value of Δt, and many more nodes, would be used. DerivaGem shows :

steps 5 30 50 100 500

f0 4.49 4.263 4.272 4.278 4.283

Page 11: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

11

Expressing the Approach Algebraically

j1,i1j1,it-rj-ij

0ji, fp-1pfe ,duS-Kmaxf

Page 12: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

12

Estimating Delta and Other Greek Letters

delta ( Δ ): at time Δt

dS-uS

f-f

S

f

00

1,01,1

S0u 2

S0u 4

S0d 2

S0d 4

S0

S0u

S0d S0 S0

S0u 2

S0d 2

S0u 3

S0u

S0d

S0d 3

Page 13: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

13

gamma ( Γ ): at time 2Δt

)dS-u0.5(S

dS-S

f-f-

S-uS

f-f

S

f2

02

0

200

2,02,1

02

0

2,12,2

2

2

S0u 2

S0u 4

S0d 2

S0d 4

S0

S0u

S0d S0 S0

S0u 2

S0d 2

S0u 3

S0u

S0d

S0d 3

Page 14: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

14

theta ( Θ ):

t2

f-f

t

f 0,02,1

S0u 2

S0u 4

S0d 2

S0d 4

S0 S0u

S0d S0 S0

S0u 2

S0d 2

S0u 3

S0u

S0d

S0d 3 f

2

1rS 22 rSσ

Page 15: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

15

Vega ( ν ):

Rho ( ρ ):

ff -*

r

ff

-*

Page 16: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

16

Example

89.070.00

79.350.00

70.70 70.700.00 0.00

62.99 62.990.64 0.00

56.12 56.12 56.122.16 1.30 0.00

50.00 50.00 50.004.49 3.77 2.66

44.55 44.55 44.556.96 6.38 5.45

39.69 39.6910.36 10.31

35.36 35.3614.64 14.64

31.5018.50

28.0721.93

G

F

ED C

B A

-0.4144.55-56.12

6.96-2.16

dS-uS

f-f

00

1,01,1

0.0311.65

(-0.64)-(-0.24)

39.69)-0.5(62.9939.69-5010.36-3.77

-50-62.99

3.77-0.64

)dS-u0.5(S

-2

02

0

21

daycalendar per -0.012or

yearper -4.30.08332

4.49-3.77

t2

f-f 0,02,1

Page 17: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

17

Using the binomial tree for options on indices, currencies, and futures contracts

As with Black-Scholes : For options on stock indices, q equals the

dividend yield on the index For options on a foreign currency, q equal

s the foreign risk-free rate For options on futures contracts : q = r

Page 18: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

18

Example

Page 19: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

19

Example

Page 20: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

20

Binomial model for a dividend-paying stock

Known Dividend Yield : before : after :

Several known dividend yields :

i0,1,...,j ,duSS j-ij0ji,

i0,1,...,j ,d)u-(1SS j-ij0ji,

j-iji0ji, d)u-(1SS

Page 21: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

21

Known Dollar Dividend :

i k≦ : i=k+1 : i=k+2 :

i0,1,...,j ,duSS j-ij0ji,

i0,1,...,j D,-duSS j-ij0ji,

1-i0,1,...,jfor

D)d-du(S andD)u -du(SS j-1-ij0

j-1-ij0ji,

nodes. 1mkn rather tha 2)m(k are there

mki when and nodes, 1in rather tha 2i are there

Page 22: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

22

Simplify the problem

The stock price has two components : a part that is uncertain and a part that is the present value of all future dividends during the life of the option.

Step 1 : A tree can be structured in the usual way to model .

Step 2 : By adding to the stock price at each nodes, the present value of future dividends, the tree can be converted into model S.

*S

ti when , De-SS

ti when , SSt)i-r(-*

*

ti when , DeduSS

ti when , duSSt)i-r(-j-ij*

0ji,

j-ij*0ji,

Page 23: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

23

Example

Page 24: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

24

Control Variate Technique

1. Using the same tree to calculate both the value of the American option ( ) and the value of the European option ( ) .

2. Calculating the Black-Scholes price of the European option ( ) .

3. This gives the estimate of the value of the American option as

EBSA -fff

Af

Ef

BSf

Page 25: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

25

Example

B-S model : ∴

4.08)(-)(e 12T

BS -dNS-dNKf 0-r

4.32Ef A 4.49f

4.254.32-4.084.49P0

Page 26: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

26

Alternative procedures for constructing trees

Instead of setting u = 1/d we can set each of the 2 probabilities to 0.5 and

ttqr

ttqr

ed

eu

)2/(

)2/(

2

2

Page 27: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

27

Example

0.9703

ed

1.0098

eu

and 0.5pset We

0.25t , 0.75T

0.04

0.10r , 0.06r

0.795K , 0.79S

]0.250.04-.250.0016/2)0-0.1-[(0.06

]0.250.04.250.0016/2)0-0.1-[(0.06

f

0

Page 28: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

28

Trinomial Trees

6

1

212

3

2

6

1

212

/1

2

2

2

2

3

rt

p

p

rt

p

udeu

d

m

u

t

S S

Sd

Su

pu

pm

pd

Page 29: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

29

Adaptive mesh model( Figlewski and Gao,1999 )

Page 30: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

30

Time-dependent parameters

V/Nt)(t then

steps, timeN of totala is thereIf

step th time theof end theis t

tree theof life theis T , T(T)V Define

maturity t afor y volatilit theis (t) that Suppos

: timeoffuction a make To 2

of valueforward theis (t)

rateinterest forward theis (t)

eset We

: timeoffuction a )(or and make To 1

2

2

t(t)]-(t)[

i

i

qg

f

a

rqr

ii

i

gf

f

Page 31: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

31

Monte Carlo simulation

When used to value an option, Monte Carlo simulation uses the risk-neutral valuation result. It involves the following steps:

1. Simulate a random path for S in a risk neutral world.2. Calculate the payoff from the derivative.3. Repeat steps 1 and 2 to get many sample values of

the payoff from the derivative in a risk neutral world.4. Calculate the mean of the sample payoffs to get an

estimate of the expected payoff.5. Discount this expected payoff at risk-free rate to get

an estimate of the value of the derivative.

Page 32: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

32

Monte Carlo simulation (continued)

In a risk neutral world the process for a stock price is

We can simulate a path by choosing time steps of length Δt and using the discrete version of this

where ε is a random sample from (0,1)

dS S dt S dz

ttSttStSttS )()(ˆ)(-)(

Page 33: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

33

Monte Carlo simulation (continued)

T T 2

ˆ)0(ln)T(ln

thenconstant, are and ˆ if

)()(or

2

ˆ)(ln)(ln

is thisof version discrete The

2

ˆln

.n rather tha ln estimate toaccurate more isIt

2

2/ˆ

2

2

2

SS

etSttS

tttSttS

dzdtSd

SS

tt

Page 34: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

34

Derivatives Dependent on More than One Market Variable

When a derivative depends on several underlying variables we can simulate paths for each of them in a risk-neutral world to calculate the values for the derivative :

ttSttmttt iiiiiii )()(ˆ)()(

Page 35: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

35

Generating the Random Samples from Normal Distributions

How to get two correlated samples ε1 and ε2 from univariate standard normal distributions x1 and x2 ?

n.correlatio oft coefficien theis where

-1xx

x

2212

11

Page 36: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

36

Cholesky decomposition

ijfor ,

1 where

x

j

1kijjkik

i

1k

2ik

i

1kkiki

Page 37: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

37

Number of Trials Denote the mean by μ and the standard deviation

by ω. The standard error of the estimate is

where M is the number of trials. A 95% confidence interval for the price f of the

derivative is

To double the accuracy of a simulation, we must quadruple the number of trials.

M

Mf

M

1.961.96-

Page 38: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

38

Applications Advantage : 1. It tends to be numerically more efficient

( increases linearly ) than other procedures ( increases exponentially ) when there are more stochastic variables.

2. It can provide a standard error for the estimates.

3. It is an approach that can accommodate complex payoffs and complex stocastic processes.

Page 39: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

39

Applications (continued)

An estimate for the hedge parameter is

Sampling through a Tree :

x

ff *

ˆ-ˆ

Page 40: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

40

Variance reduction procedures

Antithetic Variable Techniques :

standard error of the estimate is

Control Variate Technique :

2

21 fff

BBAA ffff **

M

Page 41: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

41

Variance reduction procedures (continued)

Importance Sampling:

Stratified Sampling:

Moment Matching:

Using Quasi-Random Sequences:

)0.5-

(1-

n

iN

s

mi*i

-

Page 42: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

42

Finite difference methods

Define ƒi,j as the value of ƒ at time it when the stock price is jS

ΔT=T/N; ΔS=Smax /M

Page 43: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

43

Implicit Finite Difference Method

Forward difference approximation

backward difference approximation

S

ff

S

f jiji

,1,

S

ff

S

f jiji

1,,

Page 44: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

44

Implicit Finite Difference Methods(continued)

ƒ2ƒƒƒ

or

ƒƒƒƒƒ

2

ƒƒƒset we

ƒƒ

2

1ƒƒIn

2

,1,1,

2

2

1,,,1,

2

2

1,1,

2

222

SS

SSSS

SS

rS

SS

rSt

jijiji

jijijiji

jiji

Page 45: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

45

Implicit Finite Difference Methods(continued)

1, ,

, 1 , , 1 1,

If we also set and S

we obtain:

where t

i j i j

j i j j i j j i j i j

2 2j

2j

f ffS jΔ

t t

a f b f c f f

1 1a (r - q)jΔ - σ j Δt

2 2

b 1 σ

t

t

2

2 2j

j Δt rΔ

1 1 c - (r - q)jΔ - σ j Δt

2 2

Page 46: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

46

Implicit Finite Difference Methods(continued)

Page 47: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

47

Explicit Finite Difference Methods

:obtain we

point )( at the are they aspoint )1( at the

same thebe toassumed are and If 22

i,j,ji

SfSf

2

1,11,11,

2

2

11,11,

ƒ2ƒƒƒ

2

ƒƒƒ

SS

SS

jijiji

jiji

Page 48: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

48

Explicit Finite Difference Methods(continued)

1,1*

,1*

1,1*

, ƒƒƒ

isequation difference The

jijjijjijji cbaf

)t(1

1

)-(1

1

)t(-1

1 where *

Δtjσ2

1(r-q)jΔ

2

1

tr c

Δtjσ1tr

b

Δtjσ2

1(r-q)jΔ

2

1

tra

22*j

22*j

22j

Page 49: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

49

Explicit Finite Difference Methods(continued)

Page 50: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

50

Difference between implicit and explicit finite difference methods

ƒi +1, j +1

ƒi , j ƒi +1, j

ƒi +1, j –1

ƒi +1, jƒi , j

ƒi , j –1

ƒi , j +1

Implicit Method Explicit Method

Page 51: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

51

Change of Variable

ƒZ

ƒ

2

1

Z

ƒ)

2-q-(

ƒ

, ln ZDefine

2

22

2

rrt

S

2j

2j

2j

jijijjijjij

σ2

)-(r-q2

rΔσ 1

σ2

)-(r-q2

ffff

2

2

2

2

2

,11,,1,

Z

t

2-

Z

t-

tZ

t

Z

t

2-

Z

t where

becomes methodimplicit for theequation difference The

Page 52: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

52

Change of Variable (continued)

1,1*

,1*

1,1*

, ƒƒƒ

becomes methodexplicit for theequation difference The

jijjijjijjif

)Z

t)

2-(

Z

t(

1

1

)Z

t-(

1

1

)Z

t)

2-(

Z

t(-

1

1 where

2

2

2

2

2*

2*j

2*j

2j

σ2

r-q2tr

σ1tr

σ2

r-q2tr

Page 53: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

53

Relation to Trinomial Tree Approaches

The three probabilities sum to unity.

Page 54: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

54

Relation to Trinomial Tree Approaches (continued)

2 2

2

2

2

2

2

1- j t is negative when j 13.

We can use change-of-variable approch:

t t - ( - )

Z 2 Zt

-Z

t t ( - )

Z 2 Z

2u

2m

2d

p r - q σ2 2

p 1 σ

p r - q σ2 2

Page 55: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

55

Other Finite Difference Methods

Hopscotch method

Crank-Nicolson scheme

Quadratic approximation

Page 56: 1 Basic Numerical Procedure. 2 Content 1 Binomial Trees 2 Using the binomial tree for options on indices, currencies, and futures contracts 3 Binomial.

56

Summary

We have three different numerical procedures for valuing derivatives when no analytic solution: trees, Monte Carlo simulation, and finite difference methods.

Trees: derivative price are calculated by starting at the end of the tree and working backwards.

Monte Carlo simulation: works forward from the beginning, and becomes relatively more efficient as the number of underlying variables increases.

Finite difference method: similar to tree approaches. The implicit finite difference method is more complicated but has the advantage that does not have to take any special precautions to ensure convergence.