Top Banner
CMOS Inverter A THOUGHT EXPERIMENT
37

05ece108 Cmos Inverter2015

Nov 13, 2015

Download

Documents

ece
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • CMOS Inverter

    A THOUGHT EXPERIMENT

  • CMOS Inverter

    5. COMPLEMENTARY MOS INVERTER

    ID

    VGSD2

    VGSD1

    VDS

    VGSD3

    VGSD4

    VGSL1

    VGSL2

    VGSL3

    VGSL4

    ID

    VGSD2

    VGSD1

    VDS

    VGSD3

    VGSD4

    VGSL1

    VGSL2

    VGSL3

    VGSL4

    S

    D

    Iovin

    vout

    +

    -

    5.1. PMOS transistor as a LOAD

    The 3-terminal PMOS pull-up device provides a family of non-linear load lines

    -

    +

    V DD - ViN

    +

    ViN

    VDD

    +

    - VDDVOUT

    -

    VOUT

    -

    +

    -

    PMOS

    NMOS

    G

    S

    S

    D

    D

    5.2. CMOS Inverter IDD = IDL NMOS DEVICE

    VGSD = VIN

    VDSD = VOUT

    PMOS DEVICE

    VGSL = VIN - VDD

    VDSL = VOUT -VDD

  • CMOS Inverter

    IMPACT ON INVERTER VOLTAGE TRANSFER CHARACTERISTICS

    Vin5

    Vin4

    Vin3

    Vin2

    Vin1

    Vin0

    Vin1

    Vin2

    Vin3

    Vin4

    Vout

    VDD

    CV

    out

    0

    Vin

    VDD

    VDD

    A B

    DE

    Vtn

    VDD

    /2 VDD

    +Vtp

    Vin0

    Vin1

    Vin2

    Vin3

    Vin4 V

    in5A B

    C

    D

    E

  • CMOS Inverter

  • CMOS Inverter

    5.3. CMOS DC ANALYSIS

    VDDGND

    n

    +np

    Vout

    Vin

    +p+n +p +n

    ViN 0

    Vin VGSD 0 VGSD VTD Driver Off

    VGSL Vin VDD VDD VGSL VTL Load on

    But TD OFF IDD 0 IDL 0

    VGSL VTL VDSL 0

    TL LIN/OFF

    vout VDD VDSL VDD

    VOH VDDVOH VDDNotice that as with the depletion load inverter CMOS enables to reach

    -

    +

    V DD - ViN

    +

    ViN

    VDD

    +

    - VDDVOUT

    -

    VOUT

    -

    +

    -

    PMOS

    NMOS

    G

    S

    S

    D

    D

  • CMOS Inverter

    CMOS: A Ratioless Logic

    VGSD Vin VTD TD ON

    VGSL 0 TL OFF

    I DL 0 IDD 0

    I DD 0

    TD ON

    VDSD vout 0

    TD LIN/OFF

    VOL 0

    r VOL is independent of r .

    ViN 0 or ViN VDD

    Note that unlike previous inverter types

    CMOS inverter enables VOL to reach GROUND level. CMOS is called RATIOLESS because the logic swing does not depend on

    For either

    => ID= 0 => SPD=0

    iN DDV V

    -

    +

    V DD - ViN

    +

    ViN

    VDD

    +

    - VDDVOUT

    -

    VOUT

    -

    +

    -

    PMOS

    NMOS

    G

    S

    S

    D

    D

  • CMOS Inverter

    TD SAT -TL LINEAR

    I DD IDL

    2

    2

    2

    2

    Din TD

    out DD

    L in DD TL out DD

    kV V

    v Vk V V V v V

    vout VDD

    2 2 vout VDD Vin VDD VTL R Vin VTD

    2 0

    4 Vin VDD VTL 2 4r Vin VTD

    2

    Vin**

    r Vin**

    VTD 2

    Vin**

    VDD VTL 2

    Square root argument > 0 => TL LIN --> SAT transition occurs for

    satisfying

    -

    +

    V DD - ViN

    +

    ViN

    VDD

    +

    - VDDVOUT

    -

    VOUT

    -

    +

    -

    PMOS

    NMOS

    G

    S

    S

    D

    D

  • CMOS Inverter

    TD SAT, TL SAT

    kD

    2Vin VTD

    2

    k L

    2

    Vin VDD VTL 2

    As in the case of depletion mode inverter the output voltage is undefined for this input

    Vin*

    is given by

    Vin*

    VDD VTL VTD r

    1 r

    Therefore, around the transfer characteristic has infinite slope.

    Vin*

    -

    +

    V DD - ViN

    +

    ViN

    VDD

    +

    - VDDVOUT

    -

    VOUT

    -

    +

    -

    PMOS

    NMOS

    G

    S

    S

    D

    D

  • CMOS Inverter

    TD LIN - TL SAT

    kD Vin VTD Vout Vout

    2

    2

    k L

    2Vin VDD VTL

    2

    Vout2 2Vout Vin VTD

    1

    rVin VDD VTL

    2 0

    Vin VTD 1

    r

    Vin VDD VTL 2

    1

    r

    Vin***

    VDD VTL 2

    Vin***

    VTD 2

    Vin*

    Vin**

    Vin***

    Note that = =

    Therefore both load and driver device mode transitions occur for

    -

    +

    V DD - ViN

    +

    ViN

    VDD

    +

    - VDDVOUT

    -

    VOUT

    -

    +

    -

    PMOS

    NMOS

    G

    S

    S

    D

    D

  • CMOS Inverter

    CMOS TRANSFER CHARACTERISTICS

    VDD

    Vout

    Vin*

    VTD VDD-VTL Vin

    VDD

    Vout

    VT Vin VDD VDD-VT VDDVDD

    2TD

    TL

    OFF

    LIN/OFF

    SAT

    LIN

    LIN

    SAT

    LIN/OFF

    OFF

    SYMMETRIC

    CURRENT

    NON-SYMMETRIC

    VDD2

    Vin* = Vinv =(VDD/ 2)

    2

    * DDin

    DL

    TDTL

    VV

    kk

    VV

    Symmetric CMOS inverter

    Under the following conditions the CMOS VTC will be symmetrical

  • CMOS Inverter

    ASSYMETRIC OR SKEWED CMOS INVERTER

    Vout

    0

    Vin

    VDD

    VDD

    0.5

    12

    10p

    n

    0.1p

    n

    If =kp/kn 1, switching point will move from VDD/2 Called skewed gate

  • CMOS Inverter

    Noise Margins

    How much noise can a gate input see before it does

    not recognize the input?

    Indeterminate

    Region

    NML

    NMH

    Input CharacteristicsOutput Characteristics

    VOH

    VDD

    VOL

    GND

    VIH

    VIL

    Logical High

    Input Range

    Logical Low

    Input Range

    Logical High

    Output Range

    Logical Low

    Output Range

  • CMOS Inverter

    CMOS NOISE MARGINS

    TD SAT, TL LIN

    in

    out

    *

    in

    *

    OH

    *

    iL

    22

    22

    dV

    dV

    Vfor that

    ynumericall V V

    11

    1

    in

    TDinrTLDDin

    DDTDrTLinr

    in

    out

    TDinrTLDDinTLinout

    VNote

    Find

    VVVVV

    VVVV

    dV

    dV

    VVVVVVVV

  • CMOS Inverter

    5.4. CMOS TIME RESPONSE

    DC analysis tells us Vout if Vin is constant

    Transient analysis tells us Vout(t) if Vin(t) changes

    Requires solving differential equations

    Input is usually considered to be a step or ramp

    From 0 to VDD or vice versa

    Vin(t)

    Vout

    (t)C

    load

    Idsn

    (t)

  • CMOS Inverter

    DELAY DEFINITIONS

    tpdr: rising propagation delay

    From input to rising output crossing VDD/2

    tpdf: falling propagation delay

    From input to falling output crossing VDD/2

    tpd: average propagation delay

    tpd = (tpdr + tpdf)/2

    tr: rise time

    From output crossing 0.2 VDD to 0.8 VDD

    tf: fall time

    From output crossing 0.8 VDD to 0.2 VDD

  • CMOS Inverter

    INVERTER DELAY CALCULATION

    Solving differential equations by hand is too hard

    SPICE simulator solves the equations numerically

    Uses more accurate I-V models too!

    But simulations take time to write, may hide insight

    We will use simple equations that are inaccurate but

    provide insight

    (V)

    0.0

    0.5

    1.0

    1.5

    2.0

    t(s)0.0 200p 400p 600p 800p 1n

    tpdf

    = 66ps tpdr

    = 83psVin

    Vout

  • CMOS Inverter

    Simple Case Example: Resistive Pull-Up Inverter

    Transient Response

  • CMOS Inverter

    INVERTER CAPACITANCES

    Vss=Vs=0VG

    Field Oxide

    VDDPoly Load

    Output

    Ci

    CGB

    n

    CGSp CDS

    n

    Example: Resistive load inverter

    List of Parasistic MOS Inverter Capacitances 1. Drain Junction Capacitance of driver 2. Interconnect Capacitance 3. Capacitance Associated with load 4. Load Inverter Capacitance F=Fan Out

    CDS CodCi

    Col

    FCin

    The inverter must therefore drive a capacitance CL Cod Col Ci FCin

  • CMOS Inverter

    INPUT CAPACITANCE

    Vss=Vs=0VG

    Field Oxide

    VDDPoly Load

    Output

    Ci

    CGB

    n

    CGSp CDS

    n

    Cin CGS CGB CGD WLoxtox

    C in C L

    V DD

    The input capacitance Cin of the MOS inverter is the gate capacitance of the driver

    Capacitance at the output of a Resistive load MOS inverter

    CL Cod Col Ci FCin

  • CMOS Inverter

    RISE AND FALL TIMES

    VOL to VOH

    VOH to VOL

    Rise (toff or tr) and Fall Time (ton or tf)

    Rise time (Turn-off Time ) is approximately the time

    that the output voltage of the inverter

    takes to increase from

    The Fall time (Turn-on -time ) is approximately the

    time that the output voltage

    takes to settle down from

    These transient times are governed by the capacitances and resistances in the circuit and

    by the currents charging and discharging them to the desired voltage levels.

    t = C(V)/

    where < I > denotes average current

  • CMOS Inverter

  • CMOS Inverter

    RISE TIME OF RESISTIVE PULL-UP INVERTER

    I coff 1

    VDD

    vout

    R0

    VDD

    dvout

    1

    VDD

    vout2

    2R

    0

    vDD

    vDD

    2R

    Then,

    tr CLVDDVDD /2R

    2RCL t r 2RCL

    In general the rise time is given by

    tr = 2.3 RC

    tr is essentially governed by the pull-up conductance and by the load capacitance CL

    MOSFET OFF

  • CMOS Inverter

    FALL TIME OF A RESISTIVE LOAD INVERTER

    Icon k VDD VT 2 2

    6

    VT

    6VDD

    VDD

    2R

    t f 6CLVDD

    kD2

    VT

    VDD

    VDD VT

    2

    3VDD

    B

    1

    Fall Time

    Fall time is affected by all 3 devices including the pull-down

    The non linear behavior of the MOSFET requires piecewise linear calculation of the solution by solving the relevant differential equation with appropriate boundary conditions. Instead Shockley model uses average current and plugs it into

    t = C(V)/

  • CMOS Inverter

    CMOS INVERTER INPUT AND OUTPUT CAPACITANCES

    . .3 3L DS NMOS i in NMOSC C C FC

    .

    .

    oxin n GSn GBn GDn n

    ox

    oxin p GSp GBp GDp p

    ox

    C C C C W Lt

    C C C C W Lt

    Input and output capacitance of a CMOS inverter

    VDDGND

    n

    +np

    Vout

    Vin

    +p+n +p +n

    CGSn CGSp

    CGBn CGBp

    CDSn CDSp

    But Wp~2Wn

    . . . 3ox

    in CMOS in p in n n

    ox

    C C C W Lt

  • CMOS Inverter

    Fall time

    VDD

    VinL=0

    VDD

    Rise time

  • CMOS Inverter

    CMOS FALL TIME

    In CMOS the turn-off time is totally governed by the load, whereas the turn-on time is totally governed by the driver. Using Shockleys approach

    DD TD

    TD DD TD

    02

    DD oDD TD O DD TD O

    2D DD0c(on)

    DD TD TD

    DDO

    V Vk 2 dV

    2V V V

    3

    V

    kV V dV V V V

    2VkI V V VVdV

    resulting in

    VVVVkCV

    tTDDDTDDDD

    DD

    on

    2

    32

    2

    VDD t = C(V)/Icon

  • CMOS Inverter

    CMOS RISE TIME

    DD

    2L

    LDD TL O DD TL DD OO0

    Vc(r)

    O

    0

    2L DD

    DD TL TL

    DD

    - k - - ) 2

    - +3

    k (VV V dV V V V dVI

    dV

    2VkV V V

    V

    DD T L DD

    DD T L

    V V V

    V V

    2

    DD

    2

    L DD TL DD TL- -

    3CVt

    V V 2V Vkr

    VinL=0

    VDD

    One obtains an identical equation form for toff by replacing kD by kL and VTD by VTL

  • CMOS Inverter

    Note that when VDD>>VT than ton = toff= C/kVDD If kL = kD (symmetric inverter) then ton = toff and the time response of CMOS inverter will be symmetric as well The inverter propagation delay is than

    tp= (ton+toff)/2= C/kVDD

    IMPORTANT SIMPLIFICATIONS

  • CMOS Inverter

    CMOS FANOUT and CMOS LOGIC GATE RESPONSE

    CMOS FANOUT limited by maximum propagation delay tpmax that is allowed

    tpmax= Cmax/kVDD Cmax= tpmax kVDD

    If input capacitance of load inverter is Cin than

    Fmax=Cmax/Cin = tpmax kVDD / Cin

    2

    DD

    2f

    D DD TD DD TD

    =- -

    3 Vt

    V V 2Vk

    C

    n V

    CMOS LOGIC GATE DYNAMIC RESPONSE

    2

    DD

    2

    L DD TL DD TL- -

    3 Vt

    V V 2V Vk

    C

    mr

    Where nkD and mkL are the effective transconductance parameters of the NMOS path and PMOS paths. The capacitance C must include the effective Drain capacitances of NMOS and PMOS transistors

  • CMOS Inverter

    5.5. POWER DISSIPATION SOURCES

    Ptotal = Pdynamic + Pstatic

    Dynamic power: Pdynamic = Pswitching + Pshortcircuit Switching load capacitances

    Short-circuit current

    Static power: Pstatic = (Isub + Igate + Ijunct )VDD Subthreshold leakage

    Gate leakage

    Junction leakage

    [Contention current (two terminal pull-ups)]

  • CMOS Inverter

    POWER IN CIRCUIT ELEMENTS

    VDD DD DDP t I t V

    2

    2R

    R R

    V tP t I t R

    R

    0 0

    212

    0

    C

    C

    V

    C

    dVE I t V t dt C V t dt

    dt

    C V t dV CV

  • CMOS Inverter

    CHARGING A CAPACITOR

    When the gate output rises

    Energy stored in capacitor is

    But energy drawn from the supply is

    Half the energy from VDD is dissipated in the pMOS transistor

    as heat, other half stored in capacitor

    When the gate output falls

    Energy in capacitor is dumped to GND

    Dissipated as heat in the nMOS transistor

    212C L DD

    E C V

    0 0

    2

    0

    DD

    VDD DD L DD

    V

    L DD L DD

    dVE I t V dt C V dt

    dt

    C V dV C V

  • CMOS Inverter

    SWITCHING POWER & ACTIVITY FACTOR

    C

    fswi

    DD(t)

    VDD

    Suppose the system clock frequency = f

    Let fsw = af, where a = activity factor

    If the signal is a clock, a = 1

    If the signal switches once per cycle, a =

    Dynamic power:

    2

    switching DDP CV fa

  • CMOS Inverter

    Short Circuit Current

    When transistors switch, both nMOS and pMOS

    networks may be momentarily ON at once

    Leads to a blip of short circuit current.

    < 10% of dynamic power if rise/fall times are

    comparable for input and output

    Edp=VDD (Ipeak.ton)/2+ VDD (Ipeak.toff)/2=> Pdp= VDD Ipeak f tp

  • CMOS Inverter

    POWER DISSIPATION

    STATIC POWER :

    Due to Leakage: Ps VDD.ILeakage

    DYNAMIC POWER DISSIPATION: Due to load capacitance Each half cycle the energy stored on the C is with f = frequency

    fCVf

    EP

    CVE DD

    DDc

    2

    c

    2

    P 2

    1 and ;

    2

    Due to Direct path transition currents

    Edp=VDD (Ipeak.ton)/2+ VDD (Ipeak.toff)/2=> Pdp= VDD Ipeak f tp

  • CMOS Inverter

    LATCHUP

    Latchup results from parasitic bipolar transistors that when turned on can short VDD to ground via the substrate. When one of the two BJTs gets forward biased it feeds the base of the other BJT increasing the current until the circuit burns out.To minimize risk of latch-up the resistances Rnwell and Rpsubs must be minimized. This can be achieved by placing many contacts (guard rings) around large current handling devices.

    (a) Origin of latchup (b) Equivalent circuit

    VDD

    Rpsubs

    Rnwell p-source

    n-source

    n+ n+p+ p+ p+ n+

    p-substrateRpsubs

    Rnwell

    VDD

    n-well

    -

    +

    V DD- ViN

    +

    ViN

    VDD

    +

    - VDDVOUT

    -

    VOUT

    -

    +

    -

    PMOS

    NMOS

    G

    S

    S

    D

    D

    CX

    -

    +

    V DD- ViN

    +

    ViN

    VDD

    +

    - VDDVOUT

    -

    VOUT

    -

    +

    -

    PMOS

    NMOS

    G

    S

    S

    D

    D

    CX

  • CMOS Inverter

    CMOS WITH LEAKY GATES

    We represent the leaky gate with a resistor

    For Vin =0 PMOS Linear NMOS off

    X

    vVvVvVVVk outDDoutDDoutDTLDDinL

    2

    2

    Therefore Vout is not VDD For Vin= VDD PMOS OFF, NMOS LIN OFF

    Therefore VoutL = 0V

    -

    +

    V DD- ViN

    +

    ViN

    VDD

    +

    - VDDVOUT

    -

    VOUT

    -

    +

    -

    PMOS

    NMOS

    G

    S

    S

    D

    D

    CX

    -

    +

    V DD- ViN

    +

    ViN

    VDD

    +

    - VDDVOUT

    -

    VOUT

    -

    +

    -

    PMOS

    NMOS

    G

    S

    S

    D

    D

    CX