Top Banner
1 ! Simple Frames ! Frame-Member Stiffness Matrix ! Displacement and Force Transformation Matrices ! Frame-Member Global Stiffness Matrix ! Special Frames ! Frame-Member Global Stiffness Matrix FRAME ANALYSIS USING THE STIFFNESS METHOD
72

07 Matrix Frame

Apr 13, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 07 Matrix Frame

1

! Simple Frames! Frame-Member Stiffness Matrix! Displacement and Force Transformation Matrices! Frame-Member Global Stiffness Matrix

! Special Frames! Frame-Member Global Stiffness Matrix

FRAME ANALYSIS USING THE STIFFNESSMETHOD

Page 2: 07 Matrix Frame

2

Simple Frames

Page 3: 07 Matrix Frame

3

Frame-Member Stiffness Matrix

0 0 00 - AE/LAE/L

4EI/L - 6EI/L2 2EI/L6EI/L2 00

6EI/L2 - 12EI/L3 6EI/L212EI/L3 00

0

2EI/L

-6EI/L2

0

- 6EI/L2

12EI/L3

0

-6EI/L2

4EI/L

0

6EI/L2

-12EI/L3

AE/L

0

0

-AE/L

0

0

m

x´y´

i

j

3´ 6´2´ 4´1´ 5´

[k´]

4´5´6´

1´2´3´

6EI/L24EI/L

6EI/L24EI/L

AE/L

AE/L

6EI/L2

6EI/L2

12EI/L3

12EI/L3

2EI/L

d 1́ = 1

AE/L

AE/L

d 2́ = 1

12EI/L3

12EI/L3

d 3́ = 1

2EI/L

6EI/L2

6EI/L2

6EI/L26EI/L2AE/L

2EI/L

6EI/L2

6EI/L2d 6́

= 1

6EI/L2

6EI/L22EI/L

6EI/L2

12EI/L3

12EI/L3

4EI/L4EI/L12EI/L3

12EI/L3

6EI/L2

6EI/L2AE/L

6EI/L2d 4́ = 1

d 5́ = 1AE/L

AE/L

Page 4: 07 Matrix Frame

4

m

i

j

m

i

j

x´y´

x

y

Displacement and Force Transformation Matrices

12

3

45

6

θyθx

Page 5: 07 Matrix Frame

5

λx

q4 = q4´ cos θx - q5´ cos θy

q5 = q4´ cos θy + q5´ cos θx

q6 = q6´

λy

i

jθy

θx

4´5´

θy

θx

m

i

j

x

y

12

3

45

6

Force Transformation

Lxx ij

x

−=λ

Lyy ij

y

−=λ

−=

6'

5'

4'

6

5

4

10000

qqq

λλλλ

qqq

xy

yx

=

6'

5'

4'

3'

2'

1'

6

5

4

3

2

1

1000000000000000010000000000

qqqqqq

λλλλ

λλλλ

qqqqqq

xy

yx

xy

yx

[ ] [ ] [ ]'qTq T=

Page 6: 07 Matrix Frame

6

[q] = [T]T[q´]

= [T]T ( [k´][d´] + [q´F] )

= [T]T [k´][d´] + [T]T [q´F]

[q] = [T]T [k´][T][d] + [T]T [q´F] = [k][d] + [qF]

Therefore, [k] = [T]T [k´][T]

[qF] = [T]T [q´F]

[q] = [T]T[q´]

[d´] = [T][d]

[k] = [T]T [k´][T]

Page 7: 07 Matrix Frame

7

[q] = [T]T[q´]= [T]T ( [k´][d´] + [q´F] ) = [T]T[k´][d´] + [T]T[q´F] = [T]T [k´][T][d] + [T]T [q´F]

Frame Member Global Stiffness Matrix

[k] [qF][ k ] = [ T ]T[ k´ ][T] =

Ui

Vi

Mi

Uj

Vj

Mj

Vj Mj

- λiy6EIL2

λix6EIL2

2EIL

λjy6EIL2

- λjx6EIL2

4EIL

Ui Vi Mi

- λiy6EIL2

λix6EIL2

4EIL

λjy6EIL2

λjx6EIL2

-

2EIL

Uj

AEL

- λixλiy)(12EIL3

AEL

λiy2 +

12EIL3

λix2 )(

λix6EIL2

λix6EIL2

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

λixλjx +

12EIL3

λiyλjy)-(

λjy6EIL2

AEL

λjx2 +

12EIL3

λjy2 )(

λjy6EIL2

λjx6EIL2

-

AEL

- λjxλjy)(12EIL3

- λjx6EIL2

AEL

λixλjy -

12EIL3

λiyλjx)-(

AEL

- λixλiy)(12EIL3

- λiy6EIL2

- λiy6EIL2

AEL

λixλjx +

12EIL3

λiy λjy)-(

)(AEL

λix2 +

12EIL3

λiy2

AEL

λiyλjy +

12EIL3

λix λjx )-(

AEL

λiyλjy +

12EIL3

λixλjx)-(

12EIL3

λjx2 )

AEL

- ( λixλjy- λiyλjx )12EIL3

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

- λjxλjy)(12EIL3

AEL λjy

2 + (

Page 8: 07 Matrix Frame

8

5 kN

6 m

6 m

AB

C

Example 1

For the frame shown, use the stiffness method to:(a) Determine the deflection and rotation at B.(b) Determine all the reactions at supports.(c) Draw the quantitative shear and bending moment diagrams.E = 200 GPa, I = 60(106) mm4, A = 600 mm2

Page 9: 07 Matrix Frame

9

5 kN

6 m

6 m

AB

C kN/m666.667(6m)

)m10)(60mkN1012(20012

3

462

6

3 =××

=

LEI

kN/m200006m

)mkN10)(200m10(600 2

626

=××

=

LAE

kN2000(6m)

)m10)(60mkN106(2006

2

462

6

2 =××

=

LEI

mkN80006m

)m10)(60mkN104(2004

462

6

•=××

=

LEI

mkN40006m

)m10)(60mkN102(2002

462

6

•=××

=

LEI

Global :

AB

C

1

2

78 9

4

6 5

12 3

Page 10: 07 Matrix Frame

10

Global :

AB

C

1

2

78 9

4

6 5

12 3

A B14´

5´ 6´

2´ 3´

Local :

1´ 3´

2

Using Transformation Matrix:

� Member Stiffness Matrix

[ ]

−−−−

−−−

=

LEILEILEILEILEILEILEILEI

LAELAELEILEILEILEILEILEILEILEI

LAEAE/L

/4/60/2/60/6/120/6/120

00/00//2/60/4/60/6/120/6/120

00/00

k'

22

2323

22

2323

Mi

Vj

Mj

Vi

Nj

Ni

θi ∆j θj∆i δjδi

Page 11: 07 Matrix Frame

11

A B14´

5´ 6´

2´ 3´

Local :

[q] = [q´]

-> [k]1 = [k´]1

Stiffness Matrix: Member 1

Global:

AB

C

1

2

78 9

4

6 5

12 3

4 6 5 1 2 34

6

5

1

2

3

20000

0

0

-20000

0

0

0

666.667

2000

0

-666.667

2000

0

2000

8000

0

-2000

4000

-20000

0

0

20000

0

0

0

-666.667

-2000

0

666.667

-2000

0

2000

4000

0

-2000

8000

[k]1 =

Page 12: 07 Matrix Frame

12

Local:

1´ 3´

2

[q]2 = [ T ]T[ q´]2

q1´

q3´

q2´

q4´q5´

q6´

q1

q3

q2

q7

q8q9

[T]T

Stiffness Matrix: Member 2

=

123789

4´0000

0-1

5´000100

6´000001

1´0

0-1

000

2´100000

3´001000

90o

λjx = cos (-90o) = 0λjy = sin (-90o) = -1

λix = cos (-90o) = 0λiy = sin (-90o) = -1

Global:

AB

C

1

2

78 9

4

6 5

12 3

Page 13: 07 Matrix Frame

13

[k]2 = [ T ]T[ k´ ]2[ T ]

1´ 2´ 3´ 4´ 5´ 6´1´

20000

0

0

-20000

0

0

0

666.667

2000

0

-666.667

2000

0

2000

8000

0

-2000

4000

-20000

0

0

20000

0

0

0

-666.667

-2000

0

666.667

-2000

0

2000

4000

0

-2000

8000

[k´]2 =

1 2 3 7 8 9

666.667 20001

2

3

7

8

9

2000

0

0

-666.667

-666.667

0

0

2000

2000

20000 0

0

0

0

-20000

-20000

0

0

8000 -2000

-2000

0

0

4000

4000

666.667 0

0

-2000

-2000

20000 0

0 8000

[k]2 =

Page 14: 07 Matrix Frame

14

[k]14 6 5 1 2 3

4

6

5

1

2

3

20000

0

0

-20000

0

0

0666.667

20000

-666.667

2000

02000

80000

-2000

4000

-200000

020000

0

0

0-666.667

-20000

666.667

-2000

02000

40000

-2000

8000

1 2 3 7 8 9666.667 20001

2

3

7

8

9

2000

00

666.667

-666.667

0

0

2000

2000

20000 0

0

0

0

-20000

-20000

0

0

8000 -2000-2000

0

0

4000

4000

666.667 0

0

-2000

2000

20000 0

0 8000

[k]2

Global Stiffness Matrix:

20000

0

-20000

0

0

0

8000

0

-2000

4000

0

-2000

0

4000

-20000

0

0

20666.667

-2000

2000

-2000

16000

20666.667

0

2000

[K]

4

5

1

2

3

4 5 1 2 3

Global:

AB

C

1

2

78 9

4

6 5

12 3

Page 15: 07 Matrix Frame

15

AB

C

Q4 = 0Q5 = 0

Q1 = 5Q2 = 0

Q3 = 0

D4

D5

D1

D2

D3

+

0 0

0 0

0

D4

D5

D1

D2

D3

=

0.01316 m

0.01316 m9.199(10-4) rad

-9.355(10-5) m

-1.887(10-3) rad

5 kN

6 m

6 m

AB

C

1

2

Global:

1

2

78 9

4

6 5

12 3

5 kN

=

4

5

1

2

3

4 5 1 2 3-20000 0 0

20666.667 00

2000

2000

20666.667 -2000

-2000 16000

0-2000

4000

08000 0 -2000 4000

-200000

20000

0

0

[Q] = [K][D] + [QF]

Page 16: 07 Matrix Frame

16

D4 = 0.01316

D5 = 9.199(10-4)

D6 = 0

D1 = 0.01316

D2 = -9.355(10-5)

D3 = -1.887(10-3)

15 kN

6 m

6 m

AB

C

2

q4

q5

q6

q1

q2

q3

0

0

-1.87

0

1.87

-11.22

Member 1

A B11

2 3

4

6 5

A B1

1.87 kN 11.22 kN�m1.87 kN

4 6 5 1 2 3

4

6

5

1

2

3

20000

0

0

-20000

0

0

0

666.667

2000

0

-666.667

2000

0

2000

8000

0

-2000

4000

-20000

0

0

20000

0

0

0

-666.667

-2000

0

666.667

-2000

0

2000

4000

0

-2000

8000

[q]1 = [k]1[d]1 + [qF]1

Page 17: 07 Matrix Frame

17

5 kN

1.87 kN 11.22 kN�m

5 kN1.87 kN

18.77 kN�m

Member 2

q1

q3

q2

q7

q8

q9

D1 = 0.01316

D3 = -1.887(10-3)

D2 = -9.355(10-5)

D7 = 0

D8 = 0

D9 = 0

5

11.22

-1.87

-5

1.87

18.77

1 2 3 7 8 9

666.667 20001

2

3

7

8

9

2000

0

0

-666.667

-666.667

0

0

2000

2000

20000 0

0

0

0

-20000

-20000

0

0

8000 -2000

-2000

0

0

4000

4000

666.667 0

0

-2000

-2000

20000 0

0 8000

[q]2 = [k]2[d]2 + [qF]2

15 kN

6 m

6 m

AB

C

2 1

2 3

78 9

2 2

Page 18: 07 Matrix Frame

18

AB

C

Bending moment diagram

A B1

1.87 kN 11.22 kN�m1.87 kN5 kN

6 m

6 m

AB

C

1.87 kN

18.77 kN�m5 kN

1.87 kN

AB

C

Shear diagram

5

5

+

-1.87-

+

18.77

11.22

-11.22

-

5 kN

1.87 kN 11.22 kN�m

5 kN

1.87 kN

18.77 kN�m

2

Page 19: 07 Matrix Frame

19

Deflected shape

AB

C

AB

C

Bending moment diagram +

18.77

11.22

-11.22

-

D3=-0.00189 rad

D3=-0.00189 rad

D1=13.16 mmD4=13.16 mm

D4

D5

D1

D2

D3

=

0.01316 m

0.01316 m9.199(10-4) rad

-9.355(10-5) m

-1.887(10-3) rad

Global :

AB

C

1

2

78 9

4

6 5

12 3

D5=0.00092 rad

Page 20: 07 Matrix Frame

20

4.5 m

6 m 6 m

3 kN/m

Example 2

For the beam shown, use the stiffness method to:(a) Determine the deflection and rotation at B(b) Determine all the reactions at supports(c) Draw the quantitative shear and bending moment diagrams.E = 200 GPa, I = 60(106) mm4, A = 600 mm2 for each member.

A

B C

Page 21: 07 Matrix Frame

21

Global 2

1

1

2 3

4

56

7

8 9

2 7

8 9

1

2 3

[FEM] 9 kN�m

9 kN

9 kN�m

9 kN

3 kN/m

2

Members1

2 3

4

56 1

4.5 m

6 m 6 m

3 kN/m

Page 22: 07 Matrix Frame

22

4.5 m

6 m 6 m

3 kN/m

7.5 m

λx = cos θx = 6/7.5 = 0.8

Member 1:

θx

θy 1

2 3

4

56 1

λy = cos θy = 4.5/7.5 = 0.6

mkNm

mkNmL

AE

/160005.7

)/10200)(10600( 2626

=

××=

mkNm

mmkNLEI

/33.341)5.7(

)1060)(/10200(12123

4626

3

=

××=

kNm

mmkNLEI

1280)5.7(

)1060)(/10200(662

4626

2

=

××=

mkNm

mmkNLEI

•=

××=

64005.7

)1060)(/10200(44 4626

mkNm

mmkNLEI

•=

××=

32005.7

)1060)(/10200(22 4626

Page 23: 07 Matrix Frame

23

[ km ] = [ T ]T[ k´ ][T ] =

λx = cos θx

Member m:

θx

θy Uj

VjMj

Ui

Vi

Mim

λy = cos θy

Ui

Vi

Mi

Uj

Vj

Mj

Vj Mj

- λiy6EIL2

λix6EIL2

2EIL

λjy6EIL2

- λjx6EIL2

4EIL

Ui Vi Mi

- λiy6EIL2

λix6EIL2

4EIL

λjy6EIL2

λjx6EIL2

-

2EIL

Uj

AEL

- λixλiy)(12EIL3

AEL

λiy2 +

12EIL3

λix2 )(

λix6EIL2

λix6EIL2

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

λixλjx +

12EIL3

λiyλjy)-(

λjy6EIL2

AEL

λjx2 +

12EIL3

λjy2 )(

λjy6EIL2

λjx6EIL2

-

AEL

- λjxλjy)(12EIL3

- λjx6EIL2

AEL

λixλjy -

12EIL3

λiyλjx)-(

AEL

- λixλiy)(12EIL3

- λiy6EIL2

- λiy6EIL2

AEL

λixλjx +

12EIL3

λiy λjy)-(

)(AEL

λix2 +

12EIL3

λiy2

AEL

λiyλjy +

12EIL3

λix λjx )-(

AEL

λiyλjy +

12EIL3

λixλjx)-(

12EIL3

λjx2 )

AEL

- ( λixλjy- λiyλjx )12EIL3

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

- λjxλjy)(12EIL3

AEL λjy

2 + (

Page 24: 07 Matrix Frame

24

λx = cos θx = 6/7.5 = 0.8

Member 1:

θx

θy 1

2 3

4

56 1

λy = cos θy = 4.5/7.5 = 0.6

4.5 m

6 m 6 m

3 kN/m

7.5 m

=

4

5

6

1

2

3

4 1

-10362.879

-7516.162

768

10362.879

768

7516.162

2

-7516.162

-5978.451

-1024

7516.162

5978.451

-1024

3

-768

1024

3200

768

-1024

6400

10362.879

-768

7516.162

-10362.879

-7516.162

-768

5

7516.162

5978.451

1024

-7516.162

-5978.451

1024

6

-768

1024

6400

768

-1024

3200

[k1]

Page 25: 07 Matrix Frame

25

λx = cos 0o = 1.0, λy = cos 90o = 0

Member 2:

2 7

8 9

1

2 3

4.5 m

6 m 6 m

3 kN/m

7.5 mmkN

mmkNm

LAE

/200006

)/10200)(10600( 2626

=

××=

mkNm

mmkNLEI

/667.666)6(

)1060)(/10200(12123

4626

3

=

××=

kNm

mmkNLEI

2000)6(

)1060)(/10200(662

4626

2

=

××=

mkNm

mmkNLEI

•=

××=

80006

)1060)(/10200(44 4626

mkNm

mmkNLEI

•=

××=

40006

)1060)(/10200(22 4626

Page 26: 07 Matrix Frame

26

[k2] =0

2EI/L

-6EI/L2

- 6EI/L2

6EI/L2

0

6EI/L2

-12EI/L3

0

0

0

0

-AE/L

0

0

0

6EI/L2

0

- 6EI/L2

- 12EI/L3

0

0

6EI/L2

2EI/L

0

-6EI/L2

0 - AE/L

0

0

4EI/L

12EI/L3

4EI/L

12EI/L3

AE/L

AE/L

3

8

9

2

7

1

3 92 71 8

[k2] =0

4000

-2000

- 2000

2000

0

2000

-666.667

0

0

0

0

-20000

0

0

0

2000

0

- 2000

- 666.667

0

0

2000

4000

0

-2000

0 - 20000

0

0

8000

666.667

8000

666.667

20000

20000

3

8

9

2

7

1

3 92 71 8

2 7

8 9

1

2 3

Page 27: 07 Matrix Frame

27

=

4

5

6

1

2

3

4 1

-10362.879

-7516.162

768

10362.879

768

7516.162

2

-7516.162

-5978.451

-1024

7516.162

5978.451

-1024

3

-768

1024

3200

768

-1024

6400

10362.879

-768

7516.162

-10362.879

-7516.162

-768

5

7516.162

5978.451

1024

-7516.162

-5978.451

1024

6

-768

1024

6400

768

-1024

3200

[k1]

[k2] =0

4000

-2000

- 2000

2000

0

2000

-666.667

0

0

0

0

-20000

0

0

0

2000

0

- 2000

- 666.667

0

0

2000

4000

0

-2000

0 - 20000

0

0

8000

666.667

8000

666.667

20000

20000

3

8

9

2

7

1

3 92 71 8

Page 28: 07 Matrix Frame

28

D1

D3

D2 =4.575(10-4) m

-5.278(10-4) rad

-1.794(10-3) m

Global:

1

21

2 3

4

5 6

7

8 9

4.5 m

6 m 6 m

3 kN/m

7.5 m9 kN

9 kN�m

9 kN

0

0

0

Q1

Q3

Q2

D1

D3

D2

0

9

9+1

2

3

1

30362.9

768

7516.16

2

7516.16

6645.12

976

3

768

976

14400=

9 kN�m

9 kN

Page 29: 07 Matrix Frame

29

λx = cos θx = 6/7.5 = 0.8

Member 1:

θx

θy 1

2 3

4

56 1

λy = cos θy = 4.5/7.5 = 0.6

0

0

0

D1 = 4.575(10-4)

D2 = -1.794(10-3)

D3 = -5.278(10-4)

0

0

0

0

0

0

+ =

q4

q6

q5

q1

q2q3

4

5

6

1

2

3

5 1 2 34 6

k1

1

11.37 kN

11.37 kN

0.09 kN

1.19 kN�m

0.09 kN

0.50 kN�m 1

9.15 kN6.75 kN 1.19 kN�m

9.15 kN

6.75 kN

0.50 kN�m

9.15

0.50

6.75

-9.15

-6.75

-1.19

=

Page 30: 07 Matrix Frame

30

Member 2:

2 7

8 9

1

2 3

0

9

9

0

9

-9

+=

q1

q3

q2

q7

q8q9

D1 = 4.575(10-4)

D2 = -1.794(10-3)

D3 = -5.278(10-4)

0

0

0

1

2

3

7

8

9

2 7 8 91 3

k2

9.15

1.19

6.75

-9.15

11.25

-14.70

=

9 kN�m

9 kN

9 kN�m

9 kN

3 kN/m

2[FEM]

3 kN/m

29.15 kN

6.75 kN

1.19 kN�m

9.15 kN11.25 kN

14.70 kN�m

Page 31: 07 Matrix Frame

31

3 kN/m

29.15 kN

6.75 kN

1.19 kN�m

9.15 kN11.25 kN

14.70 kN�m

1

9.15 kN6.75 kN 1.19 kN�m

9.15 kN

6.75 kN

0.50 kN�m

3 kN/m

All Reactions

9.15 kN11.25 kN

14.70 kN�m

9.15 kN

6.75 kN

0.50 kN�m

Page 32: 07 Matrix Frame

32

-1.19

Shear diagram (kN)

Deflected shape

-0.09

-0.09

6.75

3 kN/m

29.15 kN

6.75 kN

1.19 kN�m

9.15 kN11.25 kN

14.70 kN�m

1

11.37 kN

11.37 kN

0.09 kN

1.19 kN�m

0.09 kN0.50 kN�m

D3 =-5.278(10-4) rad

D2 = -1.79 mm

D1 = 0.46 mm

D1

D3

D2 =4.575(10-4) m

-5.278(10-4) rad

-1.794(10-3) m -11.25

-

+

Bending-moment diagram (kN�m)

-14.70

0.5

Page 33: 07 Matrix Frame

33

Example 3

For the beam shown, use the stiffness method to:(a) Determine the deflection and rotation at B.(b) Determine all the reactions at supports.(c) Draw the quantitative shear and bending moment diagrams.E = 200 GPa, I = 60(106) mm4, A = 600 mm2 for each member.

4.5 m

6 m 3 m

10 kN

A

BC15 kN

20 kN�m

3 kN/m

3 m

Page 34: 07 Matrix Frame

34

[FEM] 13 kN/m 11.25 kN

wL/2 = 11.25 kN

wL2/12 = 14.06 kN�m

14.06 kN�m

Global

21

2 7

8 9

1

2 3

4.5 m

6 m 3 m

10 kN

A

BC15 kN

20 kN�m

3 kN/m

3 m

7.5 kN�m

5 kN

7.5 kN�m

5 kN

2

10 kN

λx = cos θx = 6/7.5 = 0.8

1

Members1

2 3

4

56

1

2 3

4

56

7

8 9

θy = 53.13

θx =36.87

λy = cos θy = 4.5/7.5 = 0.6

6.75 kN

9 kN

11.25(0.6) = 6.75 kN

11.25(0.8) = 9 kN

Page 35: 07 Matrix Frame

35

Global:

1

21

2 3

4

5 6

7

8 9

Q1 = 15

Q3 = 20

Q2 = 0

D1

D3

D2

-6.75

-14.06 + 7.5

9 + 5+1

2

3

1

30362.9

768

7516.16

2

7516.16

6645.2

976

3

768

976

14400=

[FEM]13 kN/m 11.25 kN

11.25 kN

14.06 kN�m

14.06 kN�m7.5 kN�m

5 kN

7.5 kN�m

5 kN

2

10 kN

6.75 kN

9 kN

11.25(0.6) = 6.75 kN

9 kN

10 kN

A

BC15 kN

20 kN�m

3 kN/m

14.06 kN�m7.5 kN�m

6.75 kN

5 kN9 kN

15 kN20 kN�m

Page 36: 07 Matrix Frame

36

D1

D3

D2 =1.751(10-3) m

2.049(10-3) rad

-4.388(10-3) m

1

21

2 3

4

5 6

7

8 9

Page 37: 07 Matrix Frame

37

Member 1:

0

0

0

D1 = 1.751(10-3)

D2 = -4.388(10-3)

D3 = 2.049(10-3)

-6.75

14.06

9

-6.75

9

-14.06

+ =

q4

q6

q5

q1

q2q3

4

5

6

1

2

3

5 1 2 34 6

k1

6.51

26.46

24.17

-20.01

-6.17

4.89

=

[FEM]

13 kN/m 11.25 kN

11.25 kN

14.06 kN�m

14.06 kN�m

6.75 kN

9 kN

11.25(0.6) = 6.75 kN

9 kN

θx

θy 1

2 3

4

56 1

λx = cos 36.87o = 0.8, λy = cos 53.13o = 0.6

14.06 kN�m

14.06 kN�m

6.75 kN

9 kN

11.25(0.6) = 6.75 kN

9 kN

Page 38: 07 Matrix Frame

38

3 kN/m

7.5 m1

19.71 kN

19.71 kN

7.07 kN

4.89 kN�m

15.43 kN

26.46 kN�m

=

q4

q6

q5

q1

q2q3

6.51

26.46

24.17

-20.01

-6.17

4.89

θx = 36.87o

θy = 53.13o 1

2 3

4

56 1

3 kN/m

7.5 m

20.01 kN

4.89 kN�m

6.51 kN

24.17 kN

26.46 kN�m

6.17 kN

Page 39: 07 Matrix Frame

39

Member 2:

2 7

8 9

1

2 3

0

7.5

5

0

5

-7.5

+=

q1

q3

q2

q7

q8q9

D1 = 1.751(10-3)

D2 = -4.388(10-3)

D3 = 2.049(10-3)

0

0

0

1

2

3

7

8

9

2 7 8 91 3

k2

35.02

15.12

6.17

-35.02

3.83

-8.08

=

35.02 kN

6.17 kN

15.12 kN�m

35.02 kN3.83 kN

8.08 kN�m

[FEM]

7.5 kN�m

5 kN

7.5 kN�m

5 kN

2

10 kN 2

10 kN

7.5 kN�m

5 kN

7.5 kN�m

5 kN

Page 40: 07 Matrix Frame

40

3 kN/m

7.5 m

20.01 kN

4.89 kN�m

6.51 kN

24.17 kN

26.46 kN�m

6.17 kN

35.02 kN

6.17 kN

15.12 kN�m

35.02 kN3.83 kN

8.08 kN�m

2

10 kN

10 kN

A

BC15 kN

20 kN�m

3 kN/m

6 m 3 m3 m

6.51 kN

24.17 kN

26.46 kN�m

35.02 kN3.83 kN

8.08 kN�m

Page 41: 07 Matrix Frame

41

Shear diagram (kN)

Bending-moment diagram (kN�m)

3 kN/m

7.5 m1

19.71 kN

19.71 kN

7.07 kN

4.89 kN�m

15.43 kN

26.46 kN�m

35.02 kN

6.17 kN

15.12 kN�m

35.02 kN3.83 kN

8.08 kN�m

2

10 kN

15.43D1

D3

D2 =1.751(10-3) m

2.049(10-3) rad

-4.388(10-3) m

Deflected shape

D3 = 2.05(10-3) rad

D2 = -4.39 mm

D1 =1.75 mm

-26.46

4.89

-15.12 -8.08

-7.07

6.17

-3.83

Page 42: 07 Matrix Frame

42

Special Frames

Page 43: 07 Matrix Frame

43

i j

θjθi 4 *

5 * 6*

1*

2*3 *

λix = cos θi

λiy = sin θi

λjx = cos θj

λjy = sin θj

[ q* ] = [ T ]T[ q´ ]

1

Stiffness matrix

i j

5´ 6´

2´3´

[ T ]T

=

6'

5'

4'

3'

2'

1'

*6

5*

*4

*3

2*

*1

1000000000000000010000000000

qqqqqq

λλλλ

λλλλ

qqqqqq

jxjy

jyjx

ixiy

iyix1*2*3*4*5*6*

1´ 2´ 3´ 4´ 5´ 6´

Page 44: 07 Matrix Frame

44

[ ]

=

1000000000000000010000000000

jxjy

jyjx

ixiy

iyix

λλλλ

λλλλ

T

1´2´3´4´5´6´

1* 2* 3* 4* 5* 6*

� Member Stiffness Matrix

1´2´3´4´5´6´

1´ 2´ 3´ 4´ 5´ 6´

[ ]

−−−−

−−−

=

LEILEILEILEILEILEILEILEI

LAELAELEILEILEILEILEILEILEILEI

LAEAE/L

/4/60/2/60/6/120/6/120

00/00//2/60/4/60/6/120/6/120

00/00

k'

22

2323

22

2323

Page 45: 07 Matrix Frame

45

[ k ] = [ T ]T[ k´ ][T] =

Ui

Vi

Mi

Uj

Vj

Mj

Vj Mj

- λiy6EIL2

λix6EIL2

2EIL

λjy6EIL2

- λjx6EIL2

4EIL

Ui Vi Mi

- λiy6EIL2

λix6EIL2

4EIL

λjy6EIL2

λjx6EIL2

-

2EIL

Uj

AEL

- λixλiy)(12EIL3

AEL

λiy2 +

12EIL3

λix2 )(

λix6EIL2

λix6EIL2

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

λixλjx +

12EIL3

λiyλjy)-(

λjy6EIL2

AEL

λjx2 +

12EIL3

λjy2 )(

λjy6EIL2

λjx6EIL2

-

AEL

- λjxλjy)(12EIL3

- λjx6EIL2

AEL

λixλjy -

12EIL3

λiyλjx)-(

AEL

- λixλiy)(12EIL3

- λiy6EIL2

- λiy6EIL2

AEL

λixλjx +

12EIL3

λiy λjy)-(

)(AEL

λix2 +

12EIL3

λiy2

AEL

λiyλjy +

12EIL3

λix λjx )-(

AEL

λiyλjy +

12EIL3

λixλjx)-(

12EIL3

λjx2 )

AEL

- ( λixλjy- λiyλjx )12EIL3

AEL

λiyλjx -

12EIL3

λixλjy)-(

AEL

- λjxλjy)(12EIL3

AEL λjy

2 + (

Page 46: 07 Matrix Frame

46

40 kN

4 m 4 m

3 m

7.416 m

22.02 o

20 kN200 kN�m

6 kN/m

Example 4

For the beam shown:(a) Use the stiffness method to determine all the reactions at supports.(b) Draw the quantitative free-body diagram of member.(c) Draw the quantitative bending moment diagrams and qualitativedeflected shape.Take I = 200(106) mm4 , A = 6(103) mm2, and E = 200 GPa for all members.Include axial deformation in the stiffness matrix.

Page 47: 07 Matrix Frame

47

1Local

12

40 kN

4 m 4 m

3 m

7.416 m

22.02 o

20 kN200 kN�m

6 kN/m

4

5 6

7

8 922.02 o

Global

2

2´ 3´

5´ 6´

2´3´

5´ 6´

1 *

2* 3 *

Page 48: 07 Matrix Frame

48

mkNm

mkNmL

AE /101508

)/10200)(006.0( 3262

×=×

=

mkNm

mmkNLEI

•×=×

= 3426

10208

)0002.0)(/10200(44

mkNLEI

•×= 310102

kNm

mmkNLEI 3

2

426

2 1075.3)8(

)0002.0)(/10200(66×=

×=

mkNm

mmkNLEI /109375.0

)8()0002.0)(/10200(1212 3

3

426

3 ×=×

=

[ ]

−−−−

−−−

=

LEILEILEILEILEILEILEILEI

LAELAELEILEILEILEILEILEILEILEI

LAEAE/L

/4/60/2/60/6/120/6/120

00/00//2/60/4/60/6/120/6/120

00/00

k'

22

2323

22

2323

Mi

Vj

Mj

Vi

Nj

Ni

θi ∆j θj∆i δjδi

Page 49: 07 Matrix Frame

49

2

2´ 3´

5´ 6´

2´3´

1 4´

5´ 6´

Local

8 m

8 m

03750

0

- 3750- 937.5

0

0375010000

0-3750

0 - 150000

00

0

10000

-3750

- 3750

3750

0

3750

-937.5

0

0

00

-150000

0

0

[ k´]1 = [ k´]2 =20000

937.5

20000

937.5

150000

150000

θi ∆j θj∆i δjδi

Mi

Vj

Mj

Vi

Nj

Ni

Page 50: 07 Matrix Frame

50

θi =22.02o

Member 1:

1

1 *

2 * 3 *

4

5 6

Global1´

2´3´

1 4´

5´ 6´Local

θj = 0o

λjx = cos (0o) = 1,λjy = sin (0o) = 0

λix = cos (22.02o) = 0.927,λiy = sin (22.02o) = 0.375

40 kN40 kN�m40 kN�m

20 kN20 kN

1

[FEM]

q1´

q3´

q2´

q4´

q5´

q6´

q*1

q*3

q*2

q4

q5q6

[ T ]1T

00

0

00

0

00

0

000

000

000

1 0

1

01

00

0 0

0.9270.375

- 0.375 0.927

10 0

00

[ q* ] = [ T ]T[ q´ ]

=

1´ 4´ 5´ 6´2´ 3´

1*

2*

3*

4*

5*

6*

Page 51: 07 Matrix Frame

51

θi =22.02o1

1 *

2 * 3 *

4

5 6

Global1´

2´3´

1 4´

5´ 6´Local

θj = 0o

[ k* ]1 = [ T ]1T[ k´ ]1[ T ]1

[ k* ]1 = 103

1*2*3*456

1*

129.04651.811-1.406

-139.0580.351-1.406

2*

51.811

21.892

3.476-56.240

-0.8693.476

3*

-1.4063.47620.000.00-3.7510.00

4

-139.058-56.240

01500

0

5

0.351-0.869-3.75

00.938-3.75

6

-1.4063.47610.00

0-3.75

20

Page 52: 07 Matrix Frame

52

θi =22.02o1

1 *

2 * 3 *

4

5 6

Globalθj = 0o

40 kN40 kN�m40 kN�m

20 kN20 kN

1

[FEM]

[ qF* ] = [ T ]T[ qF´]

[ qF*] = [ T ]1T

0

40

20

0

20

-40

40 kN40 kN�m

20 kN

1

40 kN�m

18.547.5

-7.5018.5440020-40

=

1*

2*

3*

4

5

6

Page 53: 07 Matrix Frame

53

Member 2

q1´

q3´

q2´

q4´

q5´

q6´

q4

q6

q5

q7

q8q9

[ T ]2T

0.927-0.375

0.3750.927

1

00

0

00

0

00

0

000

000

000

1

0.927-0.375

0.3750.927

00

0 0

0 0

00

[ q ] = [ T ]T[ q´ ]

=

1´ 4´ 5´ 6´2´ 3´

456

78

9

6 kN/m2

24 kN

24 kN

32 kN�m

32 kN�m

[ q´F]

2

2´ 3´

5´ 6´

[ q´]

λix = λjx = cos (-22.02o) = 0.927,λiy = λjy = sin (-22.02o) = -0.375

2

45 6

[ q ]7

8 922.02o

22.02o

Page 54: 07 Matrix Frame

54

2

2´ 3´

5´ 6´

[ q´ ]

[ k ]2 = [ T ]2T[ k´]2[ T ]2

2

45 6

[ q ]7

8 922.02o

22.02o

[ k ]2 = 103

456

78

9

4

129.046-51.811

1.406-129.046

51.8111.4056

5

-51.81121.8923.476

51.811-21.892

3.476

6

1.4063.476

20-1.406-3.476

10

7

-129.04651.811-1.406

129.046-51.811-1.406

8

51.811-21.892-3.476

-51.81121.892-3.476

9

1.4063.476

10-1.406-3.476

20

Page 55: 07 Matrix Frame

55

6 kN/m2

24 kN

24 kN

32 kN�m

32 kN�m

[ q´F ]

[ qF* ] = [ T ]T[ qF´ ]

[ qF ] = [ T ]2T

0

32

24

0

24

-32

8.99822.249328.99822.249-32

=

4

5

6

7

8

9

6 kN/m2

32 kN�m

32 kN�m

[ qF ]

22.249 kN

8.998kN

22.249 kN

8.998 kN

2

45 6

[ q ]7

8 922.02o

22.02o

Page 56: 07 Matrix Frame

56

[ k* ]1 = 103

1*2*3*456

1*129.04651.811-1.406

-139.0580.351-1.406

2*51.811

21.892

3.476-56.240-0.8693.476

3*-1.4063.47620.000.00-3.7510.00

4-139.058-56.240

01500

0

50.351-0.869-3.75

00.938-3.75

6-1.4063.47610.00

0-3.75

20

Global Stiffness:

12

1 *

2* 3 *

4

5 6

7

8 9

2*

7

8 9

[ k ]2 = 103

456

78

9

4

129.046-51.811

1.406-129.046

51.8111.4056

5

-51.81121.8923.476

51.811-21.892

3.476

6

1.4063.476

20-1.406-3.476

10

7

-129.04651.811-1.406

129.046-51.811-1.406

8

51.811-21.892-3.476

-51.81121.892-3.476

9

1.4063.476

10-1.406-3.476

20

Page 57: 07 Matrix Frame

57

Global: 40 kN 20 kN200 kN�m

6 kN/m 12

1 *

2 * 3 *

4

5 6

7

8 9

6 kN/m2

32 kN�m

32 kN�m

[ qF ]

22.249 kN

8.998 kN

22.249 kN

8.998 kN

40 kN40 kN�m

20 kN

1

40 kN�m

18.54 kN7.5

[ q*F ]

2 *

7

8 9

[ Q ] = [ K ][ D ] + [ QF ]

40 kN�m

7.5

40 kN�m 32 kN�m

20 kN 22.249 kN

8.998 kN

20 kN200 kN�m

D1*

D4

D3*

D5

D6

= 0.0

= 0.0

= 0.0

= -20

= -200

Q1*

Q4

Q3*

Q5

Q6

= 103

1*

3*

4

5

6

1*

129.046

-1.406

-139.058

0.352

-1.406

3*

-1.406

20

0

-3.75

10

4

-139.058

0

279.046

-51.811

1.406

5

0.351

-3.75

-51.811

22.829

-0.274

6-1.406

10

1.406

-0.274

40

+ 8.998

-7.5

40

20 +22.249

-40 + 32

Page 58: 07 Matrix Frame

58

Global: 40 kN 20 kN200 kN�m

6 kN/m 12

1 *

2 * 3 *

4

5 6

7

8 9

2 *

7

8 9

D1*

D4

D3*

D5

D6

=

-0.0205 m

-0.0112 rad

-0.0191 m

-0.0476 m

-0.0024 rad

Page 59: 07 Matrix Frame

59

1

1 *

2 * 3 *

4

5 6

[ q ]

40 kN 40 kN�m

20 kN

1

40 kN�m

18.547.5

[ qF* ]Member 1: [ q*] = [ k*][ d*] + [ qF*]

q1*

q3*

q2*

q4

q5q6

D1*=-0.0205

D3*=-0.0112D2*= 0.0

D4= -0.0191D5= -0.0476D6=-0.0024

-7.50

40

18.54

0

20

-40

+

q1*

q3*

q2*

q4

q5

q6

0

022.63 kN

-8.49 kN19.02 kN7.87 kN�m

=

40 kN

22.63 kN

8.49 kN

19.02 kN

7.87 kN�m

= 103

1*2*3*456

1*

129.04651.811-1.406

-139.0580.351-1.406

2*

51.811

21.892

3.476-56.240

-0.8693.476

3*

-1.4063.47620.000.00-3.7510.00

4

-139.058-56.240

01500

0

5

0.351-0.869-3.75

00.938-3.75

6

-1.4063.47610.00

0-3.75

20

Page 60: 07 Matrix Frame

60

Member 2 : [ q ] = [ k ][ d ] + [ qF ]

q4

q6

q5

q7

q8q9

8.998

3222.249

8.99822.249

-32

+

2

4

5 6

[ q ] 7

8 96 kN/m

2

32 kN�m

32 kN�m

[ qF ]

22.249 kN

8.998 kN

22.249 kN

8.998 kN

D4= -0.0191

D6=-0.0024D5= -0.0476

D7 = 0D8 = 0D9 = 0

q4

q6

q5

q7

q8

q9

8.49 kN

-207.87 kN�m-39.02 kN

9.51 kN83.51 kN-248.04 kN�m

= 8.49 kN

39.02 kN

207.87 kN�m

9.51 kN83.51 kN

248.04 kN�m

6 kN/m

=103

456

78

9

4

129.046-51.811

1.406-129.046

51.8111.4056

5

-51.81121.8923.476

51.811-21.892

3.476

6

1.4063.476

20-1.406-3.476

10

7

-129.04651.811-1.406

129.046-51.811-1.406

8

51.811-21.892-3.476

-51.81121.892-3.476

9

1.4063.476

10-1.406-3.476

20

Page 61: 07 Matrix Frame

61

40 kN

22.63 kN

8.49 kN

19.02 kN

7.87 kN�m

8.49 kN

39.02 kN

207.87 kN�m

9.51 kN

83.51 kN

248.04 kN�m6 kN/m

22.5 kN81 kN

22.5 kN

33 kN

8.49 kN

20.98 kN

Bending-moment diagram (kN�m)

-

+

207.87

-248.04

83.56

+7.87

Deflected shape

D3*=-0.0112 rad

D1*=- 20.5 mm

D6=-0.0024 rad

D1*

D4

D3*

D5

D6

=

-0.0205 m

-0.0112 rad

-0.0191 m

-0.0476 m

-0.0024 radD4=-19.1 mmD5=-47.6 mm

Page 62: 07 Matrix Frame

62

3 m

80 kN�m20 kN/m

20o

50 kN

4 m 2 m

A B

C

Example 5

For the beam shown:(a) Use the stiffness method to determine all the reactions at supports.(b) Draw the quantitative free-body diagram of member.(c) Draw the quantitative bending moment diagramsand qualitative deflected shape.Take I = 400(106) mm4 , A = 60(103) mm2, and E = 200 GPa for all members.

Page 63: 07 Matrix Frame

63

Global

1

2 3

4

5 6

7*9*

8*

1

2 2

1´2´

4´5´

3 m

80 kN�m20 kN/m

20o

50 kN

4 m 2 m

A B

C

Local

2´ 3´

5´ 6´1

76.31o

Page 64: 07 Matrix Frame

64

3 m

80 kN�m20 kN/m

20o

50 kN

4 m 2 m

A B

C

1

2 3

4

5 61

Member 1:

kN/m103000m4

)kN/m10)(200m10(60

3

2623

×=

××=

LAE

mkN1080m4

)m10)(400kN/m104(2004

3

4626

•×=

××=

LEI

mkN1040m4

)m10)(400kN/m102(2002

3

4626

•×=

××=

LEI

kN1030m)(4

)m10)(400kN/m106(2006

3

2

4626

2

×=

××=

LEI

kN/m1015m)(4

)m10)(400kN/m1012(20012

3

3

4626

3

×=

××=

LEI

Page 65: 07 Matrix Frame

65

d1

d3

d2

d4

d5

d6

q1

q3

q2

q4

q5q6

0

26.67

40

040

-26.67

+= 103

123

45

6

1 4 5 6

030

40

0-30

80

3000

0

0

-30000

0

2

015

30

0-15

30

3

030

80

0-30

40

-30000

0

3000

0

0

0-15

-30

015

-30

3 m

80 kN�m20 kN/m

20o

50 kN

4 m 2 m

A B

C

26.67 kN�m26.67 kN�m

40 kN40 kN

1

20 kN/m

Member 1: [ q ] = [ k ][ d ] + [ qF ]

1

2 3

4

5 61

56.31o

76.31o

Page 66: 07 Matrix Frame

66

Member 2:

2

1´2´

4´5´

45 6

7*9*

8*

2

i

j

kN/m103324m3.61

)kN/m10)(200m10(60

3

2623

×=

××=

LAE

mkN1088.64m3.61

)m10)(400kN/m104(2004

3

4626

•×=

××=

LEI

kN1036.83m)(3.61

)m10)(400kN/m106(2006

3

2

4626

2

×=

××=

LEI

kN/m1020.41m)(3.61

)m10)(400kN/m1012(20012

3

3

4626

3

×=

××=

LEI

mkN1044.32m3.61

)m10)(400kN/m102(2002

3

4626

•×=

××=

LEI

[ k´ ]2 = 103

1´2´3´4´5´6´

1´ 4´ 5´ 6´3324

00

-332400

2´0

20.4136.83

0-20.4136.83

3´0

36.8388.64

0-36.8344.32

-332400

3324

00

0-20.41-36.83

020.41

-36.83

036.8344.32

0-36.8388.64

Page 67: 07 Matrix Frame

67

45 6

7*9*

8*

2

i

j 76.31oλjx = cos (-76.31o) = 0.24,λjy = sin (-76.31o) = -0.97

[ q* ] = [ T ]T[ q´ ]

q1´

q3´

q2´

q4´q5´q6´

q4

q6

q5

q7*q8*q9*

=

4567*8*9*

1´ 4´000

0.24

0-0.97

5´000

0.970.24

0

6´000001

0.55

0-0.83

000

2´0.830.55

0000

3´001000

λix = cos (-56.31o) = 0.55,λiy = sin (-56.31o) = -0.83

56.31o

2

i

j

1´2´

4´5´

[ k* ]2 = [ T ]T[ k´]2[ T ] = 103

4567*8*9*

4 7* 8* 9*5 6-452.884643.585-35.786205.452

-35.786-759.668

1787.474-2689.923

-8.717-759.6683139.053

-8.717

30.64620.43144.321

-35.786-8.71788.643

1036.923

30.646-1524.780

-452.8841787.474

30.646

-1524.7802307.582

20.431643.585

-2689.92320.431

30.64620.43188.643

-35.786-8.71744.321

Page 68: 07 Matrix Frame

68

[k]1 = 103

123456

1 4 5 60

30400

-3080

3000

00

-300000

20

1530

0-1530

30

30800

-3040

-300000

3000

00

0-15-300

15-30

1

2 3

4

5 6

7*9*

8*

1

2

[k*]2 = 103

4567*8*9*

4 7* 8* 9*5 6-452.884643.585-35.786205.452

-35.786-759.668

1787.474-2689.923

-8.717-759.6683139.053

-8.717

30.64620.43144.321

-35.786-8.71788.643

1036.923

30.646-1524.780

-452.8841787.474

30.646

-1524.7802307.582

20.431643.585

-2689.92320.431

30.64620.43188.643

-35.786-8.71744.321

Page 69: 07 Matrix Frame

69

Global:

= -50= 0= -80= 0= 0

Q4

Q6

Q5

Q7*

Q9*

D4

D6

D5

D7*

D9*

0

-26.6740

00

+

D4

D6

D5

D7*

D9*

-2.199x10-5 m

-2.840x10-4 rad-3.095x10-4 m

0.979x10-3 m6.161x10-4 rad

=

1

2 3

4

5 6

7*9*

8*

1

23 m

80 kN�m20 kN/m

20o

50 kN

4 m 2 m

A B

C 26.67 kN�m

26.67 kN�m

40 kN40 kN

1

20 kN/m

80 kN�m50 kN

= 103

45679

4 7* 9*5 6

205.452

-452.884643.585-35.786

-35.786

30.646-9.56944.321

-35.78688.643

-452.884

4036.923

30.646-1524.780

30.646

-1524.780232.582

-9.569643.58520.431

30.646-9.569

168.643-35.78644.321

Page 70: 07 Matrix Frame

70

q1

q3

q2

q4

q5q6

0

26.67

40

040

-26.67

+= 103

123

45

6

1 4 5 6

030

40

0-30

80

3000

0

0

-30000

0

2

015

30

0-15

30

3

030

80

0-30

40

-30000

0

3000

0

0

0-15

-30

015

-30

Member 1:

q1

q3

q2

q4

q5q6

65.97 kN

24.59 kN�m

36.12 kN

-65.97 kN

43.88 kN-40.11 kN�m

=

0

0

0

D4

D5

D6

40.11 kN�m24.59 kN�m

43.88 kN36.12 kN

1

20 kN/m

65.97 kN65.97 kN

1

2 3

4

5 61

Page 71: 07 Matrix Frame

71

q4

q6

q5

q7*

q8*q9*

Member 2:

q4

q6

q5

q7*

q8*q9*

15.97 kN

-39.89 kN�m

-43.88 kN

0 kN

46.69 kN0 kN�m

=

= 103

456

7*8*

9*

4 7* 8* 9*5 6-455.21651.27

-35.73

210.67

-35.73

-769.1

1769.34-2678.93

-8.84

-769.13128.82

-8.84

30.5720.26

44.32

-35.73-8.84

88.64

1036.923

30.57-1508.14

-455.211769.34

30.57

-1508.142296.15

20.26

651.27-2678.93

20.26

30.5720.26

88.64

-35.73-8.84

44.32

D4

D6

D5

D*7

0

D*9

15.97 kN43.88 kN 39.89 kN�m

46.69 kN

2

45 6

7*9*

8*

2

i

j

Page 72: 07 Matrix Frame

72

Bending-moment diagram (kN�m)

+

40.11 kN�m24.59 kN�m

43.88 kN36.12 kN

1

20 kN/m

65.97 kN65.97 kN

15.97 kN43.88 kN 39.89 kN�m

46.69 kN

2

-24.59-

-40.11

- +

39.89

D4

D6

D5

D7*D9*

-2.199x10-5 m

-2.840x10-4 rad-3.095x10-4 m

0.979x10-3 m6.161x10-4 rad

=

Deflected shape

D4=-2.2x10-5 m

D5=-3.1x10-4 m

D7*=0.979x10-3 mD6 = -2.84x10-4 rad

D9*=6.161x10-4 rad

1

2 3

4

5 6

7*9*

8*

1

2