Top Banner
Peter Kinget 0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical Engineering Collaborators: Shouri Chatterjee, Yannis Tsividis, K.P. Pun * [email protected] *Chinese University of Hong Kong
78

0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

Aug 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

Peter Kinget

0.5V Analog integrated circuits for nanoscale CMOS technologies

Department of Electrical Engineering

Collaborators: Shouri Chatterjee, Yannis Tsividis, K.P. Pun*

[email protected]

*Chinese University of Hong Kong

Page 2: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 2

Ultra-low voltage circuits: 0.5V

RF integratedoscillators

Ultra-widebandRF circuits

Injection lockedcircuits

RF Passives Device mismatch & its influence onAnalog & RF ICs

www.ee.columbia.edu/~kinget

Page 3: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 3

Outline

• Do we need Analog Integrated Circuits in nanometer CMOS?

• Design Challenges & Opportunities.

• 0.5 V Operational Transconductance Amplifiers & Biasing Circuits.

• 0.5 V Fully Integrated Active RC Filter with on-chip Automatic Tuning.

• A 0.5V 74dB SNDR 25kHz CT Σ∆ Modulator with Return-to-open DAC

• Conclusions.

Page 4: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 4

Analog in a Mixed Signal World

• Sounds, images, EM waves, …. are ANALOG.• Information processing & storage are DIGITAL.• System-on-chip is powerful economic paradigm.

• Digital drives technology development & choice.

Most Digital ICs need some Analog!

If Analog can be done in a digital technology, it will be done.

D & A A & D A & D

Page 5: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 5

CMOS trends: Supply voltage

Analog VDD

Digital VDD

Digital VT

Technology node [nm]

[ITRS'04]

–O– High Perf.

–∆– Low Standby–V– Low Power

Page 6: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 6

MOST biasing: CS or VCCS

• Transconductor or Current SourceVDS > 0.15V (for VGS-VT ≤ 0.2)

WeakInversion

StrongInversion

0.24µm/0.36µm nMOSin 0.18µm CMOS 5φT

Page 7: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 7

Switches at 0.5 V

Large VDD

Small VDD

Enough headroom

No headroom

Page 8: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 8

Common source amplifier

0.15 V

0.15 V

0.2 Vpp

0.5 + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

Page 9: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 9

Common drain buffer

0.15 V

0.15 V

0.2 Vpp

0.5 + 0.15 + 0.1 + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

Page 10: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 10

Common gate amplifier / Cascode

0.15 V

0.15 V0.5 + 0.15 +

x + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

0.15 V

Page 11: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 11

Differential OTA design challenges

0.15 V

0.5 V

0.65 V

0.8 V

-0.15 V

0.15 V

0.15 V

0.3 - 0.35 V

0.5 V

0.1 V

0.4 V0.4 V

0.1 V

0.15 - 0.35 V

0.4 V

0.25 V

VT= 0.5 V VDS,sat= 0.15 V

Page 12: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 12

CMFB for fully differential OTAs

Common Mode Feedback requires ‘fast’ amplifier operating from Vout,CM= VDD/2 !?

VDD

VDD/2

Page 13: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 13

Challenges at 0.5 V

• VDS,sat related challenges:– Independent of region of operation!– Independent of VT!– Signal swings are limited:

• Use differential circuits.

– Avoid transistor stacks:• No tail current source: How to achieve CM rejection?• No cascodes: How to increase DC gain?

• VGS related challenges:– Depend on region of operation & (VGS-VT).– Depend on VT!– Avoid signal swing on gate:

• How to do overall CMFB?• How to achieve strong inversion operation?

Page 14: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 14

Opportunities at 0.5 V: MOST has 4-terminals

Body

Source

Drain

Gate

G D BS Sub

n+

n+n+n+ n+

p+ p+

p

p

nMOS cross section(deep n-well process)

nMOS circuit equivalent(deep n-well process)

VDD

VDD

Page 15: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 15

Opportunities at 0.5 V

• Body terminal

– Signal input: [Guz87]

– VT reduction & control

[Kob94], [Von94]

– Bias control

• Latch-up not an issue

– Assuming VDD and GND are ‘well behaved’.

• Techniques can be ported to ‘double gate’ devices

VBS0.5 V

500

0

VT

mV

300

430360

0.0

VGS0.5 V0.2

3

0

IDS VBS ↑

µA

0.24µm/0.36µm nMOSin 0.18µm CMOS

Page 16: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

0.5 V Gate-input OTA

Page 17: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 17

0.5 V Gate-input OTA stage

Vin+ Vin-

Vout+Vout-

VbnVNR

0.5 V

Page 18: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 18

Two stage OTA

• Common-mode output of first stage is 0.4 V

0.25 V

0.4 V

0.4 V

Page 19: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 19

Two-stage fully differential 0.5 V OTA with Miller compensation

Page 20: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 20

Setting common-mode voltages

0.5 V

0.4 V

0.4 V

0.5 V

Rb = 2/3 • Ri||Rf

0.25 V 0.25 V

Page 21: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 21

Open loop performance (meas.)G

ain

[d

B]

42 dB

GBW: 10 MHz

CL= 10pF (diff.)RL= 50kΩIDD= 150 µA

62 dB 350mV; automatic bias

Frequency [Hz]

Page 22: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

On-chip automatic biasing circuits

Page 23: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 23

On-chip biasing circuits

Vbn generating circuit

Level shift biasing circuit

(Simplified OTA)

Page 24: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 24

Error amplifier for biasing

• 20 kHz GBW for 1 pF load

• 2 µA current• Controlled body voltage sets the amplifier threshold

VinVout

Vo

ut[V

]

Vin [V]

Page 25: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 25

OTA DC transfer characteristics and VNR generation

VNR generating circuit

Replica of OTA stage 1

Input differential voltage [mV]

Ou

tpu

t d

iff vo

lta

ge

[V

]

Increasing VNR

Page 26: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 26

Open loop performance (meas.)G

ain

[d

B]

42 dB

GBW: 10 MHz

CL= 10pF (diff.)RL= 50kΩIDD= 150 µA

62 dB 350mV; automatic bias

Frequency [Hz]

Page 27: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

0.5 V Continuous time

tunable active RC Filter

Page 28: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 28

0.5 V 5th order elliptic LPF

Frequency [Hz]

Ga

in [

dB

]

280 kHz

135 kHz

Page 29: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 29

Filter tuning challenges at 0.5 V

• Gm-C

• MOSFET-C

• Switching banks of R’s and C’s

• Varactor-R techniques

Vtune [V]

Cg

s/C

ox

Gate (0.4 V) Source

Drain (0.25 V)

Body (Vtune)

Page 30: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 30

Low-voltage tunable integrator

0.25 V0.25 V

0.4 V

+

-Vin Vout

+

-

VDD

VDD

Page 31: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 31

Die photograph

• 0.18 µm CMOS

• MIM capacitors

• High-res resistors

• Standard VT

• Triple well devices

Filter PLL

Biasing circuits

OTAs

1mm

1m

m

S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V filter with PLL-based tuning in 0.18 um CMOS technology," in IEEE International Solid-State Circuits Conference (ISSCC), pp. 506-507, February 2005.

Page 32: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 32Frequency [Hz]

Ga

in [

dB

]

Measured filter response for different supply voltages

Page 33: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 33

Measured filter response for different chips

Frequency [Hz]

Ga

in [

dB

]

1.3 % std dev

in cut-off frequency for 20 samples

Page 34: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 34

Measured filter response for different tuning voltages

Frequency [Hz]

Ga

in [

dB

]

88 - 154 kHz(1.75x)

Page 35: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 35

Measured 3rd order inter-modulation

25 kHz

20 kHz

15 kHz

30 kHz

40 dB

Input differential rms amplitude [V]

Ou

t pu

t d

iffe

ren

tia

l rm

s a

mp

litu

de

[V

]

Page 36: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

Effect of gain enhancement

Frequency [Hz]

Ga

in [

dB

]

Without gain-enhancement

With gain-enhancement

Page 37: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 37

Performance summary at 27C

727285104VCO feed-thru @280kHz [µV rms]

69.0

150.5

84.5

148.0

88.0

154.5

96.5

153.0

Tuning range [kHz] Vtune = VDD

Vtune = 0.0 V

58575755Dynamic range [dB]

5353Out-of-band IIP3 [dBV]

-3-3-3-5In-band IIP3 [dBV]

50505050Input [mV rms] (100kHz / 1% THD)

65687487Noise [µV rms]

4.33.32.21.5Total current [mA]

135.0135.0135.0135.0-3 dB cut-off frequency [kHz]

0.600.550.500.45VDD [V]

Functionality tested from 5C to 85C at 0.5 V

• Measured CMRR (10 kHz common mode tone): 65 dB• Measured PSRR (10 kHz tone on power supply): 43 dB

Page 38: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

0.5 V Body-input OTA

Page 39: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 39

0.5 V Body-input OTA stage

0.5 V

Vin+ Vin-

Vout+Vout-

0.25 V

0.15 - 0.35 V

0.07 V

0.25 V

Page 40: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 40

Two-stage fully-differential OTA

0.18 µµµµm CMOS

Pole splitting using Miller capacitor

S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V bulk input fully differential operational transconductance amplifier," in European Solid-State Circuits Conference (ESSCIRC), pp.147-150, September 2004.

Page 41: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 41

Open loop frequency response

DC gain: 52 dB

GBW: 2.5 MHz

Phase Margin: 450

Frequency [Hz]

Simulation

Measurement

Page 42: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 42

66.711.413289.5100 η [1/V]

----Depl.MOS

Lat.BJT

-Lat.BJT

SpecialDevices

0.180.180.50.72.50.50.352Techn. [um]

DDDSSSSSSE/Diff.

101014-1220722CL [pF]

75110-4600.5-5300Power [uW]

102.541.36e-31.30.21.3GBW [MHz]

50/6252598470537049ADC [dB]

0.50.50.91.30.90.811VDD [V]

G-IB-I[Pel98]

[Fer96]

[Sto02]

[Leh01]

[Las00]

[Bla98]

S. Chatterjee, Y. Tsividis and P. Kinget, "0.5 V Analog Circuit

Techniques and Their Application in OTA and Filter Design," IEEE

Journal of Solid-State Circuits (JSSC), vol. 40, no 12, pp. 2373 -

2387, December 2005.

Page 43: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

A 0.5V 74dB SNDR 25kHz CT Σ∆ Modulator

with Return-to-open DAC

Page 44: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 44

3rd order CT Σ∆ Modulator

Using Active RC integrators

Page 45: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 45

Ts 2Ts 3Ts 4Ts 5Ts 6Ts

Ts 2Ts 3Ts 4Ts 5Ts 6Ts

Continuous-time Σ∆ Modulator:Need of Return-to-zero DAC

NRZ DAC

RZ DACA typical active-RC

CT SDM stage

ISI exists: area for each “1”depends on its previous symbol.

No ISI: same area for all “1”s.

Page 46: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 46

RZ Challenge: Switches at VDD/2

RZφ⋅= QD0

RZφ⋅= QD1

0.25 V

0.25 V

0.25 V

Page 47: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 47

Solution: Return-to-open

Before RZ:(Q=1)

v2

v1

v1

v2

Problemswitchesremoved

Page 48: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 48

Solution: Return-to-open

“floats”

v2

v2

v1

Vcm,ota

v1

When RZ:(Q=1)

“floats”RZ

Page 49: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 49

Solution: Return-to-open

“floats”

v2

v2

v1

Vcm,ota

v1

When RZ:(Q=1)

“floats”

0.25 V

RZ

Page 50: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 50

RTO SDM: Inter-stage Coupling

RTO DAC

Unwanted signal paths when DAC floats

Page 51: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 51

Split RTO SDM Architecture

Split RTO DAC

Page 52: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 52

Modulator Details

50% duty cycle

BW = 25kHz, fs = 3.2MHz, Vin,max = 1Vppdiff.

10%Ts delay: to allow the comparator outputs to fully settle before the DACsbecome active.

Page 53: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 53

RTO DAC Circuit

ΦDAC High:

All the bodies tied to VDD/2.

Page 54: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 54

RTO DAC Circuit

ΦDAC Low:

Floating.

All the bodies tied to VDD/2.

Page 55: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 55

RTO DAC Circuit

ΦDAC Low:

Q invalid for Φ low.

Floating.

All the bodies tied to VDD/2.

Page 56: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 56

RTO DAC Circuit

ΦDAC Low:

Make charge-injection signal-independent.

Q invalid for Φ low.

Floating.

All the bodies tied to VDD/2.

Page 57: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 57

RTO DAC CircuitJust split M5-M7 for each FB path.

All the bodies tied to VDD/2.

Page 58: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 58

34.534.534.534.5 35353535 35.535.535.535.5 36363636-0.1-0.1-0.1-0.1

0000

0.10.10.10.1

0.20.20.20.2

0.30.30.30.3

0.40.40.40.4

0.50.50.50.5

T ime [us]T ime [us]T ime [us]T ime [us]

DA

C O

utp

ut

Vo

lta

ge

[V

]D

AC

Ou

tpu

t V

olt

ag

e [

V]

DA

C O

utp

ut

Vo

lta

ge

[V

]D

AC

Ou

tpu

t V

olt

ag

e [

V]

Waveform of RTO DAC

Simulated output waveform of 1st DAC

Same shape for all “1”s à No ISI

OTAinput

DACfloating

DACactive

Page 59: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 59

0.5V Body-input Gate-clocked Comparator

Page 60: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 60

0.5V Fully Differential OTA

• Measurements on a replica of the 1st OTA:

– ADC = 46dB, UGB = 4MHz;

– Input referred noise: 33nVrms @10kHz and 12nVrms @1MHz.

[Chatterjee ESSCIRC’05] [Chatterjee ISSCC’05]

Page 61: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 61

Die Photograph

• 0.18µm CMOS

• Standard VT (0.5V)

• Triple-well devices

• 0.5V operation

K.P. Pun, S. Chatterjee, and P. Kinget, "A 0.5 V 74dB SNDR 25kHz CT Delta-Sigma Modulator with Return-to-Open DAC" in IEEE International Solid-State Circuits Conference (ISSCC), pp. 72-73, February 2006.

Page 62: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 62

Measured Output Spectrum

@Vin = -4dB Vref, fin = 5kHz(Vref =1Vppdiff.)

101

102

103

104

105

106

−140

−120

−100

−80

−60

−40

−20

0

Frequency [Hz]

Mag

nitu

de [d

B]

No. of points = 64000

-140

-120

-100

-80

-60

-40

-20

0

10 100 1K 10K 100K 1M

FFT points = 64000Res. BW = 50 Hz

Frequency [Hz]

Po

we

r S

pe

ctr

al D

en

sity [

dB

/bin

]

2nd harmonic < 83dBc3rd harmonic < 88dBc

Page 63: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 63

Vin/Vref [dB]

SN

DR

[d

B]

−70 −60 −50 −40 −30 −20 −10 00

10

20

30

40

50

60

70

80

Vin/Vref [dB]

SN

DR

[dB

]

0

10

20

30

40

50

60

70

80

-70 -60 -50 -40 -30 -20 -10 0

Measured SNDR versus Vin

(Vref = 1Vppdiff.)

Peak SNDR:74dB

Page 64: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 64

Performance Summary at 25°°°°C

0.6 mm2Active die area

370 µµµµW

300 µµµµW

70 µµµµW

0.8V0.5V0.45VSupply Voltage

76 dB

74 dB

0.18 µm CMOS

(standard VT, triple-well, MIM, and HiRes Poly)

76 dB

71 dB

1 Vppdiff.

3.2 MHz / 64

25 kHz

1-bit, 3rd order, continuous-time

74 dB

74 dB

Technology

Power consumption (total)

Sigma Delta Modulator

(filter + comparator + DAC)

Output buffers

SNR @ Vin = 1Vppdiff.

SNDR @ Vin = 1Vppdiff.

Input range

Sampling frequency / OSR

Signal bandwidth

Modulator type

Page 65: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 65

SNDR versus VDD

@25°°°°C and Vin = 1Vppdiff.

Power supply voltage [V]

SN

R o

r S

ND

R [

dB

]

Page 66: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 66

Temperature [°°°°C]

SN

R o

r S

ND

R [

dB

]

SNDR versus Temperature

@VDD= 0.5V and Vin = 1Vppdiff.

Page 67: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 67

Performance Comparison

3400.180.63002574CT0.5This work

138Low VT0.352.8810002477SRC0.6Ahn 2005

580.180.08280867SO0.7Sauerbrey 2002

4100.50.85401662SO0.9Peluso 1998

3660.130.121500192050.9CT0.9Ueno 2004

13100.090.181402081SC1Yao 2004

381Gate

boost

0.350.639502585SC1Dessouky 2000

36Low VT0.52.53156019251CT1Matuya 1994

230.350.4156002078RO1Keskin 2001

1.30.80.9**15003.956*SO1Grech 1999

FOM[109/J]

CMOS [um]

Area[mm2]

Power[uW]

Bandwidth[kHz]

SNDR[dB]

TypeVDD[V]

*=SNR only; ** Estimated from die photograph;

SO = Switched Opamp; CT = Continuous Time;

SC = Switched Capacitor; RO = Reset Opamp;

SRC=Switched-RC

P

BWresolutionFOM ×=

Page 68: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 68

Analog design techniques at 0.5 V

• How to do CM rejection?ü Use local CM feedback & rejection

ü Use CM feedforward cancellation

ü Separate CM signal rejection and CM DC biasing

• How to increase DC gain?ü Use negative load conductance

• How to use strong inversion operation?ü Forward Body Bias to reduce VT

ü Extensive use of the body terminal

ü Extensive use of on-chip tuning & biasing

ü Architectural changes to eliminate signal path switches

Page 69: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

Looking ahead

Page 70: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 70

0.5V 900MHz RF Front-end

• 0.18 µm CMOS

• Low-VT devices

• LNA/MIXER

– NF 8.8 dB

– Gain 11.5 or-7 dB

– ICP -23 dBm

– 5 mW(w/ LO Buffers)

LNA Mixer

Buffers

and

N. Stanic, P. Kinget, and Y. Tsividis,"A 0.5 V 900 MHz CMOS Receiver Front End,"IEEE Symposium on VLSI circuits, June 2006.

Page 71: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 71

0.5 V 1 Msps 60 dB SNDR Track&Hold

First track

and hold

Second track

and hold

Bias circuits

• 0.25 µm CMOS

• |VT|=0.6V

• MIM caps• High-res resistors• Triple well nMOS

S. Chatterjee, and P. Kinget, "A 0.5-V 1-Msample/s 60-dB SNDR Track-and-Hold

Circuit," IEEE Symposium on VLSI circuits, June 2006

Page 72: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 72

0.5V Analog Roadmap

2004 2005 2006

Body-input OTA

Gate-input OTA & Biasing

0.5V Varactor

THA

LPF + Tuning

∆Σ Converter

2007

RF Front-ends

DT ∆Σ Converter

Basic blocks

Full Interface

Complexity

Comparators

Page 73: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 73

Other Challenges in nanometer CMOS

• Gate leakage.

• Sub-threshold leakage.

• Reduced body-effect [VonAmin05]: VT Œ & tox Œ ð gmb Œ

• Many VT choices !

• Novel devices.

• Extensive Digital Calibration & Correction.

Other Opportunities in nanometer CMOS

Page 74: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 74

CMOS Trends: On chip Clock Speed

[ITRS'04]

Technology node [nm]

Page 75: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 76

Acknowledgments

• Analog Devices, Intel and Realtek for supporting parts of this work.

• Europractice and Philips Semiconductors for 0.18um and 0.25um prototypes fabrication.

Page 76: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 77

More details• [Cha 05] S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V filter with PLL-

based tuning in 0.18 um CMOS technology," in IEEE International Solid-State Circuits Conference (ISSCC), pp. 506-507, February 2005.

• [Cha 04] S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V bulk input fully differential operational transconductance amplifier," in European Solid-State Circuits Conference (ESSCIRC), pp.147-150, Sep. 2004.

• [Cha 05] S. Chatterjee, Y. Tsividis and P. Kinget, "0.5 V Analog Circuit Techniques and Their Application in OTA and Filter Design," IEEE Journal of Solid-State Circuits (JSSC), vol. 40, no 12, pp. 2373 - 2387, December 2005.

• [Pun 06] K.P. Pun, S. Chatterjee, and P. Kinget, "A 0.5 V 74dB SNDR 25kHz CT Delta-Sigma Modulator with Return-to-Open DAC" in IEEE International Solid-State Circuits Conference (ISSCC), pp. 72-73, February 2006.

• [Abd 06] M. Abdulai and P. Kinget, "A 0.5 V Fully Differential Gate-input Operational Transconductance Amplifier with Intrinsic Common-Mode Rejection" in IEEE International Symposium on Circuits and Systems,May 2006.

• [Cha 06] S. Chatterjee, and P. Kinget, "A 0.5-V 1-Msample/s 60-dB SNDR Track-and-Hold Circuit," IEEE Symposium on VLSI circuits, June 2006.

• [Sta 06] N. Stanic, P. Kinget, and Y. Tsividis,"A 0.5 V 900 MHz CMOS Receiver Front End," IEEE Symposium on VLSI circuits, June 2006.

Page 77: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 78

References• [Guz 87] A. Guzinski, M. Bialko, and J. Matheau, "Body driven

differential amplifier for application in continuous-time active-C filter,''Proceedings of ECCD, pp. 315--319, 1987.

• [Bla 98] B. Blalock, P. Allen, and G. Rincon-Mora, "Designing 1-V op-amps using standard digital CMOS technology,'‘ IEEE Trans. Circuits Syst. II, vol. 45, pp. 769--780, July 1998.

• [Las 00] K. Lasanen, E. Raisanen-Ruotsalainen, and J. Kostamovaara, "A 1-V 5 µW CMOS-opamp with bulk-driven input transistors,'' 43rd IEEE Midwest Symposium on Circuits and Systems, pp. 1038--1041, 2000.

• [Leh 01] T. Lehmann and M. Cassia, "1-V power supply CMOS cascode amplifier,'' IEEE J. Solid-State Circuits, vol. 36, pp. 1082--1086, July 2001.

• [Sto 02] T. Stockstad and H. Yoshizawa, "A 0.9-V 0.5-µA rail-to-rail CMOS operational amplifier,'' IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 286--292, 2002.

• [Fer 96] G. Ferri and W. Sansen, "A 1.3V opamp in standard 0.7µmCMOS with constant gm and rail-to-rail input and output stages,''IEEE International Solid State Circuits Conference, pp. 382--383, 478, 1996.

Page 78: 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/EPFL_Grenoble_slides_v3.pdf0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical

© Peter Kinget 79

References• [Pel 98] V. Peluso, P. Vancorenland, A. M. Marques, M. Steyaert,

and W. Sansen, "A 900-mV low-power ∆Σ A/D converter with 77-dB dynamic range,'' IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1887--1897, Dec. 1998.

• [Kob94] T. Kobayashi and T. Sakurai, “Self-adjusting threshold-voltage scheme (SATS) for low-voltage high-speed operation,” in IEEE Custom Integrated Circuits Conference (CICC), May 1994, pp. 271–274.

• [Von94] V. R. Kaenel, M. D. Pardoen, E. Dijkstra, and E. A. Vittoz, “Automatic adjustment of threshold and supply voltages for minimum power consumption in CMOS digital circuits,” in IEEE Symposium on Low Power Electronics, pp. 78–79, 1994.

• [Kar00] S. Karthikeyan, S. Mortezapour, A. Tammineedi, and E. Lee, “Low-voltage analog circuit design based on biased inverting opampconfiguration,” IEEE Trans. Circuits Syst. II, vol. 47, no. 3, pp. 176–184, March 2000.

• [Bul00] K. Bult, “Analog design in deep sub-micron CMOS,” in European Solid-State Circuits Conference (ESSCIRC),September 2000, pp. 11–17.