Top Banner

of 29

05-Tessmer

Apr 03, 2018

Download

Documents

Robert Jackson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/28/2019 05-Tessmer

    1/29

    Institute of Structural Mechanics 1

    Virtual Testing of Aircraft Structures, considering

    Postcritical & Thermal Behavior

    J. Temer, R. Degenhardt, A. Kling, R. Rolfes, T. Sprwitz, S. Waitz

    (DLR Institute of Structural Mechanics, Braunschweig, Germany),

    COMPOSIT Thematic Network,

    Workshop on Modeling and Prediction of Composite Transport Structures

    in Zaragoza, Spain, 30.06.2003

  • 7/28/2019 05-Tessmer

    2/29

    Institute of Structural Mechanics 2

    Reality

    Experiment

    Computer

    Model

    Model

    Validation

    ModelQualification

    Model

    Verification

    Computer

    Simulation

    Analysis

    Programming

    Conceptual

    ModelModel Validation:

    Solve the rightequations

    Model Verification:

    Solve the equations right

    Validation / Verification

  • 7/28/2019 05-Tessmer

    3/29

    Institute of Structural Mechanics 3

    Postcritical behavior of stiffened panels

    Top plate

    Clamping box

    Specimen

    Clamping Box

    Displacement

    pickup

    Load distributor

    Load cells

    Drive plate

    Panel in Buckling Test Facility Deformation pattern (ARAMIS)

  • 7/28/2019 05-Tessmer

    4/29

    Institute of Structural Mechanics 4

    Non linear FEM using ABAQUS/Standard

    rough

    estimate

    FE-Model

    Linear Eigenvalue Analysis

    Buckling Load

    Nonlinear Analysis

    Newton-Raphson-Method + automatic / adaptivedamping to stabilize the analysis (*STATIC, STABILIZE)

    scaled imperfektions

    Postprocessing

    (Load-Shortening-Curve, deformation of the structure, ...)

    Buckling Modes

    Real Structure

    CFRP-Panel

    Measured

    Imperfections

    rough

    estimate

    FE-Model

    Linear Eigenvalue Analysis

    Buckling Load

    Nonlinear Analysis

    Newton-Raphson-Method + automatic / adaptivedamping to stabilize the analysis (*STATIC, STABILIZE)

    scaled imperfektions

    Postprocessing

    (Load-Shortening-Curve, deformation of the structure, ...)

    Buckling Modes

    Real Structure

    CFRP-Panel

    Measured

    Imperfections

  • 7/28/2019 05-Tessmer

    5/29

    Institute of Structural Mechanics 5

    Experimental Validatition of computational Analysis is expensive & time consuming

    Numerical Pre-Test Analysis

    Pre-Test Analysis and Pre-Test Planing

    Validation Experiments versus Phenomenological Experiments

    Goal: Load Deformation curve showing:

    - characterristic skin buckling, coupeled with axial stiffness reduction

    - large load bearing capacity during postbuckling without structural failure

    FEA investigation w.r.t.: panel geometrie

    discretisationexperimental boundary conditions

    initial imperfections

    ...

  • 7/28/2019 05-Tessmer

    6/29

    Institute of Structural Mechanics 6

    Pre-Test Analysis1. Influence of different STABILIZE parameters

    2. Investigation of different failure criteria

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Shortening [mm]

    Load[k

    N]

    STABILIZE = 2e-4

    STABILIZE = 2e-5

    STABILIZE = 2e-6

    STABILIZE = 2e-7

    Nominal data

    ABAQUS/Standard

    Mesh I (3024 elements)

    Tsai Hill

    Azzi Tsai HillMaximum Stress

    Tsai Wu

  • 7/28/2019 05-Tessmer

    7/29

    Institute of Structural Mechanics 7

    Pre-Test AnalysisConvergence study

    0

    10

    20

    30

    40

    50

    60

    0 0.5 1 1.5 2 2.5 3 3.5 4Shortening [mm]

    Load[kN]

    Mesh I: 3024 elements

    Mesh II: 2*3024 elements

    Mesh III: 16*3024 elements

    Nominal data

    ABAQUS/Standard

    STABILIZE = 2.e-6

  • 7/28/2019 05-Tessmer

    8/29

    Institute of Structural Mechanics 8

    Pre-Test AnalysisInfluence of lateral boundary conditions

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Shortening [mm]

    Load

    [kN]

    Covered width = 25.0 mm

    Covered width = 12.5 mm

    Only lateral nodes fixed

    Nominal data

    ABAQUS/Standard

    STABILIZE = 2.e-6

    Mesh I (3024 elements)

    Edge support

    Filler

    Gliding plane

    Test panel

    Detail

  • 7/28/2019 05-Tessmer

    9/29

    Institute of Structural Mechanics 9

    Pre-Test AnalysisInfluence of imperfections

    0

    10

    20

    30

    40

    50

    60

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Shortening [mm]

    Load[kN]

    No imperfections

    Mode 1, 2% skin thickness

    Mode 1, 10% skin thickness

    Mode 1, 100% skin thickness

    Nominal data

    STABILIZE = 2.e-6

    Mesh I (3024 elements)

  • 7/28/2019 05-Tessmer

    10/29

    Institute of Structural Mechanics 10

    Pre-Test AnalysisABAQUS/Standard vs. ABAQUS/Explicit

    0

    10

    20

    30

    40

    50

    60

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Shortening [mm]

    Load

    [kN]

    ABAQUS/Standard, STABILIZE = 2e-6

    ABAQUS/Explicit, v=10mm/s, no damping

    ABAQUS/Explicit, v=10mm/s, with damping

    Nominal data

    Mesh I (3024 elements)

  • 7/28/2019 05-Tessmer

    11/29

    Institute of Structural Mechanics 11

    Measurement of geometrical Imperfections (1)

    Optical 3D - digitalization

    ATOS Sensor strip sequenz

    Measurment of real radius vs. nominal radius (ca. 6% deviation)

    Measurement of initial imperfection

  • 7/28/2019 05-Tessmer

    12/29

    Institute of Structural Mechanics 12

    Measurement of geometrical Imperfections

    Fringe plot w.r.t.perfect shell

    Data points (ASCII-Format):

    1093.6441 211.5491 1.6805

    1093.1718 211.1541 1.6764

    1093.8102 210.6003 1.6764

    1093.0879 210.3660 1.6910

    Modification of perfect

    FE geometry

    Application of initial

    imperfection

  • 7/28/2019 05-Tessmer

    13/29

    Institute of Structural Mechanics 13

    Results of FEA using ABAQUS/Standard

    0

    0,5

    1

    1,5

    2

    2,5

    0 0,5 1 1,5 2 2,5 3 3,5 4

    Skalierte Verschiebung

    SkalierteL

    ast

    ABAQUS/Standard ohne Imperfektionen

    ABAQUS/Standard mit Imperfektionen

    Lokal skin buckling

    Global unsymmetric Buckle

    Global symmetric

    Buckle

  • 7/28/2019 05-Tessmer

    14/29

    Institute of Structural Mechanics 14

    Validation of FEA (Animation)

  • 7/28/2019 05-Tessmer

    15/29

    Institute of Structural Mechanics 15

    Validation of computational results

    Globale Ebene

    0

    0,5

    1

    1,5

    2

    2,5

    0 0,5 1 1,5 2 2,5 3 3,5 4

    Skalierte Verschiebung

    Skalierte

    Last

    Experiment (1)

    Experiment (2)

    ABAQUS/Standard mit Imperfektionen

  • 7/28/2019 05-Tessmer

    16/29

    Institute of Structural Mechanics 16

    -10

    -5

    0

    5

    10

    15

    20

    25

    0 0,5 1 1,5 2 2,5 3

    Skalierte Verschiebung

    Radialverschiebu

    ng[mm]

    Wegaufnehmer W88

    Knoten 40696; entspricht W88 PositionWegaufnehmer W89

    Knoten 46666; entspricht W89 Position

    Wegaufnehmer W90

    Knoten 52636; entspricht W90 Position

    Wegaufnehmer W91

    Knoten 58606; entspricht W91 Position

    Validation of computational results

    Lokale Ebene

    W88W89

    W90W91

  • 7/28/2019 05-Tessmer

    17/29

    Institute of Structural Mechanics 17

    directSun Radiation

    thermalRadiation

    Reflected

    Sun Radiation

    Cross SectionFuselage

    InsideOutside

    Time

    Temperature

    Taxiing Stop Take Off

    Thermal Problem

    FMLs in future aircraft structures

  • 7/28/2019 05-Tessmer

    18/29

    Institute of Structural Mechanics 18

    Modeling (on panel level)

  • 7/28/2019 05-Tessmer

    19/29

    Institute of Structural Mechanics 19

    345

    350

    355

    360

    365

    370

    375

    380

    -2,70

    Thickness-Coordinate of skin (mm)

    Temperatur(K)

    layered skin

    smeared homogenous skin

    Model Verification

    Convergence study with 6 different

    discretisations

    (1 to 36 elements in thickness direction)

    Homogenisation of smeared layers with:

    _ ,

    _ ,

    / ( / ) ,

    ( ) / .

    out plane i i i normal i i

    in plane i plane i ii i

    k t t k

    k k t t

  • 7/28/2019 05-Tessmer

    20/29

    Institute of Structural Mechanics 20

    Infrared Radiator

    Isolation (optional)

    Skin

    Water

    Frame

    Stringer

    Experimental Test in THERMEX B test site

  • 7/28/2019 05-Tessmer

    21/29

    Institute of Structural Mechanics 21

    20

    30

    40

    50

    60

    70

    0 2000 4000 6000 8000 10000

    Zeit (sec)

    Temperatur(C) MP43/TE43

    MP43_RF1

    MP34/TE04

    MP34_RF1

    MP24/TE09

    MP24_RF1

    Validation

    Experiment vs. Computation

  • 7/28/2019 05-Tessmer

    22/29

    Institute of Structural Mechanics 22

    Modeling of large fuselage structure

  • 7/28/2019 05-Tessmer

    23/29

    Institute of Structural Mechanics 23

    2D Finite Elements for Thermal Analysis of FMLs

    Motivation

    Reduction of modeling effort by using 2D geometrical models

    Reduction of CPU-time

    Compatible temperature field for thermo-mechanical calculations

    Scientific Challenge

    3D temperature field description based on 2D geometry

    Shape functions in z-direction

    2D-3D-Coupling (Connection to local 3D meshes)

  • 7/28/2019 05-Tessmer

    24/29

    Institute of Structural Mechanics 24

    3D temperature distribution by 2D finite elements

    Layerwise Thermal Lamination Theories

    Idealisation as layered structure

    Homogenisation of layers

    including heat conduction,

    radiation, convection

    z

    t

    t

    z +d-z

    z

    N

    z=0

    1

    1

    k

    k kk

    b

    1

    k

    2

    Linear Layered

    Theory (LLT)

    Quadratic

    Layered Theory

    (QLT)

    T

    T

    T

    0

    0 , z

    ( k )

    ( k )

    ( z )

    Face sheet

    Honeycombcore

    Hybrid composite structures

    Composite structures

    Sandwich structures

    Aluminum sheet

    Fiber/resin

  • 7/28/2019 05-Tessmer

    25/29

    Institute of Structural Mechanics 25

    Assumptions and Prerequisites

    perfect thermal contact at interfaces

    monolithic conduction within layers

    no internal heat sources

    temperature independent material

    properties

    convection

    conduction

    radiation

    radiation

    equivalent thermal conductivity

    conductionconvection

    homogenisation

    N

    1

    2

    k

    b

    t1

    tk

    z

    z = 0

    z1

    zk + d

    k

    -zk

    approximation by layered construction

  • 7/28/2019 05-Tessmer

    26/29

    Institute of Structural Mechanics 26

    FE-Formulation

    (Weak form for heat conduction)

    ( ) 0ddd W+G+W WGW

    vTvnqTKv &rcgradgrad TT

    Boundary conditions

    - Convection(Robin)

    - Heat flux density(Neumann)

    q

    q T Tc c - a Wandb g

    q nT

    cq q +

    FE-Formulation

    Weak form for heat conduction

  • 7/28/2019 05-Tessmer

    27/29

    Institute of Structural Mechanics 27

    FE-Formulation

    (Weak form for heat conduction)

    h r a h r h r

    a h

    T T

    zA

    c

    T T T T

    zA

    cT T

    z A c z A

    T q

    SKS RR RR

    R

    d d d d d

    d

    zz z zzz

    + +

    -

    G

    G

    G

    G

    b g

    $K SKS

    S K S

    z

    z+

    T

    z

    kT

    k k

    z

    z

    k

    N

    z

    z

    k

    k

    d

    dbg bgbge j

    1

    1

    Composite-heat-conduction-matrix Composite-heat-capacity-matrix

    $

    ( )

    C RR

    R R

    z

    z+

    c z

    c z

    T

    z

    k k

    k T k

    z

    z

    k

    N

    k

    k

    d

    dr c h bg1

    1

    FE-Formulation

    Weak form for heat conduction

  • 7/28/2019 05-Tessmer

    28/29

    Institute of Structural Mechanics 28

    Example: 3D vs. 2D FEA

    Number of 3D-elements: 2

    Number of 3D-elements: 36

    Number of 2D-elements: 1

    GLARE skin with 3D finite elements (Nastran)

    345

    350

    355

    360

    365

    370

    375

    380

    -2,70

    Thickness-Coordinate of skin (mm)

    Temperatur(

    K)

    layered skin

    smeared homogenous skin

    Thermal Lamination Theory (QLT)

  • 7/28/2019 05-Tessmer

    29/29

    Institute of Structural Mechanics 29

    Summary

    Experimental data basis for validation of non linear FEA w.r.t. postbuckling of

    stiffened shells under axial loading

    Investigation of sensitivity w.r.t. to different modeling parameters

    Excellent agreement between experimental and computational results deep into

    elastic postcritical regime (global & local)

    Reliable thermal analysis of FML structures by verification of discretisation throughfine 3D model on panel level

    Validation of thermal panel model by experiments in THERMEX B test site

    Application of thermal model to large fuselage structures

    Description of fast 2D Finite-Element-Formulation

    Question: How many experiments are needed for validation

    of a specified parameter space?