Top Banner
George Raikos and Spyridon Vlassis Electronics Laboratory Physics Department University of Patras http://www.ellab.physics.upatras.gr 0.8V Bulk-Driven Variable Gain Amplifier
17

0.8V Bulk-Driven Variable Gain Amplifier

Jan 01, 2016

Download

Documents

stella-foley

0.8V Bulk-Driven Variable Gain Amplifier. George Raikos and Spyridon Vlassis Electronics Laboratory Physics Department University of Patras http://www.ellab.physics.upatras.gr. Introduction. Utilizes : Bulk-driven transistors  low-voltage operation - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 0.8V Bulk-Driven Variable Gain Amplifier

George Raikos and Spyridon VlassisElectronics Laboratory

Physics Department

University of Patrashttp://www.ellab.physics.upatras.gr

0.8V Bulk-Driven Variable Gain Amplifier

Page 2: 0.8V Bulk-Driven Variable Gain Amplifier

Introduction

Utilizes :Bulk-driven transistors low-voltage

operationMaster-slave technique control voltage

gain duplicate the gain

slope

Electronics Laboratory, Physics Dept.

ICECS 2010

Based on pseudo exponential approximation function (1+x)/(1-x)≈exp(2x) linear in dB gain.

Page 3: 0.8V Bulk-Driven Variable Gain Amplifier

Principle of operation

VP VN

M1

M1P M1N M4P M4N

M4

M2 M3

VG VG

MP

VDD

Vop

Von

2ID.B

1 : 1

1 : 1

2(ID.B-ID.T)

1 : 1

ID.B-ID.T

ID.B-ID.T

2(ID.B+ID.T)

2ID.B

1 : 2

VBID.B+ID.T

ID.B-ID.T

2 : 1 MP

D inputmb input m input

mb load m load D loadv

Igg I

gA

g

If ID-input=1+x and ID-load=1-x then :

exp( )vA x

Bulk transconductance of a MOS transistor is :

2 2mmb

F SB

g gV

Page 4: 0.8V Bulk-Driven Variable Gain Amplifier

Principle of operationWe seek to make:

1m input xg

1m load xg

exp(2 )mb input

mb loadv xg

Ag

1D input xI

1D load xI

exp( )vA x

Page 5: 0.8V Bulk-Driven Variable Gain Amplifier

Gain Control Circuit

Generates the appropriate currents for exponential circuit controls the VGA.

Based on master-slave technique.

(k)

MC1

MC1P MC1N

MC2 MC4 MC5MC3

MC6 MC7

IT C

VDD

VG

VCM -(½)VR

IR

MS2VFb

MS1

MS1P MS1N

VG

VCM +(½)VR

Slave differ.pair

IB

ID.B+ID.T ID.B+ID.T

ID.B+ID.T

Master differ.pair

Electronics Laboratory, Physics Dept.

ICECS 2010

Page 6: 0.8V Bulk-Driven Variable Gain Amplifier

Gain Control Circuit

(k)

MC1

MC1P MC1N

MC2 MC4 MC5MC3

MC6 MC7

IT C

VDD

VG

VCM -(½)VR

IR

MS2VFb

MS1

MS1P MS1N

VG

VCM +(½)VR

Slave differ.pair

IB

ID.B+ID.T ID.B+ID.T

ID.B+ID.T

Master differ.pair

Electronics Laboratory, Physics Dept.

ICECS 2010

VFb the feedback voltage Thus, IR=IB+IT

IR=gmb1VR VCM :Common mode

voltage

VR relatively small (50mV)

Page 7: 0.8V Bulk-Driven Variable Gain Amplifier

Gain Control Circuit

The input transconductance is equal to:

(k)

MC1

MC1P MC1N

MC2 MC4 MC5MC3

MC6 MC7

IT C

VDD

VG

VCM -(½)VR

IR

MS2VFb

MS1

MS1P MS1N

VG

VCM +(½)VR

Slave differ.pair

IB

ID.B+ID.T ID.B+ID.T

ID.B+ID.T

Master differ.pair

Electronics Laboratory, Physics Dept.

ICECS 2010

The slave pair obtain equal transconductance with master pair.

gmb-

input≈(IB+IT)/VR

Linear dependence from tuning current Process independence

gmb-

input,slave≈(IB+IT)/V

R

Page 8: 0.8V Bulk-Driven Variable Gain Amplifier

Variable Gain Amplifier

Bulk-driven differential pair with bulk diode-connectedloads

VP VN

M1

M1P M1N M4P M4N

M4

M4R

ID.B+ID.TID.BVCM =VG

M2 M3

VS

VG VG VG

MN1 MN3MN2

MP M5

M6

Amp1

VDD

Gain Control 2

Gain Control 1

ID ID

Vop

Von

IT

IB

2ID.B

1 : 1

1 : 1

1 : 1 1 : 1

ID.B+ID.T

ID.B-ID.T

IB

2ID.B

3(ID.B-ID.T)

1 : 1

ID.B-ID.T

ID.B-ID.T

2(ID.B+ID.T)

2ID.B

1 : 1

1 : 2

Gain control circuits

Electronics Laboratory, Physics Dept.

ICECS 2010

The two gain control circuits produce the appropriate currents that bias and control the gain of the VGA.

Page 9: 0.8V Bulk-Driven Variable Gain Amplifier

Variable Gain Amplifier

VP VN

M1

M1P M1N M4P M4N

M4

M4R

ID.B+ID.TID.BVCM =VG

M2 M3

VS

VG VG VG

MN1 MN3MN2

MP M5

M6

Amp1

VDD

Gain Control 2

Gain Control 1

ID ID

Vop

Von

IT

IB

2ID.B

1 : 1

1 : 1

1 : 1 1 : 1

ID.B+ID.T

ID.B-ID.T

IB

2ID.B

3(ID.B-ID.T)

1 : 1

ID.B-ID.T

ID.B-ID.T

2(ID.B+ID.T)

2ID.B

1 : 1

1 : 2

Amp1 stabilize output common-mode voltage

produce the diode loads bias current

Electronics Laboratory, Physics Dept.

ICECS 2010

Thus: the gmb-input equals to (IB+IT)/VR

the gmb-loads equals to (IB-IT)/VR

Page 10: 0.8V Bulk-Driven Variable Gain Amplifier

Variable Gain Amplifier

VP VN

M1

M1P M1N M4P M4N

M4

M4R

ID.B+ID.TID.BVCM =VG

M2 M3

VS

VG VG VG

MN1 MN3MN2

MP M5

M6

Amp1

VDD

Gain Control 2

Gain Control 1

ID ID

Vop

Von

IT

IB

2ID.B

1 : 1

1 : 1

1 : 1 1 : 1

ID.B+ID.T

ID.B-ID.T

IB

2ID.B

3(ID.B-ID.T)

1 : 1

ID.B-ID.T

ID.B-ID.T

2(ID.B+ID.T)

2ID.B

1 : 1

1 : 2

1exp(2 )

1

T

mb input B T Bv

TB Tmb load

B

II I I

xII II

gA

g

Electronics Laboratory, Physics Dept.

ICECS 2010

Voltage gain:

where x=IT/IB

Page 11: 0.8V Bulk-Driven Variable Gain Amplifier

Simulations Results

Technology : Standard 0.18um CMOSVDD=0.8V

IB=10uA/15uA/20uA

IT=50% of IB

Page 12: 0.8V Bulk-Driven Variable Gain Amplifier

Simulations Results

Gain range of the proposed and the conventional VGA approach against tuning current IT

-5.0 5.00.0-10 10IT (μΑ)

-12.5

-10.0

-7.5

-5.0

-2.5

0.0

7.5

2.5

5.0 Introduced approach

Conventional approach

Ga

in (

dB)

-10 -5.0 0.0 5.0 10IT (μΑ)

-400

-300

-200

-100

0.0

100

200

300

400

Err

or (

mdB

)

IB=20μΑ

IB=15μΑ

IB=10μΑ

Linearity error versus tuning current IT with bias current IB as a parameter (10uA, 15uA & 20uA).

Electronics Laboratory, Physics Dept.

ICECS 2010

Page 13: 0.8V Bulk-Driven Variable Gain Amplifier

Simulation Results

Gain variation of VGA versus tuning variable IT with bias current IB as parameter (10uA, 15uA & 20uA)

-10 -5.0 0.0 5.0 10IT (μΑ)

Ga

in (

dB

)

-12.5

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

IB=10μΑ

IB=15μΑIB=20μΑ

Electronics Laboratory, Physics Dept.

ICECS 2010

Page 14: 0.8V Bulk-Driven Variable Gain Amplifier

Simulations Results

IB1=10uA

IB2=15uA

IB3=20uA

Comments

Technology Standard 0.18um CMOS

VDD 0.8V

IDD 267uA 395uA 530uA -

IT variation ±5uA ±7.5uA ±10uA ±50% of IB

Gain range ≈17dB ≈17dB ≈17dB -

f-3dB @gain=6.5dB 21MHz 31MHz 42MHz Pout=-25dB : Pin=-31.5dB

f-3dB @gain=-10.5dB

95MHz 143MHz 195MHz Pout=-25dB : Pin=-15.5dB

THD @gain=-10.5dB

-67dB -68dB -69dB Pout=-25dB : Pin=-15.5dB

THD @gain=-10.5dB

-44dB -45dB -46dB Pout=-15dB: Pin=-

4.5dB

Page 15: 0.8V Bulk-Driven Variable Gain Amplifier

ConclusionsA low-voltage VGA was introduced.Based on master-slave techniqueUtilizes bulk-driven PMOS input transistorsImplements the pseudo exponential

approximation function :exp(2 )1

1xx

x

Electronics Laboratory, Physics Dept.

ICECS 2010

Page 16: 0.8V Bulk-Driven Variable Gain Amplifier

Conclusions

Benefits of the proposed VGA topology : a linear-in-dB gain range almost equal to

17dBlinear gain tunability less than ±0.5dB linear errorstability over process a doubled slope of gain curve

Electronics Laboratory, Physics Dept.

ICECS 2010

Page 17: 0.8V Bulk-Driven Variable Gain Amplifier

Thank YouFor your Attention!!!