Top Banner

of 163

04Sep_Uzun

Apr 03, 2018

Download

Documents

girithik14
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/28/2019 04Sep_Uzun

    1/163

    NAVALPOSTGRADUATE

    SCHOOL

    MONTEREY,CALIFORNIA

    THESISREQUIREMENTSANDLIMITATIONSOFBOOSTPHASE

    BALLISTICMISSILEINTERCEPTSYSTEMSby

    KubilayUzunSeptember2004

    ThesisAdvisor: PhillipE.PaceCoAdvisor: MuraliTummalaApprovedforpublicrelease;distributionisunlimited

  • 7/28/2019 04Sep_Uzun

    2/163

    THISPAGEINTENTIONALLYLEFTBLANK

  • 7/28/2019 04Sep_Uzun

    3/163

    REPORTDOCUMENTATIONPAGE FormApprovedOMBNo.07040188

    Publicreportingburdenforthiscollectionofinformationisestimatedtoaverage1hourperresponse,includingthetimeforreviewinginstruction,searchingexistingdatasources,gatheringandmaintainingthedataneeded,andcompletingandreviewingthecollectionofinformation.Sendcommentsregardingthisburdenestimateoranyotheraspectofthiscollectionofinformation,includingsuggestionsforreducingthisburden,toWashingtonheadquartersServices,DirectorateforInformationOperationsandReports,1215JeffersonDavisHighway,Suite1204,Arlington,VA222024302,andtotheOfficeofManagementandBudget,PaperworkReductionProject(07040188)WashingtonDC20503.1.AGENCYUSEONLY 2.REPORTDATE

    September2004 3.REPORTTYPEANDDATESCOVEREDMastersThesis4.TITLEANDSUBTITLE:RequirementsandLimitationsOfBoostPhaseBallisticMissileInterceptSystems6.AUTHOR(S)KubilayUzun7.PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

    CenterforJointServicesElectronicWarfareNavalPostgraduateSchoolMonterey,CA939435000

    9.SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)MissileDefenseAgency

    5.FUNDINGNUMBERS

    8.PERFORMINGORGANIZATIONREPORTNUMBER10.SPONSORING/MONITORINGAGENCYREPORTNUMBER

    11.SUPPLEMENTARYNOTESTheviewsexpressedinthisthesisarethoseoftheauthoranddonotreflecttheofficialpolicyorpositionoftheDepartmentofDefenseortheU.S.Government.12a.DISTRIBUTION/AVAILABILITYSTATEMENT 12b.DISTRIBUTIONCODEApprovedforpublicrelease;distributionisunlimited13.ABSTRACT(maximum200words)

    Theobjectiveofthisthesisistoinvestigatetherequirementsandlimitationsofboostphaseballisticmissileinterceptsystemsthatcontainaninterceptoranditsguidancesensors(bothradarandinfrared).Athreedimensionalcomputermodelisdevelopedforamultistagetargetwithaboostphaseaccelerationprofilethatdependsontotalmass,propellantmassandthespecificimpulseinthegravityfield.Theradarcrosssectionandinfraredradiationofthetargetstructureisestimatedasafunctionoftheflightprofile.Theinterceptorisamultistagemissilethatusesfusedtargetlocationdataprovidedbytwogroundbasedradarsensorsandtwolowearthorbitinfraredsensors.Interceptorrequirementsandlimitationsarederivedasafunctionofitsinitialpositionfromthetargetlaunchpointandthelaunchdelay.Sensorrequirementsarealsoexaminedasafunctionofthesignaltonoiseratioduringthetargetflight.Electronicattackconsiderationswithintheboostphasearealsoaddressedincludingtheuseofdecoysandnoisejammingtechniques.Thesignificanceofthisinvestigationisthatthesystemcomponentswithinacomplexboostphaseinterceptscenariocanbequantifiedandrequirementsforthesensorscanbenumericallyderived.14.SUBJECTTERMSBoost-PhaseBallisticMissileIntercept,Modeling,Simulation,MissileRequirements,SensorRequirements,ElectronicAttackEffects,ProportionalNavigation,RadarCrossSection,IREnergyRadiationEstimation,RFSensors,IRSensors,DataFusion,Decoys,NoiseJamming

    15.NUMBEROFPAGES

    16316.PRICECODE

    17.SECURITYCLASSIFICATIONOFREPORT

    Unclassified18.SECURITYCLASSIFICATIONOFTHISPAGE

    Unclassified19.SECURITYCLASSIFICATIONOFABSTRACT

    Unclassified20.LIMITATIONOFABSTRACT

    ULNSN7540-01-280-5500 StandardForm298(Rev.2-89)PrescribedbyANSIStd.239-18

    i

  • 7/28/2019 04Sep_Uzun

    4/163

    THISPAGEINTENTIONALLYLEFTBLANK

    ii

  • 7/28/2019 04Sep_Uzun

    5/163

    Approvedforpublicrelease;distributionisunlimitedREQUIREMENTSANDLIMITATIONSOFBOOSTPHASEBALLISTIC

    MISSILEINTERCEPTSYSTEMS

    KubilayUzunCaptain,TurkishAirForce

    B.S.,TurkishAirForceAcademy,1993Submittedinpartialfulfillmentofthe

    requirementsforthedegreesofMASTEROFSCIENCEINELECTRICALENGINEERING

    andMASTEROFSCIENCEINSYSTEMSENGINEERING

    fromtheNAVALPOSTGRADUATESCHOOL

    September2004

    Author: KubilayUzun

    Approvedby: PhillipE.PaceThesisAdvisor

    MuraliTummalaCoAdvisor

    JohnP.PowersChairman,DepartmentofElectricalandComputerEngineering

    DanC.BogerChairman,DepartmentofInformationSciences

    iii

  • 7/28/2019 04Sep_Uzun

    6/163

    THISPAGEINTENTIONALLYLEFTBLANK

    iv

  • 7/28/2019 04Sep_Uzun

    7/163

    ABSTRACT

    Theobjectiveofthisthesisistoinvestigatetherequirementsandlimitationsofboostphaseballisticmissileinterceptsystemsthatcontainaninterceptoranditsguidancesensors(bothradarandinfrared).Athreedimensionalcomputermodelisdevelopedforamultistagetargetwithaboostphaseaccelerationprofilethatdependsontotalmass,propellantmassandthespecificimpulseinthegravityfield.Theradarcrosssectionandinfraredradiationofthetargetstructureareestimatedasafunctionoftheflightprofile.Theinterceptorisamultistagemissilethatusesfusedtargetlocationdataprovidedbytwogroundbasedradarsensorsandtwolowearthorbitinfraredsensors.Interceptorrequirements

    and

    limitations

    are

    derived

    as

    afunction

    of

    its

    initial

    position

    from

    the

    target

    launchpointandthelaunchdelay.Sensorrequirementsarealsoexaminedasafunctionofthesignaltonoiseratioduringthetargetflight.Electronicattackconsiderations withintheboostphasearealsoaddressedincludingtheuseofdecoysandnoisejammingtechniques.Thesignificanceofthisinvestigationisthatthesystemcomponentswithinacomplexboostphaseinterceptscenariocanbequantifiedandrequirementsforthesensorscanbenumericallyderived.

    v

  • 7/28/2019 04Sep_Uzun

    8/163

    THISPAGEINTENTIONALLYLEFTBLANK

    vi

  • 7/28/2019 04Sep_Uzun

    9/163

    TABLEOFCONTENTS

    I. INTRODUCTION.......................................................................................................1A. BALLISTICMISSILEDEFENSE................................................................1B. PRINCIPALCONTRIBUTIONS.................................................................5C. THESISOUTLINE.........................................................................................7

    II. TARGETMODELING..............................................................................................9A. BASICDEFINITIONSANDASSUMPTIONS...........................................9B. COORDINATESYSTEMS.........................................................................10C. THEGRAVITYFIELD...............................................................................11D. TARGETVELOCITYREQUIREMENTS...............................................14E. BOOSTINGTARGETMODELING..........................................................16

    1. SiloExitVelocity...............................................................................172.

    The

    Rocket

    Equation

    and

    Consequences........................................17

    F. BOOSTINGTARGETINTHEGRAVITYFIELD.................................20G. SUMMARY...................................................................................................23

    III. INTERCEPTORMISSILEMODELING..............................................................25A. BASICDEFINITIONSANDASSUMPTIONS.........................................25B. BOOSTINGMISSILEMODELING..........................................................25C. MISSILEGUIDANCE.................................................................................26

    1. GuidanceSystemAgainstConstantSpeedTarget........................302. GuidanceSystemAgainstICBMModel.........................................33

    D. FLIGHTCONTROLSYSTEM..................................................................36E. MISSILEREQUIREMENTS......................................................................39F. SUMMARY...................................................................................................45

    IV. RADARCROSSSECTIONANDIRENERGYRADIATIONPREDICTION..47 A. TARGETSTRUCTURE..............................................................................48B. POFACETSMODELING...........................................................................49C. RCSPREDICTION......................................................................................50D. ESTIMATIONOFPLUMEIRRADIATION...........................................54E. SUMMARY...................................................................................................56

    V. SENSORMODELING.............................................................................................59A. TRANSMISSIONDELAY...........................................................................62B. TRACKINGINACCURACIES..................................................................63

    1. RFSensorInaccuracies....................................................................632. IRSensorInaccuracies .....................................................................733. DataFusion........................................................................................784. MissilePerformance.........................................................................79

    C. SUMMARY...................................................................................................81VI. ELECTRONICATTACKEFFECTS....................................................................83

    A. EFFECTOFDECOYS.................................................................................83vii

  • 7/28/2019 04Sep_Uzun

    10/163

    1. DecoyTrajectory...............................................................................832. IRDecoys(Flare)..............................................................................863. RFDecoys(Chaff).............................................................................884. TrackTransfertoDecoy..................................................................90

    B. EFFECTOFNOISEJAMMING................................................................97C.

    SUMMARY

    .................................................................................................102

    VII. CONCLUSIONS.....................................................................................................103

    A. SUMMARYOFTHEWORK...................................................................103B. SIGNIFICANTRESULTS.........................................................................103C. SUGGESTIONSFORFUTUREWORK.................................................106

    APPENDIXA CODEFLOWCHART...................................................................109APPENDIXB THEMATLABCODE...................................................................117LISTOFREFERENCES................................................................................................... 139INITIALDISTRIBUTIONLIST...................................................................................... 141

    viii

  • 7/28/2019 04Sep_Uzun

    11/163

    LISTOFFIGURES

    Figure21. TheBasicReferencefortheSimulation,CartesianCoordinateSystemandtheEarthsLocation........................................................................................ 11Figure22. DefinitionsfortheTrajectoryEquation,theCentralAngleandtheRanger.......................................................................................................... 12

    Figure23. TargetTrajectorywithaLaunchSpeedof0.91km/s(3,000feet/s)andLaunchAngleof45....................................................................................... 13

    Figure24. TargetTrajectorywithaLaunchSpeedof1.83km/s(6,000feet/s)andLaunchAngleof45....................................................................................... 14

    Figure25. TargetTrajectorywithaLaunchSpeedof7.32km/s(24,000feet/s)andLaunchAngleof45....................................................................................... 14

    Figure26. TargetVelocityRequirementstoHitaGivenDistance.................................15Figure27. 3DOverviewofanICBMAttackfromKilju-kunMissileBase,North

    KoreatoSanFrancisco,California................................................................. 20Figure28. GroundDistanceversusHeightfortheSanFranciscoAttack.......................21 Figure29. VelocityversusFlightTimefortheSanFranciscoAttack.............................21 Figure210.VelocityversusFlightTimefortheSanFranciscoAttack(BoostPhase

    Only)............................................................................................................... 22Figure211.TotalMassversusFlightTimefortheSanFranciscoAttack(BoostPhase

    Only)............................................................................................................... 23Figure31. MissileBlockDiagram...................................................................................27 Figure32. 3DOverviewofaTypicalInterceptfortheConstantSpeedScenario...........30Figure33 TheTargetandtheMissileFlightCharacteristicsfortheConstantSpeed

    Scenario:(a)GroundDistanceversusHeight,(b)VelocityversusFlightTime.

    ...............................................................................................................

    31

    Figure34. TheTargetandtheMissileClosureCharacteristicsfortheConstantSpeed

    Scenario:(a)RangeversusFlightTime,(b)ClosingVelocityversusFlightTime................................................................................................................ 32

    Figure35. MissileGuidanceCharacteristics fortheConstantSpeedScenario:(a)MissileLateralAcceleration,(b)MissileLateralDivert................................ 32

    Figure36. 3DOverviewoftheInterceptfortheAcceleratingTarget.............................33 Figure37. TargetManeuverduringtheIntercept............................................................34 Figure38 TheTargetandtheMissileFlightCharacteristicsfortheAccelerating

    Target:(a)GroundDistanceversusHeight,(b)VelocityversusFlightTime................................................................................................................ 34

    Figure39.

    The

    Target

    and

    the

    Missile

    Closure

    Characteristics

    for

    the

    Accelerating

    Target:(a)MissileTargetDistanceversusFlightTime,(b)MissileTargetClosureVelocityversusFlightTime................................................... 35

    Figure310.MissileGuidanceCharacteristicsfortheAcceleratingTarget:(a)MissileLateralAcceleration,(b)MissileLateralDivert............................................. 36

    Figure311.(a)ControlSystemLag,(b)Detail................................................................. 37Figure312.MissDistanceversusTimeConstantfortheConstantSpeedScenario.........38

    ix

  • 7/28/2019 04Sep_Uzun

    12/163

    Figure313.LimitationtotheMissileLaunchSiteDistancefromtheTargetLaunchSite:MissileDirectlyatAttackDirection,NoLaunchDelay........................ 40

    Figure314.PotentialAttackDirectionsandtheMissileLocation.................................... 41Figure315.LimitationtotheMissileLaunchSiteDistancefromtheTargetLaunch

    Site:70AngularError,NoLaunchDelay..................................................... 42Figure316.LimitationtotheTolerableLaunchDelayforGM1LocatedatAttackDirection......................................................................................................... 43Figure317.LimitationtotheMissileLaunchSiteDistancefromtheTargetLaunch

    Site:40AngularError,GM3,SanFranciscoAttack.................................. 43Figure318.LimitationtotheTolerableLaunchDelay:40AngularError,GM3,San

    FranciscoAttack............................................................................................. 44Figure41. SimpleGeometricalShapesUsedtoConstructtheModel.............................48 Figure42. FacetStructureUsedtoConstructtheModel:(a)Detail,TopViewand

    NoseCone,(b)Detail,Nozzle........................................................................ 49Figure43. FullScaleModelsofStages:(a)Stage1,(b)Stage2,(c)Stage3,(d)

    Payload............................................................................................................ 50Figure44. TheMonostaticAngle.................................................................................51 Figure45. RCSComparisonofStages:(a)LBand(f=1.5GHz),(b)SBand(f=

    3GHz),(c)CBand(f=6GHz),(d)XBand(f=10GHz)............................. 52Figure46. RCSComparisonofFrequencies:(a)Stage1,(b)Stage2,(c)Stage3,

    (d)Payload...................................................................................................... 53Figure47. SpectralRadiantExitance,Blackbodyat1400K............................................55Figure48. RadiationIntensityversusTime.....................................................................56 Figure51. TheGeographicScenariofortheBoostphaseBallisticMissileIntercept

    includingLocationsoftheSensors,theMissile,andtheTarget....................60Figure52. TheSchematicScenariofortheBoostphaseBallisticMissileIntercept

    includingLocationsoftheSensors,theMissile,andtheTarget....................61Figure53. RCSSamplingLocations................................................................................61 Figure54. AverageRCSSeenbyRFSensorasaFunctionofBearingandRange

    fromtheTargetLaunchSite........................................................................... 62Figure55. RCSSeenbyRF1andRF2duringtheIntercept:(a)LBand,(b)S

    Band,(c)CBand,(d)XBand....................................................................... 64Figure56. RFSensortoTargetRange.............................................................................65 Figure57. EffectofPeakPowertoTrackingAccuracy:(a)Angle,(b)Range...............68Figure58. EffectofHalfpowerBeamwidthtoTrackingAccuracy:(a)Angle,(b)

    Range.............................................................................................................. 69Figure59. EffectofPulsewidthtoTrackingAccuracy:(a)Angle,(b)Range.................70Figure510.EffectofPulseIntegrationtoTrackingAccuracy:(a)Angle,(b)Range....... 70Figure

    511.

    Single

    Pulse

    SNR

    versus

    Flight

    Time.............................................................

    71

    Figure512.MagnitudeofPositionErrorversusFlightTime,(a)RF1,(b)RF2...........73Figure513.AtmosphericTransmittanceversusTargetHeight......................................... 74Figure514.SignaltoClutterRatioofIRSensors............................................................ 76Figure515.TheIRsensorTargetTriangle....................................................................... 77Figure516.MagnitudeofPositionErrorversusFlightTime(IR).................................... 78Figure517.MagnitudeofPositionErrorversusFlightTime(Fused)............................... 79

    x

  • 7/28/2019 04Sep_Uzun

    13/163

    Figure518.ClosureandGuidanceCharacteristicsfortheMissileGuidedbySensed

    TargetPositionData(a)ClosingVelocityversusFlightTime,(b)LateralAccelerationversusFlightTime..................................................................... 80

    Figure519.TargetPositionErrorversusMissDistance.................................................... 81Figure61. DecoyTrajectory(Releasedatt=90s)...........................................................84Figure

    62.

    Decoy

    Trajectory

    (Ground

    Distance

    versus

    Height)

    for

    Target,

    Missile

    and

    Decoy.............................................................................................................. 85

    Figure63. DecoySeparation,TargetDecoyDistanceversusFlightTime.....................85 Figure64. DecoyVelocityversusFlightTime................................................................86 Figure65 SpectralRadiantExitanceofPlumeandFlareversusWavelength................88Figure66. ProbabilityofAverageRCSofChaffCloudExceedstheTargetRCS

    versusNumberofChaffDipolesDispensed................................................... 90Figure67. 3DOverviewoftheIntercept:BothRFSensorTracksCapturedbyDecoy...91Figure68 IncreaseintheLateralAccelerationRequirementswhenbothRFSensor

    TracksCapturedbytheDecoy........................................................................ 92Figure69. 3DOverviewoftheIntercept:EitherRF1orRF2TrackCapturedby

    Decoy..............................................................................................................

    92

    Figure610.LateralAccelerationversusFlightTime,EitherRF1orRF2TrackCapturedbyDecoy......................................................................................... 93Figure611.ScenarioforTrackTransfertoDecoyandConsecutiveReacquisitionof

    theTarget........................................................................................................ 94Figure612.MissDistanceasaFunctionofDecoyReleaseandReacquisitionTime.......95Figure613 MissDistanceasaFunctionof(a)DecoyReleaseTime,(b)Reacquisition

    Time................................................................................................................ 97Figure614.S/JRatioduringtheInterceptfor1kWJammer........................................... 100Figure615.EffectofJammerPower(4GHzBandwidth):RMSErrorversusFlight

    Timein,(a)Range,(b)Angle....................................................................... 100Figure616.EffectofJammerBandwidth(1kWPower):RMSErrorversusFlight

    Timein,(a)Range,(b)Angle....................................................................... 101Figure617.EffectofJammingonMissDistance............................................................ 102FigureA1. CodeFlowchart(1of7)................................................................................109 FigureA2. CodeFlowchart(2of7)................................................................................110FigureA3. CodeFlowchart(3of7)................................................................................111FigureA4. CodeFlowchart(4of7)................................................................................112FigureA5. CodeFlowchart(5of7)................................................................................113FigureA6. CodeFlowchart(6of7)................................................................................114FigureA7. CodeFlowchart(7of7)................................................................................115

    xi

  • 7/28/2019 04Sep_Uzun

    14/163

    THISPAGEINTENTIONALLYLEFTBLANK

    xii

  • 7/28/2019 04Sep_Uzun

    15/163

    LISTOFTABLES

    Table21. TargetDataMatrix..........................................................................................16 Table22. TheoreticalVelocityCapabilityofTargetModel...........................................19Table31. MissileDataMatrix........................................................................................26 Table32. SummaryofGenericMissileSpecifications...................................................39Table41. ICBMPlumeParameters................................................................................54 Table51. GainandAntennaDiameterversusRequiredHalfPowerBeamwidth..........66Table52. RFSensorParameterstobeExamined...........................................................67 Table53. GenericRadarParameters...............................................................................71Table54. IRSensorParameters......................................................................................76Table55. MissileTestParameters..................................................................................79 Table61. RCSasSeenbytheRFSensorsduringIntercept...........................................89Table62. PossibleBandwidthstobeConsideredbytheJammer..................................99

    xiii

  • 7/28/2019 04Sep_Uzun

    16/163

    THISPAGEINTENTIONALLYLEFTBLANK

    xiv

  • 7/28/2019 04Sep_Uzun

    17/163

    ACKNOWLEDGMENTS

    IwouldliketothankmywifeOzumforherpatienceandsupport.IwouldliketothanktomythesisadvisorsProfessorPhillipE.PaceandProfessor

    MuraliTummalafortheirhelptoconductthisresearch.AlsoIwouldliketothanktoProfessorBretMichaelandtheballisticmissiledefenseteamfortheirvaluableideas.

    ThisworkwassupportedbytheMissileDefenseAgency.

    xv

  • 7/28/2019 04Sep_Uzun

    18/163

    THISPAGEINTENTIONALLYLEFTBLANK

    xvi

  • 7/28/2019 04Sep_Uzun

    19/163

    EXECUTIVESUMMARY

    Thisresearchinvestigatedthebasicrequirementsandlimitationsofboostphaseballisticmissileinterceptsystems.Inordertoaccomplishthis,acomputercodewasdevelopedtomodelavarietyofsystemcharacteristicsincludingmotioninthreedimensionalspace.Afterdefiningtheballisticmissile(referredtoastargetinthetext)andtheinterceptor(referredtoasmissileinthetext)indetail,theradiofrequency(RF)andinfrared(IR)sensorcharacteristicsandtheirabilitytoguidethemissiletothetargetwereexplored.Thenormaloperationoftheboostphaseballisticmissileinterceptsystemwastestedforseveralscenarios.Finally,theeffectsofthepossibleuseofelectronicattack

    on

    the

    defense

    system,

    which

    aballistic

    missile

    target

    may

    employ

    during

    the

    boost

    phase,wereinvestigated.

    Developingacomputercodetosimulatetheboostphasescenariowasthemethodologyusedforthisresearch.Equationswereusedregardingmissiletrajectories,propulsion,andsensorcalculationstoconstructatheoreticalbasisfortheresearch.Thecomputersimulationresultsforeachstepwereverifiedbyusingsimplecases.Then,allverifiedpartsofthesystemwerebroughttogethertorunthecomplexcases.

    Theboostphaseinterceptschemewasconstructedaroundthefollowingscenario.Anintercontinentalballisticmissileislaunchedfromagivenlaunchsite.ThetargetistrackedbytwogroundbasedRFsensorsandtwospacebasedIRsensors.Thetargetpositiondataistransmittedtoafusionprocessortocalculateanaccuratetargetposition.Thefusedtargetpositiondataisusedtoguideamissile.Themissileislaunchedafteracertaindelayfollowingthetargetlaunchandestablishesacollisiongeometrywiththetarget.Atasuitabledistance,akillvehicleislaunchedfromthemissiletoaccomplishtheintercept.Thekillvehiclehitstokillthetarget,andtheinterceptisaccomplished.

    Thefirststepinthedevelopmentofthesimulationwasmodelingthemechanicsofthetarget.ThetargetwasmodeledbyevaluatingthesumofallactingforcevectorsinthethreedimensionalCartesiancoordinatesystem.ThechangeinmassduetofuelconsumptionandchangeingravityduetothedistancefromtheEarthscenterwerealsoconsidered.Propulsionwasmodeledbyusingtheconsumptionrateandthespecificimpulse

    xvii

  • 7/28/2019 04Sep_Uzun

    20/163

    ofthefuelused.Thetrajectoryequationandtherocketequationwereusedasatheoreticalbasisfortheflightofthetarget.Alltestrunsshowedthatthecomputermodelreflectedtheresultsoftheequationssatisfactorily.Afterverification,anexamplecaseincludinganintercontinentalballistictargetattacktargetingSanFrancisco,Californiawasconducted,andthemeasureddatayieldedvaluablefindingsregardingallphysicalparametersofthemissileduringitsflight,suchasdistances,heights,andvelocities.

    Thesecondstepwastomodelthemissile.ProportionalnavigationinathreedimensionalCartesiancoordinatesystemwasimplemented.Toverifytheresults,asimplecasewithaconstantspeedtargetwassimulated.Testsshowedthattheimplementationofproportionalnavigationworkedsatisfactorilyandthetargetwashit.Themissilemodelwasrunagainstthetargetmodeldevelopedpreviouslyanddatawerecollectedandpresented.Finally,thezerolagcontrolsystemdevelopedsofarwasextendedtoanonzerolagcontrolsystembymodelingthemissiledynamicswithasingletimeconstant,thirdordertransferfunction.Themissdistanceresultsduetomissiledynamicswerepresented.Next,therequirementsregardinglocationofthemissilewereinvestigated.Testrunsyieldedgoodinsightintermsofmissilecapabilityandlocation.

    Thethirdstepwasthepredictionoftargetparametersfromthesensorspointofview.Thisincludedtheradarcrosssection(RCS)forRFsensorsandIRradiationestimationforIRsensors.ThemonostaticRCSwaspredictedbymodelingthetargetstructurewithtriangularfacets.Themodeledstructurewasevaluatedbyanothersoftwareprogram(POFACETS).CalculatingtheplumeIRradiationintensityusingPlanckslawandintegratingtheemittedenergyinthebandofinterestsummarizedthesimplisticIRenergyradiationestimation.

    Thefourthstepwasmodelingofthesensors.OptimallocationfortheRFsensorswasdetermined.Thetransmissiondelaybetweenthetargettrackdatacollectionandmissileguidancewasmodeled,andtheireffectwasinvestigated.AsetofRFsensorparameterswasproposed,andtheeffectofdifferentradardesignparameterswasinvestigatedindetail.Theresultingradarspecificationswereutilizedtoquantifythesignaltonoiseratioduringtheintercept.TheRMSerrorinangleandrangewerequantifiedusingthecomputermodel.Theprobabilisticnatureoftargetpositionalerrorwaspresented.IRsen

    xviii

  • 7/28/2019 04Sep_Uzun

    21/163

    sordesignparameterswerediscussed.TwoIRsensorswerelocatedatalowEarthorbit,andaprobabilistictargetpositionalerrorintroducedbytheIRsensorswasquantified.Datafusionwasimplementedbyaveragingtargettrackinputs.Thefusedtrackdatawerethenusedtoguidethemissile,andresultswerepresented.Theeffectoftrackingqualityonmissdistancewasinvestigated.

    Thefinalstepwastheinvestigationofelectronicattackeffectsintheboostphase.Acommonassumptionisthataballisticmissilehasenoughtimeandopportunitytoattackadefensesystemelectronicallybyusingmanymeasures,suchasusingmultiplewarheads,decoys,and/ormetallizedballoons,ordisguisingitsIRsignaturebycoolingorshroudingthewarheadaftertheboostphase,butthemissiledoesnotprioritizetheelectronicattackwhileitisstillintactandaccelerating.However,thereisnoreasonfortheballisticmissilenottoperformthistypeofattack,althoughitistechnicallymorecomplicated.Toexploretheelectronicattackeffects,thedecoytrajectorywasmodeledinthesimulation,andseparationofthedecoyduetoaccelerationofthemissilewasshown.TheeffectofIRandRFdecoyswasinvestigated.Theamountofchaffdipolesrequiredtoscreenthetargetwascalculated.Theeffectofreacquisitionfollowingatracktransfertodecoywasalsoexaminedaswellastheeffectofnoisejamming.

    Milestonesusedtoconstructthemodelledtomanyresultsandcontributions.Mechanicalmodelsofthetargetandthemissileunearthedmanyrequirementsandlimitationsalongwiththeabilitytochoosethecapabilityandlocationofthedefensesystemelements.Theworkalsoshedlightontheeffectivenessofthecommonelectronicattacks,suchasIRandRFdecoysaswellasnoisejamming.

    Resultsreportedhereweresignificantsincetheboostphaseinterceptscenarioshavenotbeeninvestigatedpreviouslyasmuchastheotherphases.ThecomputercodeusesathreedimensionalEarthcenteredsystemthatotherresearcherscaneasilyusetoimplementdifferentscenarios.Deductionofmissileparametersintermsofcapabilityandpositionmaycontributetothefuturedecisionsonongoingnationalmissiledefenseplans.ExaminationofRFandIRsensorparametersandlocationsarealsosignificant.Finally,investigatingtheelectronicattackduringtheboostphaseanswersmanyquestionswhileraisingmorequestionsforfutureinvestigations.

    xix

  • 7/28/2019 04Sep_Uzun

    22/163

    THISPAGEINTENTIONALLYLEFTBLANK

    xx

  • 7/28/2019 04Sep_Uzun

    23/163

    I. INTRODUCTION

    A. BALLISTICMISSILEDEFENSEDefendingtheUnitedStatesagainstalongrangeballisticmissileattackhasbeen

    anissueformanyyears.Theballisticmissiledefenseplansarosemanytimesandinmanyformsduringthepast50years.AccordingtoFowler,itappearsonceevery17yearsindifferentforms[Ref.1].TheStrategicDefenseInitiative(SDI),alsoknownastheStarWarsProject,wasproposedduringtheReaganadministrationin1985.Effortsusinglaserbaseddefenseprogramsintensifiedinthelate1980sandhavecontinuedwiththeairbornelaser(ABL)mostrecently[Ref.2].

    AsaresultoftheobservationsontheWorldsnewmembersofthemissileclub,theUnitedStateshasenactedtheCongressionalNationalMissileDefenseActin1989statingthataprogramtodefendtheUntiedStatesagainstthemissileattacksisacceptedaspolicy[Ref.1].

    Duringthelastdecade,sincethecollapseoftheUSSRin1991,thequestionsregardingtheabilityofasmallcountryhavingtheintentandcapabilitytohittheUnitedStateswithlongrangeballisticmissileshavebeenaskedincreasingly.DonaldRumsfeldpresentedareporttoCongressin1998discussingthepresenceofthiskindofthreat[Ref.3].ThereportpointedoutthegrowingmarketintheareafedbyuncontrolledknowhowandpersonnelunleashedbythecollapseoftheUSSRandmotivatedbymoney[Ref.3].

    Beforethereport,itwasgenerallybelievedthatindividualmissiletechnologiesdevelopedbysmallcountrieswouldtendtobeoriginal.However,manyanalystsnowbelievethattheproliferationofmissilesismuchmorelikelybyusingsimplermethods,suchasbraindrain,transferringtechnologyintothecountryorsimplybuyingthem[Ref.4].

    ItisverywellknownthattheRumsfeldreportstatesthatIranorNorthKoreacanachievesuchacapabilitywithinfiveyearsofdecidingso.Whetherornotthisisanoverestimation,thereportraisescrucialquestions.Canasmallstateobtainsuchacapabilityinthenearfuture?Whatisthemotivationforsuchastatefordoingso?AccordingtoOberg,passionforthirdworldcountriestoseizeonthecapabilityoflaunchingrockets

    1

  • 7/28/2019 04Sep_Uzun

    24/163

    servesthreemainobjectives:theabilitytocarrywarheadsontotheterritoryoftheiropponents,contributingtospaceapplications,andbecomingaworldpower[Ref.4].AccordingtotablesprovidedbyZakheim,lesserpowershavingballisticmissileswitharangeofmorethan1,000kmareIndia,Iran,Israel,NorthKorea,PakistanandUkraine[Ref.3].

    NorthKoreaisoneofthecountriesattractingspecialconsideration.DoesNorthKoreahavesuchanintentionorcapability?NorthKoreasICBMdevelopmentprogramisevidentintermsofintentaswellascapability.InterrogationofadefectorhasunearthedthatthefinalobjectiveofNorthKoreaistobuildmissilescapableofhittingtheUnitedStates.TaepodongIImissilesarebelievedtohavebeenimprovedforcarryinglargepayloadsto4,0006,000kmwhiletheymayhavethecapabilityofcarryinglighterpayloadsupto10,000km[Ref.4].NorthKoreasNodongtestlaunchin1993focusedtheattentionofscientistsworldwideontheincreasingcapabilityofthiscountry.AlthoughitwasclaimedbyNorthKoreathatthiswasalaunchintendedtocarryasatelliteintoorbit,asofyet,noonehasfoundanyevidenceofthissatellite.Whetherornotitwasafailedsatellitelaunchoratricktohideanearintercontinentalballisticmissiletest,thelaunchshowedthatthethreatisimminent[Ref.4].

    AlthoughthethreatisevidentandconfidenceaboutdefendingtheUnitedStatesfromanyconventional,nuclear,chemical,orbiologicalattackisabsolute,manyscientistsdisagreewiththeexistingroadmapoftheNationalMissileDefense(NMD)efforts.AdebatecontinuesontheNMDprogram.Someoftheissues,whichFowlerhaspointedout,areasfollows.Firstly,realizationofsuchacapabilitytoneutralizeexistingintercontinentalhitcapabilityofRussiaandChinamaydrivethemtobuildmorecapabilities.Secondly,launchinganintercontinentalballisticmissilemaynotbethefirstprioritymethodtoplaceaconventional,nuclear,chemical,orbiologicalthreatintheUnitedStates.

    Finally,

    it

    is

    far

    from

    convincing

    that

    the

    existing

    ballistic

    missile

    defense

    tech

    nologyiscapableofdoingtheintendedjob[Ref.1].

    2

  • 7/28/2019 04Sep_Uzun

    25/163

    Regardingthethreatpriority,althoughtheSeptember11thdisasterhaschanged

    thethreatperceptionradically,someobserversfeelthatrecentannouncementsindicatethattheBushadministrationisfarfromstoppingtheeffortsregardinganintercontinentalattack,whichmaybeexecutedbyballisticmissiles[Ref.5].

    Capabilityisanotherissue.SomefeelthattheexistingNMDplansareconsideredincompleteandnothingmorethanadeterrencetool[Ref.1].Whyareongoingplansconsideredunsatisfactory? Mostoftheproblemsassociatedwiththeexistingplanarerelatedtothemidcourseinterception,andthemidcourseballisticmissileinterceptstilloccupiesamajorityofresourcesusedbytheBallisticMissileDefenseOrganization[Ref.5].

    AcommonapproachistodetectthetargetbyusingspacebasedIRsensors,whichcansensethehugeamountofenergyemittedfromtherocketplume.Afterdetection,atargettrackisestablishedbygroundbasedRFsensors(radars)incoordinationwithIRsensorstogenerateusefulandaccuratetargetpositiondatatoguideaninterceptor.Sinceanintercontinentalballisticmissileshouldtravelroughly10,000kmandfly3040minutes,itmakesperfectsensetolookforthecapabilitytointercepttheICBMforthemidcourseorterminalphasebeforeithitsthetarget.Asdetailedbelow,however,severalresearchershaveshownthatthisisnotasstraightforwardasitseems.

    Althoughmidcourseinterceptofballisticmissileshasseveraladvantages,suchastheabilitytolocateassetsathomeandadequatetimefordetection,decisionandinterception,ithasmoredrawbacks.Thedisadvantagescanbesummarizedasbeingmoresusceptibletoelectronicattack,probabilityofdebrislandinginfriendlyterritoryifthewarheadisnotcompletelydestroyedandpossibilityofthedefensesystembeingoverwhelmedbyutilizationofsubmunitionsinsteadofasinglewarhead[Ref.5].

    Assumingthatthethreatwillcompleteitsflightintactwouldbedangerouslyoversimplifyingtheproblem.Additionally,therearemanytypesofelectronicattack,whichcanbeusedbytheballisticmissileduringitsflight.LewisandPostollisttheseasmultiplesubmunitions,decoys,radarandinfraredstealthbyshrouding,andmaneuvers[Ref.6].

    3

  • 7/28/2019 04Sep_Uzun

    26/163

    TheMITCountermeasuresReportalsoemphasizessimilarissuesthatcanbe

    summarizedasfollows.Firstly,thereisnoreasontobelievethatacountrycapableofbuildingandlaunchingaballisticmissilecanalsoexploitanelectronicattack.Secondly,anelectronicattackmightverylikelyaffect,overwhelmorfailtheplannedNMDsystem.Finally,anelectronicattackmayincludesubmunitions,falsetargetsincludingreplicadecoys,decoysusingsignaturediversity,anddecoysusingantisimulation(metallizedballoons,shrouds,chaff,electronicdecoys),radarsignaturereduction,infraredstealth,hidingthewarhead,andmaneuver[Ref.7].

    Historicallessonslearnedshowthattheattackerdoesnotneedtopossessthesophisticatedtechnologyasthedefendertodefeatthedefensesystem.Duringthe1991GulfWar,probablyunintentionalbreakupandtumblingofalHusaynmissilesresultedinthealmosttotalfailureofPatriotdefenses[Ref.6].Allsolutionsassociatedwiththepostboostphasedefensemustconsideracommonfactthatwhentheaccelerationofthemissileends,thepossibilityisgreatforthedeploymentofdifferentelectronicattacks.Forlongrangeballisticmissiles,eachdeployedparticlefromthemainpayloadfollowsthesametrajectoryregardlessofitsmass.Thus,asmallchaffdipoleweighingontheorderofgramsisnotdifferentfromaheavywarheadinouterspacewhereatmosphericeffectscanbeneglected.

    Thissituationnaturallydirectsmindstoanotheroption,whichistheboostphaseintercept.Boostphaseisdefinedastheinitialstageoftheballisticmissileflightlastingfrommissilelaunchtotheburnoutofrocketengines[Ref.5].Duringthepoweredflightwherethemissileisstillintact,technicalconsiderationsdiffer[Ref.6].Theboostphaseballisticmissileintercept,althoughnotaffectedbythefactorsassociatedwiththeotherphases,hasotherproblemstomanage.Theseareusuallydetectionanddecisionrequirements,whichinturn,resultinaneedtolocatetheinterceptorsveryclosetothetargetlaunch

    site.

    4

  • 7/28/2019 04Sep_Uzun

    27/163

    Anothercrucialquestionarisesimmediately:Whatiftheelectronicattackisexe

    cutedduringtheboostphase?TheresultingpointconcerningtheNMDeffortsistheassumptionthatbyusingaboostphaseinterceptplan,mostoftheproblemsassociatedwiththemidcourseinterceptcouldberesolved.Howvalidisthisassumption?Whatarethestrongandweakpointsofthedefensesystemagainstthiskindofattack?B. PRINCIPALCONTRIBUTIONS

    Thisresearchinvestigatedthebasicrequirementsandlimitationsofboostphaseballisticmissileinterceptsystems,whichwasaccomplishedbydevelopingacomputercodetomodelavarietyofsystemcharacteristicsincludingmotioninthreedimensionalspace.Afterdefiningtheballisticmissile(referredtotargetinthetext)andtheinterceptor(referredtoasmissileinthetext)indetail,theradiofrequency(RF)andinfrared(IR)sensorcharacteristicsandtheirabilitytoguidethemissiletothetargetwereexplored.Thenormaloperationoftheboostphaseballisticmissileinterceptsystemwastestedforseveralscenarios.Finally,theeffectsofthepossibleuseofelectronicattackonthedefensesystem,whichaballisticmissiletargetmayemployduringtheboostphase,wereinvestigated.

    Themethodologyusedforthisresearchconsistedofdevelopingacomputercodetosimulatetheboostphasescenario.Thecomplexityoftheinteractingdynamicsinthescenariousuallylimitstheopportunitytodefineallelementswithsimpleequations.Therefore,astepbystepapproachwasfollowedtoverifytheaccuracyoftheresults.Equationswereusedregardingmissiletrajectories,propulsion,andsensorcalculationstoconstructatheoreticalbasisfortheresearch.Thecomputersimulationresultsforeachstepwereverifiedbyusingsimplecases.Then,allverifiedpartsofthesystemwerecombinedtorunthecomplexcases.

    Theboostphaseinterceptschemewasconstructedaroundthefollowingscenario.An

    intercontinental

    ballistic

    missile

    is

    launched

    from

    agiven

    launch

    site.

    The

    target

    is

    trackedbytwogroundbasedRFsensorsandtwospacebasedIRsensors.Thetargetpositiondataistransmittedtoafusionprocessortocalculateanaccuratetargetposition.Thefusedtargetpositiondataisusedtoguideaninterceptmissile.Themissileis

    5

  • 7/28/2019 04Sep_Uzun

    28/163

    launchedafteracertaindelayfollowingthetargetlaunchandestablishesacollisiongeometrywiththetarget.Atasuitabledistance,akillvehicleislaunchedfromthemissiletoaccomplishtheintercept.Thekillvehiclehitstokillthetarget,andtheinterceptisaccomplished.

    Twoimportantelementsofthescenarioarebeyondthescopeofthisresearch.Thefirstisthedatafusion.Thetrackdataarefusedherebyusingasimpleaveragingmethod.Thesecondiskillvehicleflight.Themissileisallowedtoflyuntilithitsthetargetinsteadoflaunchingakillvehicle.

    Theworkreportedhereconsistsofmanyresultsandcontributions.Athreedimensionalcomputermodelwasdevelopedforamultistagetargetwithaboostphaseaccelerationprofilethatdependsontotalmass,propellantmassandthespecificimpulseinthegravityfield.Theradarcrosssectionandinfraredradiationofthetargetstructurewasestimatedasafunctionoftheflightprofile.Theinterceptorisamultistagemissileusingfusedtargetlocationdataprovidedbytwogroundbasedradarsensorsandtwolowearthorbit(LEO)infraredsensors.Interceptorrequirementsandlimitationswerederivedasafunctionofitsinitialpositionfromthetargetlaunchpointandthelaunchdelay.Sensorrequirementswereexaminedasfunctionofthesignaltonoiseratio(SNR)duringthetargetflight.Electronicattackconsiderationswithintheboostphasearealsoaddressed,includingtheuseofdecoysandnoisejammingtechniques.Mechanicalmodelsofthetargetandthemissileunearthedmanyrequirementsandlimitationswiththeabilitytochoosethecapabilityandlocationofthedefensesystemelements.Theworkalsoshedlightontheeffectivenessofthecommonelectronicattacks,suchasIRandRFdecoysaswellasnoisejamming.

    Thesignificanceofthisinvestigationisthatthesystemcomponentswithinacomplexboostphaseinterceptscenariocanbequantifiedandrequirementsforthesensorsnumericallyderived.ThecomputercodeusesathreedimensionalEarthcenteredsystemthatotherresearcherscaneasilyusetoimplementdifferentscenarios.Deductionofmissileparametersintermsofcapabilityandpositionmaycontributetofuturedecisionsforongoingnationalmissiledefenseplans.ExaminationofRFandIRsensorpa-

    6

  • 7/28/2019 04Sep_Uzun

    29/163

    rametersandlocationsarealsosignificant.Finally,investigatingtheelectronicattackduringtheboostphaseanswersmanyquestionswhileraisingmorequestionsforfutureinvestigation.C. THESISOUTLINE

    ChapterIIisdedicatedtothedevelopmentofthecodeandmodelingthemechanicsofthetarget.ThescenariowhereanintercontinentalballisticmissileattacksSanFrancisco,Californiaisconducted,andtheresultspresentedintermsofthetargetparameters,suchasdistances,heights,andvelocities.

    ChapterIIImodelsthemissile.TheproportionalnavigationisimplementedinthreedimensionalCartesiancoordinatesystem.Themissilemodelisrunagainstthetargetmodeldevelopedpreviously,anddataarecollectedandpresented.Afterfinishingmodelingmissilemechanics,therequirementsregardinglocatingthemissileareinvestigated.Resultsoftestrunsarepresented.

    ChapterIVpredictstargetparametersfromthesensorspointofview.ThemonostaticRCSispredictedbymodelingthetargetstructurewithtriangularfacets.Themodeledstructurewasevaluatedbyanothersoftwareprogram(POFACETS).CalculatingtheplumeradiationintensitybyusingPlanckslawandintegratingtheemittedenergyinthebandofinterestsummarizethesimplisticIRenergyradiationestimation.

    ChapterVmodelsthesensors.OptimallocationsfortheRFsensorsarefound.Thischaptermodelsthetransmissiondelaybetweenthetargettrackdatacollectionandmissileguidance.AsetofRFsensorparametersisproposed,andtheeffectsofdifferentradardesignparametersontrackingqualityareinvestigatedindetail.ThemodellocatestwoIRsensorsinaLEOandquantifiestheprobabilistictargetpositionalerrorintroducedbythesensors.Thefusedtrackdataareusedtoguidethemissile,andtheresultsarepresented.

    ChapterVIinvestigatestheeffectofelectronicattackintheboostphase.Toexploretheelectronicattackeffects,thesimulationmodelsthedecoytrajectory,andalsotheseparationofthedecoyduetoaccelerationofthemissile.TheeffectofIRandRFde-

    7

  • 7/28/2019 04Sep_Uzun

    30/163

    coysisinvestigated.Theamountofchaffdipolesrequiredtoscreenthetargetiscalculated.Theeffectofreacquisitionfollowingatracktransfertodecoyisalsoexaminedaswellastheeffectofnoisejamming.

    ChapterVII

    provides

    the

    concluding

    remarks.

    AppendixAshowsadetailedchartforthecodeflow.AppendixBprovidesa

    completelistingoftheMATLABcodedevelopedforthisresearch.

    8

  • 7/28/2019 04Sep_Uzun

    31/163

    body,m isthetotalmass(inkg),andaisthenetaccelerationvector(inm/s2).Thereare

    Thethrustvectorisassumedtobeinthedirectionofthevelocityvectorv.Inthe

    dt g.

    II. TARGETMODELINGThischapterpresentsathreedimensionaltargetmodelthatoperatesinthe

    Earthsgravityfield.Thesimulationmodelsamultistage,boostingtargetcapableofreachingthevelocityof6.5km/sthatenablesittoreachintercontinentaldistances.Thebasicdefinitionsandassumptionsforthemodel,thecoordinatesystemsused,thegravityfieldeffects,andthetargetvelocityrequirementsarediscussedasfollows.A. BASICDEFINITIONSANDASSUMPTIONS

    ThetargetbodyobeysNewtonsSecondLawthatcanbedefinedinvectorformasEquationChapter2Section1

    Fma (2-1)

    whereFistheforcevector(inN)actingonthecenterofgravity(CG)ofthetarget

    onlytwotypesofmajorforcevectorsactingontheCGofthetargetbody.Thesearethe

    thrustTandtheweightW.ThenetforcevectorFnetcanbewrittenas

    FnetTW. (2-2)

    model,thedirectionofthethrustvectorisnotmodified(i.e.,thrustisnotvectored)meaningthatthetargetmakesagravityturn[Ref.8:p.255].Todevelopthethrustvectormagnitude T,thestagespecificimpulseIsp(ins)isfirstexpressedas[Ref.8:p.255].

    Isp TW (2-3)

    wherechangeinweightovertimeWcanbedefinedasafunctionofchangeinmassovertimeorinstagefuelconsumptiondmdt(inkg/s)andgravitationalaccelerationatthecurrentdistancefromthecenteroftheEarthg(inm/s2)as

    W dm (2-4)Substituting(2-4)into(2-3)andsolvingforTgives

    9

  • 7/28/2019 04Sep_Uzun

    32/163

    dt gIsp.T dm (2-5)Thestagespecificimpulseisassumedtobeconstant,andfuelisassumedtode

    creaselinearlyduringthestage.TheweightvectorisinthedirectionofthecenteroftheEarth.Themagnitudeof

    theweightvectorWcanbewrittenasWmg. (2-6)

    Sincemostoftheinterceptionoccursintheexoatmosphericregion,dragisneglected.Also,sincethescopeofthisstudyisonlyontheboostphase,whichoccursatrelativelysmalldistancesfromtheEarthandshorttimeswithrespecttotheoveralltargetflight,theEarthisassumedtobeaperfectnonrotatingspherewitharadiusof6,370km.Theabovedefinitionsandassumptionswereusedtobuildthemodel.B. COORDINATESYSTEMS

    Threecoordinatesystemsareusedwithinthemodel.ThefirstistheEarthcentered,Earthfixed(ECEF)Cartesiancoordinatesystem.

    IntheECEFCartesiancoordinatesystem,allcomputationsoccurinthreeorthogonalaxes.TheEarthislocatedattheorigin.Inarighthandedsystem,thepositivexaxispassesthrough0N,0E,thepositiveyaxispassesthrough0N,90E,andthepositivezaxispassesthrough90N.AllelementsdefinedindifferentcoordinatesystemsaretranslatedintotheECEFCartesiancoordinatesystem.Inthefollowingpages,onlythenameCartesiancoordinatesystemreferstotheECEFcoordinates.Figure21illustratestheCartesiancoordinatesystemandtheEarthslocation.

    10

  • 7/28/2019 04Sep_Uzun

    33/163

    eration(inms )ismodeledas[Ref.10:p.326]

    Figure21. TheBasicReferencefortheSimulation,CartesianCoordinateSystemandtheEarthsLocation.Thesecondisthegeodeticcoordinatesystem.Alllocationsincludingthetarget,

    themissile,andthesensorsaredefinedinthegeodeticcoordinatesysteminN/Sddmm.mmmE/Wddmm.mmmformat.ThetargetlaunchsitecontainedinthemodelislocatedatN4100.000E12900.000andrepresentstheKiljukunmissilebase,NorthKorea.

    Thethirdisthetopocentrichorizoncoordinatesystem[Ref.9:p.53].Launchanglesaredefinedinthetopocentrichorizoncoordinatesystemwherethefirstelement,azimuth,ismeasuredfromtruenorthindegrees,andthesecondelement,elevation,ismeasuredfromthelocalhorizonindegrees.Thetopocentrichorizonnotationisusefulindefiningtheinitialdirectionoftargetvelocityvectorandisindependentofthetargetlocation.Aswithallothervectors,targetlaunchanglesarealsotranslatedtotheCartesiancoordinatesystembeforecomputations.C. THEGRAVITYFIELD

    Whentheconcernisintercontinentalranges,theflatEarthapproximationwithaconstantgravitationalaccelerationisnolongervalid.ThedirectionoftheweightvectoristowardstheEarthscenter(roundEarthmodel),andthechangeinthegravitationalaccel

    2

    11

  • 7/28/2019 04Sep_Uzun

    34/163

    (2-7)

    of6.671011 m/(kgs),M istheEarthsmass[Ref.10:p.A4],whichhastheap

    r0V

    GMr2

    whereGisthegravitationalconstant[Ref.10:p.323],whichhastheapproximatevalue3 2

    proximatevalueof5.981024kg,andristhedistancefromthecenteroftheEarth(inm)assumingthattheEarthisauniformdensity,nonrotating,perfectsphere.

    Giventhelaunchangleandtheinitialdistancer0fromthecenteroftheEarth,thetargetdistancer(inm)asafunctionofthecentralanglecanbecalculatedbyusingthetrajectoryequationas[Ref.8:p.235]

    r r0cos21coscoscos()

    (2-8)

    wheretheparameterdependsontheinitialranger0,launchvelocityV,gravitationalconstantG,andtheEarthsmassMasgivenby[Ref.8:p.234]

    . (2-9)GM

    ThecentralangleisdefinedastheanglebetweentheinitiallaunchpositionandthepositionofthetargetinflightmeasuredatthecenteroftheEarthasshowninFig.22.

    Figure22. DefinitionsfortheTrajectoryEquation,theCentralAngleandtheRanger.12

  • 7/28/2019 04Sep_Uzun

    35/163

    Giventhetheoreticalvaluesofdistanceversusheightbythetrajectoryequation,it

    ispossibletotestthegravityfieldbehaviorofthemodel.Notethat,withaspecifiedlaunchvelocityandlaunchangle,thetargettrajectoryisindependentofthemass.Whensettingthethrustofthemodelto0,theinitialvelocitytoVandthelaunchelevationangleto,thetheoreticalandsimulatedtrajectoriesmustmatch.ForaninitialvelocityofV0.91km/s(3,000feet/s)andalaunchangleof45,theoreticalandsimulationresultsareillustratedinFig.23,whichshowsthattheymatchexactly.

    Figure23. TargetTrajectorywithaLaunchSpeedof0.91km/s(3,000feet/s)andLaunchAngleof45.

    Figures24and25showthetargettrajectorieswithinitialvelocitiesofV1.83km/s(6,000feet/s)andV7.32km/s(24,000feet/s),respectively,whilekeepingthelaunchangle45.Insummary,Figures23,24,and25showthatthetargettrajectoryinthemodelsgravityfieldyieldsaccurateresultsindicatingthatthesimulationcurvesareexactlythesameasthecurvesplottedusing(2-8).Velocitiesof3,000,6,000and24,000feet/sarechosentocomparegravityfieldmodelingwiththefindingsgivenin[Ref.8:pp.225233].

    13

  • 7/28/2019 04Sep_Uzun

    36/163

    Figure24.

    Target

    Trajectory

    with

    aLaunch

    Speed

    of

    1.83

    km/s

    (6,000

    feet/s)

    and

    LaunchAngleof45.

    Figure25. TargetTrajectorywithaLaunchSpeedof7.32km/s(24,000feet/s)andLaunchAngleof45.

    D. TARGETVELOCITYREQUIREMENTSTherequiredvelocity(inms)tohitatargetataspecifieddistancealongthe

    Earthssurfaceisgivenby[Ref.8:p.242]V GM(1cos)

    r0cos[(r0cos /re)cos()]14

    (2-10)

  • 7/28/2019 04Sep_Uzun

    37/163

    (2-11)

    wherereistheradiusoftheEarth(inm)andthetotalcentralangletraveled(inrad)canbecalculatedas[Ref.8:p.241]

    dre

    wheredisthespecifieddistance(inm)alongtheEarthssurfacetoaccomplishthehit.ItisassumedthattheICBMistobelaunchedataninitialvelocityofVfromsea

    level.GiventhedistanceoftheICBMstargetd,itispossibletocalculatetheinitialvelocityoftheICBMusing(2-10).Figure26illustratesthevelocityrequirementsforvarioustargetdistances.Astherequireddistancetobehitincreases,therequiredvelocityofthetargetincreases.ThevelocityrequirementsfortwomajorcitieschosenfromtheEastandWestCoastsoftheUnitedStatesareillustrated.AnICBMlaunchedfromKiljumissilebase,NorthKoreahastotravel8,668kmattrueheading050tohitSanFrancisco,California,and10,771kmattrueheading020tohitWashington,D.C.Toreachthisrange,theICBMshouldbelaunchedatavelocityof6.95km/s,and7.32km/sforSanFrancisco,CaliforniaandWashington,D.C.,respectively.

    Figure26. TargetVelocityRequirementstoHitaGivenDistance.

    15

  • 7/28/2019 04Sep_Uzun

    38/163

    Notethat,whenmodelingaboostingtarget,velocityrequirementswillbeslightly

    differentsincethetargethasalreadytraveledsomegrounddistanceandaltitudeatburnout.However,theinitialvelocitylaunchmodelprovidesgoodinsightintothevelocityrequirementsofthetargettobemodeled.E. BOOSTINGTARGETMODELING

    Whentheconcernisthemidcourseorreentryphaseofanintercontinentalballisticmissile(ICBM),theinitialvelocity/launchanglemodelmayprovideanadequatebasisforsimulations.However,forboostphaseinterceptmodels,thisapproachisnolongeruseful.ICBMsthatcanthreatentheUnitedStatesburnoutinabout34minutesreachingavelocityof67km/s.Speedsrequiredforhittingtargetsatcertaindistancescanbecomputedbyusing(2-10).However,ICBMdesignisbeyondthescopeofthisresearch.Theaimistoachievearealisticboostphasetrajectoryandspeedprofileforatargetcapableofhittingthecitiesdiscussedabove.

    Inthesimulation,theboostingcapabilityismodeledbyaminimalsetofparametersincludingtotalandpropellantmassesaswellasthespecificimpulsesandstageburntimes.Generictargetmodelsareused;however,allparametersareextractedfromactualmissilespecificationsusingtheU.S.Peacekeepermissile[Ref.11].Table21illustrateshowthetargetismodeled.Thistableiscalledthedatamatrix,andthereisoneoftheseforeachtargetandmissileinthesimulation.ThetargetwiththedatamatrixshowninTable21iscapableofboostingupto6.5km/satburnoutand,iflaunchedfromKiljuMissileBase,NorthKorea,willhittheWestCoastoftheUnitedStates(specifically,SanFrancisco).ThisisathreestagetargetandthetotalmassanddimensionofeachstageisthesameastheU.S.Peacekeepermissile[Ref.11],with85%ofthetotalmassofeachstagebeingthepropellantmass.Eachstageisassumedtobeusingafuelwithaspecificimpulseof300sandburnouttimeof60s.Thetotalboostphasetakesthreeminutes.Thistargetisassumedtobecarryingapayloadof5,000lbs.

    Stage1 Stage2 Stage3 PayloadTotalMass(lb) 108,000 61,000 17,000 5,000PropellantMass(lb) 91,800 51,850 14,450 0SpecificImpulse(s) 300 300 300 0InstageBurnTime(s) 60 60 60 0

    Table21. TargetDataMatrix.16

  • 7/28/2019 04Sep_Uzun

    39/163

    Fnet T W0 T m0g0m0

    0

    1. SiloExitVelocityWhenlaunched,thetargettravelsinsidethesilo(thelengthofthesiloisthe

    lengthofthemissile).Assumingthatthetargettravelsverticallywithaconstantaccelerationduringthisphase,thetargetspeedatsiloexitv(inm/s)canbewrittenas

    evadtae

    0 (2-12)

    whereaistheconstanttargetacceleration,andeisthetimewhenthetargetexitsitssilo(ins).Inthiscase,thedistancetraveledcanbewrittenas

    e elvdtaedtae2

    0 0 (2-13)

    wherel(inm)isthetargetlength.Theaccelerationa(inms2)canalsobewrittenasa 0 0

    m0 m0 (2-14)

    whereFnetisthenetforceactingonthetarget,m0isthetargetmass(sumofthetotalmassofeachstage), T0isthethrust,W0istheweight,andg0isthegravitationalaccelerationatlaunch.Bysubstituting(2-14)into(2-13),thesiloexittimee(ins)canbefound

    as

    e lm0

    T0m0g0 (2-15)

    Bysubstituting(2-15)into(2-12),thesiloexitvelocityvcanbefoundasvT0m0g lm0

    m0 T0m0g0 (2-16)Thesimulationmodelstartswiththesiloexitvelocityastheinitialvelocityofthetarget.Forthetargetdefinition,thisvalueisapproximately18m/s.

    2. TheRocketEquationandConsequencesTheincreaseinvelocityV(inm/s)providedbyasinglestagerocketisgivenby

    therocketequation[Ref.8:p.247]as17

  • 7/28/2019 04Sep_Uzun

    40/163

    1mf

    m

    VIspgln

    wherethemassfractionmfisdefinedas[Ref.8:p.248](2-17)

    mf WpWpWs (2-18)

    whereWp(inN)isthepropellantweight,andWs(inN)isthestructuralweightincludingthenonpropellantpartofthetargetandpayload.

    Therocketequationconveysthattheachievedvelocitybyacertainrocketcanbeenhancedbyincreasingthespecificimpulse(orexhaustvelocity)and/orincreasingthemass

    fraction.

    The

    mass

    fraction

    can

    be

    increased

    by

    reducing

    the

    structural

    parts

    of

    a

    rocketotherthanthepropellantand/orreducingthepayload.

    Themostimportantconsequenceoftherocketequationisthefactthatalargermissiledoesnotnecessarilymeanafastermissile.Inordertomakeamissilefaster,weightefficiencyshouldbeincreasedoralesseramountofpayloadshouldbeused.Inthistargetmodel,85%ofmassofanystageisassumedtobethepropellant.Inreality,theactualmassfractionisalargerpercentagethanthatusedinthismodel.

    Toincreaseweightefficiency,stagingisused[Ref.8:p.249].Ithasbeendemonstratedthat,asthenumberofstagesapproachesinfinity,thetotalweightrequiredtoobtainthedesiredvelocityisminimized[Ref.8:p.251].Ithasalsobeenconcludedthatuseofthreestagesyieldsresultsveryclosetotheoptimal[Ref.8:p.251].Sincenoreasonexiststobelievethattheevolutionofpotentialtargetswillbelessthanoptimal,athreestagemodelisused.

    Inathreestagerocket,themassfractionofseparatestagescanbecalculatedbyusing

    mf,n 3in

    mp,nt,impay

    18

    (2-19)

  • 7/28/2019 04Sep_Uzun

    41/163

    V Vi

    wherenisthestagenumber,mp,n(inkg)isthestagepropellantmass,mt,i(inkg)isthestagetotalmass,andmpay(inkg)isthepayloadmass.Inagivenstage,allweightsexceptthepropellantweightofthatstageisthestructuralweight.EachofthethreemassfractionsyieldsaseparateVwherethetotalvelocitycapabilityoftheoverallsystemisgivenby

    3i1 (2-20)

    whereViisobtainedbysubstituting(2-19)into(2-17)andtheoverallincreaseinthevelocityisobtainedbysummingindividualincreasesforeachstage.

    Toprovethattheboostingtargetsimulationworkssatisfactorily,thetheoreticalspeedscomputedusingtherocketequationarecomparedtothoseofthesimulation.Toaccomplishthis,gravityfieldeffectsareremovedfromthesystemtemporarily.Table22liststhetheoreticalvaluesfrom(2-17).Computationsshowthatthetargetreachesatheoreticalspeedof1.925km/sattheendofStage1,4.811km/sattheendofStage2,and7.96km/satburnout.Thesecomputationsassumethatnogravityfieldispresentandaconstantexhaustvelocityof2943m/s(whichisaproductofthesealevelgravitationalaccelerationandthespecificimpulse)isused.

    Stage1 Stage2 Stage3StageMassFraction 0.480 0.625 0.657StageV(km/s) 1.925 2.886 3.149

    Table22. TheoreticalVelocityCapabilityofTargetModel.Thesimulationmodelcomputestheaccelerationbyevaluating(2-5).Itcontinu

    ouslyintegratestheaccelerationtocomputethevelocityandcontinuouslyintegratesvelocitytocomputethepositionofthetarget.Testrunsofthesimulationyieldedspeedsof1.928km/sattheendofStage1,4.811attheendofStage2,and7.959km/sattheendofStage3.SmallerrorsinV(maximumof3m/s)betweenthetheoreticalandthesimulationvaluesareduetothesmallinitialvelocityofthetarget(otherthanzero)andtheintegrationerror.Comparisonoftheoreticalandsimulationspeedsshowsthattheaccelerationcapabilityofthistargetmodelreflectsthetheorysatisfactorily.

    19

  • 7/28/2019 04Sep_Uzun

    42/163

    F. BOOSTINGTARGETINTHEGRAVITYFIELD

    Sofar,thegravityfieldperformanceofthemodelwherethetargethaszerothrustandtheboostingperformanceofthemodelinthelackofgravityfieldhavebeenvalidated.Thus,twomajorforceswereinvestigatedactingonthebodyindependently.Inthelightoftestsandfindings,itispossibletoconcludethattheboostingtargetinthegravityfieldworkssatisfactorily.

    Inpractice,theoreticalspeedscannotbereachedsincetheworkisdoneagainstgravity.Byrunningthesimulationunderrealconditions,majoraspectsofthetargettrajectorywereexamined.Figures27through211areresultsofasimulationofanICBMattackfromKiljuMissileBase,NorthKoreaagainstSanFrancisco,Californiawithaninitiallaunchangleof84.Figure27isathreedimensionalillustrationoftheattackonEarthssurface.

    Figure27. 3DOverviewofanICBMAttackfromKilju-kunMissileBase,NorthKoreatoSanFrancisco,California.

    Figure28showsthetraveledheightversusgrounddistance.Thetargethitsthegroundatapproximately8,640km,reachinganapogeeofapproximately1,560km.Thisplotshowstherealisticperformanceofthetargetbyincludingthegravityfieldandrealisticthrustparameters.

    20

  • 7/28/2019 04Sep_Uzun

    43/163

    Figure28. GroundDistanceversusHeightfortheSanFranciscoAttack.Figure29showsthevelocityprofilefortheentireflight.Thetargethasreached

    avelocityofapproximately6.5km/sattheendoftheboostphase.Afterburnout,itdeceleratesduetogravityuntiltheapogeeisreached.Followedbythat,thetargetbeginstoaccelerateduetogravity.

    Figure29. VelocityversusFlightTimefortheSanFranciscoAttack.

    21

  • 7/28/2019 04Sep_Uzun

    44/163

    AcloserlookattheboostphasepartofthevelocityversusflighttimeplotinFig.

    29revealstheaccelerationprofileduetostagingasshowninFig.210.Thesimulationresultsforthisspecificrunyielded1.43km/sspeedand26kmaltitudeattheendofStage1,3.86km/sspeedand107.5kmaltitudeattheendofStage2and6.53km/sspeedand250.5kmaltitudeatburnout.Thevelocitiesreachedinsimulationarelowerthanthetheoretical(nongravity)velocities.Thetargethasauniqueaccelerationprofilecomingfromitsindividualstagethrustsandfuelconsumption.Sincefuelconsumptionandthrustareconstantduringastage,theinstageaccelerationincreasesasthefuelisconsumedandtheweightisdecreased.

    Figure210.VelocityversusFlightTimefortheSanFranciscoAttack(BoostPhaseOnly).

    Figure211illustratesthechangeinmassduringtheboostphase.Themassdecreaseslinearlyduringeachstageduetoconstantfuelconsumption.However,stagetransitionshavediscontinuities.Discontinuitiesarearesultofcanisterjettisoningattheendofthestage.Aftertheboostphase,thetargetcontinueswiththepayloadonly.

    22

  • 7/28/2019 04Sep_Uzun

    45/163

    Figure211.

    Total

    Mass

    versus

    Flight

    Time

    for

    the

    San

    Francisco

    Attack

    (Boost

    Phase

    Only).

    G. SUMMARYThischapterdevelopedathreedimensionalboostingtargetmodel.Equationsre

    gardinggravityfieldandthrustwereusedtoconstructatheoreticalbasisforthismodel.Later,thesimulationwasrunmanytimesfordifferentcasesinordertocomparethesimulationresultswiththetheoreticalvalues.Alltestsshowedthat,undergivenassumptions,the3Dtargetmodelworkssatisfactorily.Thisisanimportantstepfordevelopingtheboostphaseinterceptsimulation.Thesimulationwasrununderrealisticconditionsinanexampleofanintercontinentalattack,anddatawerecollected.Theresultinggraphsprovidedanunderstandingoftheboostandtheotherphasesoftheattack.Thenextstepistoexaminethemissilecharacteristics.

    23

  • 7/28/2019 04Sep_Uzun

    46/163

    THISPAGEINTENTIONALLYLEFTBLANK

    24

  • 7/28/2019 04Sep_Uzun

    47/163

    where T(inN)isthethrustcomponentalongthedirectionofvelocityvectorv (inm/s)vand T(inN)isthethrustcomponentperpendiculartothevelocityvectorv.Theoverallp

    III. INTERCEPTORMISSILEMODELINGInthischapter,athreedimensionalmultistageinterceptormissilemodelthat

    operatesinEarthsgravityfieldisdeveloped.Theboostinginterceptoriscapableofinterceptingamultistageboostingtargetwithintheboostphasewithaminimumlateralaccelerationandsmallmissdistance.Below,thebasicdefinitionsandassumptionsaregivenalongwithadescriptionofthemissileguidanceanddynamics.A. BASICDEFINITIONSANDASSUMPTIONS

    Thebasicrulesusedtodevelopthetargetmodelalsoapplytotheinterceptormis-

    silemodel.Themissileoperatesundertwomajorforcevectors,thethrustT(inN),and

    theweightW(inN).TheweightvectorWalwaysactsinthedirectiontowardsthecen-

    teroftheEarthsimilartothetargetmodel.ThethrustvectorTisalsoalignedwiththevelocityvectorwiththeexceptionthatitsdirectionismodifiedtoobtaintheguidingforce

    (lateralacceleration).Inthiscase,thenetforcevectorFnetactingonthebodycanbewrittenasEquationChapter3Section1

    FnetTvTpW (3-1)

    magnitudeofthetwothrustcomponentsparallelandperpendiculartothevelocityvector

    isalwaysequaltothetotalthrustTprovidedbytherocketengine.Otherdefinitionsandassumptionsusedforthetargetmodelalsoapplytothemissilemodel.B. BOOSTINGMISSILEMODELING

    FortherealistictargetmodeldevelopedinChapterII,atargetdesigncapableofobtainingapproximately6.5km/satburnoutwaspresented.ItwasshownthatthistargetdesigncanhittheWestCoastoftheUnitedStates.Amissilecapableofinterceptingthistargethasbeendesigned.Velocitiesrequiredforthistypeofinterceptaregreaterthantheballistictargetvelocityasdetailedbelow.

    25

  • 7/28/2019 04Sep_Uzun

    48/163

    Themissiledesignstartswiththesamesetofparametersaswereusedtodefine

    thetargetboostingcapability;however,thedesignismoreefficientandhasasmallerpayload.Table31summarizesthemissileparametersusedhere.ThisisathreestagemissilehavingtotalmassesanddimensionsthesameastheU.S.Peacekeepermissile[Ref.11];however,95%ofthemassofeachstageisassumedtobethepropellantmass.Eachstageusesafuelwithaspecificimpulseof300sandburntimeof60s.Thetotalboostphasetakesthreeminutes.Thismissilecarriesapayloadof1500lbs.Notethatthepayloadoftheinterceptormissileisthekillvehicle.Theobjectiveofthemissileistocarrythekillvehicletoanoptimalpositioninspacetoallowittocompletetheintercept.

    Stage1 Stage2 Stage3 PayloadTotalMass(lb) 108,000 61,000 17,000 1,500PropellantMass(lb) 102,600 57,950 16,150 0SpecificImpulse(s) 300 300 300 0InstageBurnTime(s) 60 60 60 0

    Table31. MissileDataMatrix.Thesameprinciplesusedinthedesignofthetargetareused.Toachieveamore

    efficientperformance,massfractionsareimprovedandthepayloadisreduced.Thesamelaunchelevationangleof84isusedforbettercomparisonwiththetargetperformance.

    Testrunsofthesimulationyielded1.845km/sattheendofStage1,5.17km/sattheendofStage2,and10.31km/sattheendofstage3.Thesevelocitiesareobtainedwithouttheguidanceforceappliedandreflectthefreeflightperformanceofthemissile.Whenguided,theenergyusedtoguidethemissiletrajectoryeffectivelyreducestheobtainablevelocities.C. MISSILEGUIDANCE

    Proportionalnavigationisusedformissileguidance.Theproportionalnavigationisoptimalforconstantvelocitytargets[Ref.12].Itisemphasizedherethattheclassicalproportionalnavigationguidancelawissuboptimalfortheboostphaseintercepttypeofapplication.Againstacceleratingtargets,ithasbeenshownthatsaturationisalwaysreachednearinterception[Ref.13];however,theterminalphaseoftheinterceptisout

    26

  • 7/28/2019 04Sep_Uzun

    49/163

    LOSratevector

    tionvectornc.TheflightcontrolsystemusesthecommandedlateralaccelerationtochangetheattitudeofthemissileresultingintheachievedlateralaccelerationvectornL.T eac eve atera acce erat onvectornL s ntegrate a ongw t t eot eracce era-t onsact ngont esystemresu t ng nanewm ss epos t onrm.

    t

    sidethescopeofthisresearch.Themissilesobjectiveistocarrythekillvehicletoasuitablepositiontoterminatetheintercept.Althoughtheterminalphase(killvehicle)wasnotinvestigated,themissilefliesuntilitpassesthetargetinordertomeasurethemissdistanceandassesstheeffectivenessoftheguidancealgorithm.

    Figure31showsablockdiagramofmissileprocessing.Themissiletakesthe

    positionvectorofthetargetrandcomputesthelineofsight(LOS)vectorbysub

    tractingitsownpositionvectorrm.TheLOSvector isdifferentiatedtocalculatethe

    andclosingvelocityVc.Thecalculatedparameters andVcaremultipliedbythenavigationcoefficientN tocalculatethecommandedlateralaccelera

    Figure31. MissileBlockDiagram.Forproportionalnavigation,thecommandedaccelerationisappliedperpendicular

    totheLOSandgiveninscalarformas[Ref.8:p.12]ncNVc.

    27(3-2)

  • 7/28/2019 04Sep_Uzun

    50/163

    rtrm

    previous previous

    Vc . (3-6)

    ProportionalnavigationreliesontheLOSbeingconstantortheLOSratebeingzero.Inotherwords,themissileandthetargetareonacollisiontriangle.TheseekersusedintacticalmissilesusuallyprovidetheLOSrate.Themissiledesigninvestigatedcomputesitsownguidancecommandsusingthepositiondatasuppliedbyoffboardsensorsviaadatalink.

    TheinstantaneousLOSvectoriscomputedfirstas

    (3-3)TheinstantaneousLOSvectorisnormalizedtoobtaintheLOSunitvector.In

    thenextsampletime,thenewLOSiscomputedbyusing(3-3)andalsoconvertedtotheunitvector.VectorsubtractionofthesetwounitvectorsisthedirectioninwhichtheaccelerationcommandisappliedandisalwaysperpendiculartotheinstantaneousLOS.Afternormalizingtheaccelerationcommand,theunitvectoris

    nc (3-4)wherencistheunitaccelerationcommandvectorperpendiculartotheLOS,isinstantaneousunitLOSvector,andpreviousisthepreviousunitLOSvector.Notethatthisisonlythedirectionoftheaccelerationcommandtobeappliedforguidance.ThemagnitudeoftheLOSratecanbeobtainedby

    (3-5)

    twheretisthesimulationsteptime.

    TheclosingvelocityVcisalsorequiredandcomputedasarangerate.Therange

    betweenthemissileandtargetisthemagnitudeoftheLOSvector.Thismagnitudeiscalculatedforeachsteptimeofthesimulationanddifferentiated.Dividingthedifferenceintherangebythesimulationsteptimeyieldsclosingvelocityas

    t

    28

  • 7/28/2019 04Sep_Uzun

    51/163

    nc c cnNV

    wherev istheunitvelocityvector.Next,theaccelerationvectorcomponentparallelto

    nc|| nccos

    nc||vnc||

    ncncnc||. (3-11)

    Themagnitudeofthecommandedaccelerationiscomputedbymultiplyingthenavigationratio(unitlessconstant),theclosingvelocity(scalar),andmagnitudeoftheLOSrate.Multiplyingthemagnitudeoftheaccelerationcommandwiththeaccelerationcommandunitvectoryieldsthecommandedaccelerationcommandvector.Thiscanbewrittenas

    (3-7)

    Forazerolagsystem,theachievedaccelerationnLisalwaysequaltothecom-mandedaccelerationncand,forthemoment,itisassumedthatthemissiledynamicsarefreeoflags.

    ThecomputedaccelerationcommandisperpendiculartotheLOS;however,missileaccelerationcommandscanonlybeappliedperpendiculartothemissileattitudeorthevelocityvector.Thus,onlythecommandedaccelerationcomponentperpendiculartothevelocityvectorcontributestothemissileguidance.

    Toignoretheparallelcomponentandcalculatetheperpendicularcomponent,thefollowingprocedureisused.First,theanglebetweenthecommandedaccelerationvectorandthevelocityvectoriscalculatedas

    cos1(ncv) (3-8)

    thevelocityvectorisobtainedas

    (3-9)Theaccelerationvectorparalleltothevelocityvectorcanbecalculatedbymulti

    plyingthevelocityunitvectorandthemagnitudeofthecommandedaccelerationvectorcomponentparalleltothevelocityvectoras

    (3-10)Theaccelerationvectorcomponentperpendiculartothevelocityvectorisob

    tainedbysubtractingtheparallelcomponentfromtheoriginalaccelerationvectoras

    29

  • 7/28/2019 04Sep_Uzun

    52/163

    Tp

    nc

    mm

    Thecommandedaccelerationvectornccanbeappliedbyvectoringthethrust(movementofthenozzle),controlsurfaces,orlateralthrustersattheCGofthemissile.Therequiredthrustcomponentperpendiculartothevelocityvectoristhen

    (3-12)

    wheremmisthemissilemassatthecurrentsampletime.

    From(3-1),themagnitudeofthethrustcomponentalongthevelocityvectoris 2 2

    Tv TTp. (3-13)1. GuidanceSystemAgainstConstantSpeedTargetToensurethattheproportionalnavigationguidancesystemisworkingproperly,

    constantspeedmissileandtargettestscenariosareusedwiththegravityfieldandthrustdeactivated.Thetargetvelocitywassetto6.5km/sandthemissilevelocityto10km/s.Thetargetandthemissilewerelaunchedinageometrythatintroducesaheadingerrorinordertoexaminetheaccelerationcommandsgenerated.RepresentativetargetandmissileflightsduringthetestrunareshowninFig.32.

    Figure32. 3DOverviewofaTypicalInterceptfortheConstantSpeedScenario.Figure33(a)showstheheightoftheinterceptormissileandthetargetasafunc

    tionofthegrounddistance.Thetargetandthemissilereachanapproximatealtitudeof30

  • 7/28/2019 04Sep_Uzun

    53/163

    145kmatthetimeoftheintercept.Themissiletravelsanapproximategrounddistanceof420kmwhilethetargettravels250kmsincethemissileisfaster.Figure33(b)showsthevelocityofthetargetandmissileasafunctionoftheflighttime.Figure33(b)revealsthatthemissilespeeddoesnotchange,illustratingthatthevelocityvectorandaccelerationcommandsareorthogonal.

    (a) (b)Figure33 TheTargetandtheMissileFlightCharacteristicsfortheConstantSpeed

    Scenario:(a)GroundDistanceversusHeight,(b)VelocityversusFlightTime.Figure34(a)showstheLOSmagnitudebetweenthemissileandthetarget.Fig

    ure34(b)

    shows

    the

    closing

    velocity

    as

    afunction

    of

    time.

    From

    Fig.

    34(a),

    the

    range

    betweenthemissileandthetargetdecreaseslinearlysincetheyareconstantspeedbodies.Figure34(b)confirmsthatasthecollisioncourseisestablished,closurevelocitystabilizesaswellastheLOS.

    31

  • 7/28/2019 04Sep_Uzun

    54/163

    (a) (b)Figure34. TheTargetandtheMissileClosureCharacteristicsfortheConstantSpeed

    Scenario:(a)RangeversusFlightTime,(b)ClosingVelocityversusFlightTime.Figures35(a)andFig.35(b)showthemissilelateralaccelerationandthemis

    silelateraldivertresults,whicharetypical[Ref.8:pp.19-23].Theheadingerrorintroducedatthebeginningofthesimulationcausestheinitialaccelerationcommandandcorrespondinglateraldivert.Asthecollisioncourseisestablished,themissileaccelerationdecreasestozeroandthemissilehitsthetarget.Thecollecteddataafterthesimulationfinishedindicatesthatthetargetandmissiletraveledgroundrangesof248kmand419km,respectively.Theintercepttimewas0.755minutes.Themissdistancewasunder1meter,andthefinallateraldivertwas1023m/s.

    (a) (b)Figure35. MissileGuidanceCharacteristicsfortheConstantSpeedScenario:(a)

    MissileLateralAcceleration,(b)MissileLateralDivert.32

  • 7/28/2019 04Sep_Uzun

    55/163

    Insummary,theconstantspeedtargettestsshowedthattheproportionalnaviga

    tionimplementationinthismissiledesignworkssatisfactorily.2. GuidanceSystemAgainstICBMModelWithgravityandthrustactivated,themissilemodeldevelopedhereandthetarget

    modeldevelopedinChapterIIaresimulatedtogethertoillustrateaninterception.Themajordifferenceinthistypeofinterceptisthelargeaccelerationsprovidedbyboththemissileandthetargetandfluctuationsinaccelerationduetostaging.

    Figure36illustratesa3Doverviewoftheinterceptfortheacceleratingtarget.AsseeninFig.36,thetrajectoriesofboththemissileandthetargetarenolongerstraightlineswhencomparedtoFig.32.

    Figure36. 3DOverviewoftheInterceptfortheAcceleratingTarget.Figure37showstheaccelerationprofileofthetarget;onlyaccelerationperpen

    diculartotheLOSisrelevantandplotted.TargetaccelerationperpendiculartoLOSisalsoknownastargetmaneuver.Althoughthetargetisnotmaneuveringdeliberately,accelerationduetorocketenginesandinterceptgeometrycausesthemissiletoencounteratargetmaneuverupto5g.Abiggerproblemisthetargetmaneuverdiscontinuitiesduringstagechanges.Allthesefactorscauseunexpectedguidancecommandsasshowninthefollowingsections.

    33

  • 7/28/2019 04Sep_Uzun

    56/163

    Stage1 Stage2 Stage3

    Figure37. TargetManeuverduringtheIntercept.Figure38showsplotsofgrounddistanceversusheightandflighttimeversus

    velocityforthemissileandthetarget.Thetargetandthemissilereachanapproximatealtitudeof120kmatthetimeoftheintercept.Themissileandthetargettravelanapproximategrounddistanceof400kmand300km,respectively.InFig.38(b),sincethemissileissuperiortothetargetincapability,itreacheshighervelocities.Also,Fig.38(b)illustratesthevelocityprofileduetostaging.Sincethemissileandthetargetarelaunchedsynchronously,velocitydiscontinuitiesoccuratthesametime.

    StageChange

    (a) (b)Figure38 TheTargetandtheMissileFlightCharacteristicsfortheAcceleratingTar

    get:(a)GroundDistanceversusHeight,(b)VelocityversusFlightTime.34

  • 7/28/2019 04Sep_Uzun

    57/163

    Figure39illustratesdistanceandclosurevelocityduringtheintercept.Asshown

    inFig.39(a),thechangeinthedistanceisnolongerlinearsincebothbodiesareaccelerating.Fig.39(b)showstheuniqueclosingvelocityprofileduetoaccelerationandpositionofthemissileandthetarget.Notethattheclosingvelocityisapproximately10km/satthetimeofhit.Thissituationcannotbeseeninconventionalinterceptcasesandisachallengingaspectoftheboostphaseballisticmissileinterceptproblem.

    StageChange

    (a) (b)Figure39. TheTargetandtheMissileClosureCharacteristicsfortheAccelerating

    Target:(a)MissileTargetDistanceversusFlightTime,(b)MissileTargetClosureVelocityversusFlightTime.

    Figure310illustratesthelateralaccelerationandlateraldivertversusflighttime.Figure310(a)showsthatmissilelateralaccelerationcommandsareusuallyunder0.4gandincreaseupto1.4gattheterminalphase.Figure310(b)showsthatthelateraldivertofthemissileincreasesupto250m/s.Bothresultsarehighlydependentontheinitialheadingerrorbetweenthemissileandthetargetatthetimeoflaunch.Itcanbeconcludedthatbothresultsarereasonableandcanbeachievedbythemissileflightcontrolsystem.

    35

  • 7/28/2019 04Sep_Uzun

    58/163

    (a) (b)Figure310. MissileGuidanceCharacteristicsfortheAcceleratingTarget:(a)Missile

    LateralAcceleration,(b)MissileLateralDivert.Insummary,inthissimulation,thetargetandmissiletraveledagrounddistance

    of294kmand407km,respectively.Intercepttimewas2.4766minutes.Missdistanceandtotallateraldivertwere1.3mand248.3m/s,respectively.D. FLIGHTCONTROLSYSTEM

    Sofar,themissileguidancesystemisperfect.Inotherwords,theachievedaccelerationnLisalwaysequaltothecommandedaccelerationnc.Thistypeofmodelisknownasazerolagguidancesystem.Sincethecontrolsystemcanrespondtoaccelerationinputsimmediately,eventhoughtheaccelerationlevelsorlateraldivertsdiffer,themissdistancewillalwaysbeequaltozero[Ref.8:p.32].

    Guidancesystemshavelags(ordelays)intheirresponse.Inthissection,themodelisexpandedtosupportapracticalflightsystemcontrolresponse.Thesystemresponseismodeledasannthordertransferfunction(Laplaceform).Althoughitisverycommonpracticetomodelmissiledynamicsasa3rdordertransferfunction[Ref.8:p.98],themodeldescribedhereisabletosupportanyorder.Itshouldbeemphasizedthatthemechanicalmodelingofthecontrolsystemdynamicsarebeyondthescopeofthisresearch.Theobjectivewastomodelthesystemresponsegiventhenthordertransferfunctiontimeconstants.Forthisreason,arbitrarytimeconstantsareused,whichcaneasilybereplacedbyrealisticonestomodelaspecificmissile.

    36

  • 7/28/2019 04Sep_Uzun

    59/163

    bs cs

    nc T Ts s Ts1

    Ifthesystemlagismodeledasa1stordertransferfunction,therelationbetweencommandedandachievedaccelerationcanbewrittenas[Ref.8:p.32]

    nLnc 1 (3-14)1sT

    wheresisthecomplexfrequencyandTisthesystemtimeconstant.Thegeneralformofannthorderallpoletransferfunctioniswrittenas

    nLnc n n1

    a...ds2esf (3-15)

    wherea,b,c,,fareconstantscharacterizingthesystempoles.The3rdordersingletimeconstantflightcontrolsystemusedwithinthemodelhas

    thetransferfunctionnL 1

    3 23

    27 32 . (3-16)

    Figure311showshowthesystemlagaffectsthecommandedversusachievedaccelerationforatimeconstantofT1s.Figure311(a)showsncandnLforthecompleteflight,andFig.311(b)showsacloseupviewofthediscontinuities.Notethatthesystemresponselagsbehindthecontrolinputbecausethemissilemodelisnolongerazerolagmodel.Thisimpliesthatevenifaccuratetargetpositiondataisprovided,themissilewillexperiencesomemissdistance.

    (a) (b)Figure311.(a)ControlSystemLag,(b)Detail.

    37

  • 7/28/2019 04Sep_Uzun

    60/163

    Toevaluatethemissdistance,the3rdordersingletimeconstantsystemwastested

    againstaconstantspeedtarget.Toexcludeothereffects,thegravityandthethrustweredeactivatedinthesimulation.Themissileandtargetarelaunchedsimultaneouslywithvelocitiesof10km/sand6.5km/s,respectively.Inthisscenario,theflighttimetfisapproximately45seconds.TimeconstantTisvariedfrom0to45secondsin0.1secondincrements.Missdistancedatawascollectedforeachrun.Sincethedirectionofthemissisnotofconcern,themissdistancemeasurementsarethemagnitudeofthedistancevectoratthetimeofmiss.TestrunsresultedinthecurveshowninFig.312,whichisnormalizedwithrespecttothemaximumvaluesofeachaxes.

    Figure312.MissDistanceversusTimeConstantfortheConstantSpeedScenario.FromFig.312,ifthetimeconstantislessthanonetenthofthetotalflighttime,

    themissdistanceisnegligibleagainstaconstantspeedtarget.Asthetimeconstantincreases,themissdistancereachescertainpeakswhilecontinuingtoincrease.Thisresultconformstotheresultsreportedintheliterature[Ref.8:pp.31-50]withsomedifferencesinthenotation.Thisconcludestheeffortsinthedevelopmentofarealistictargetmissilemodel,whichwillbethebasisfortheremainingdiscussioninthisthesis.

    38

  • 7/28/2019 04Sep_Uzun

    61/163

    E. MISSILEREQUIREMENTS

    Toexaminethemissilerequirements,threedifferentmissilemodelsthathavedifferentcapabilitiesaredefined.Thefirstonehasavelocitycapabilitysimilartothatofthetarget;thesecondandthethirdaresuperiormissiles.Table32summarizestheparametersdefiningthesemissilemodels.

    StagePropellantMassFraction Payload(lb) VatBurnout(km/s)

    (%ofTotalMass)GenericMissile1 85% 5,000 ~6.5GenericMissile2 90% 3,250 ~8GenericMissile3 95% 1,500 ~10

    Table32. SummaryofGenericMissileSpecifications.GiventhemissilecapabilitiesasinTable32,theeffectofthemissilelocationon

    theflighttimewasinvestigated.Giventheobjectivethatthetargetshouldbeinterceptedinthefirstthreeminutes,itispossibletousethesimulationtodeterminethemaximumdistancebetweenthemissileandthetargetlaunchsite.Thebestcasescenariohappenswhenthemissileislocatedintheattackdirectionofthetarget,andthelaunchdelayequalszero.Usually,thissituationcannotbefulfilledduetoterritoriallimitations,anddetection/decisionrequirements;however,examinationofflighttimeunderthesecircumstancesshowsthetheoreticallimitationsofpossiblemissilesitelocations.

    Thesimulationwasusedtoexamineseveralscenarioswheremissileswithdifferentcapabilitieswerelocatedindifferentdistancesfromthetargetintheattackdirection.Foreachcase,theresultingintercepttimewasrecordedasillustratedinFig.313.Sincetheinterceptionsexceedingthe3minutelimit(totalboostphase)areconsideredfailures,thecorrespondingmissiletargetsitedistancewhereeachcurvecrossesthe3minuteintercepttimelinecanbeinterpretedasthelimitationtothemissilelaunchsitelocation.Figure313demonstratesthat,evenintheattackdirection,GM1,GM2andGM3canneverbelocatedmorethan941,1038and1140kmfromthetargetlaunchsite,respectively.

    39

  • 7/28/2019 04Sep_Uzun

    62/163

    Figure313.LimitationtotheMissileLaunchSiteDistancefromtheTargetLaunchSite:MissileDirectlyatAttackDirection,NoLaunchDelay.Themissilemaynotbelocateddirectlyattheattackdirection.Asnotedinthe

    targetmodeling,anattacktargetingSanFrancisco,CaliforniaorWashington,D.C.fromthechosentargetlaunchsiteshouldbeatanapproximatetrueheadingof50and20,respectively.ForthescenariowherethetargetislaunchedfromNorthKorea,thesebearingsremaininsidetheterritoryofRussianFederation.Thisscenarioforcesthelocationofthe

    missile

    at

    easterly

    bearings

    in

    the

    Sea

    of

    Japan.

    Figure

    314

    illustrates

    the

    missile

    lo

    cationandtheprobableattackdirections.Thefigureshowsthatanyinterceptattemptmayverylikelyencounterangularerrorsof40to70.Thefollowinginvestigationassumestheworstcasescenario.IftheattackisinthedirectionofWashington,D.C.andthemissileislocatedeastofthetargetlaunchsite,themissilelocationisseverelyconstrainedbecauseoftheangulardeviationintroduced.

    40

  • 7/28/2019 04Sep_Uzun

    63/163

    Washington,DC

    70 SanFrancisco, CA40 Missile

    Figure314.PotentialAttackDirectionsandtheMissileLocation.Figure315illustratestheimpactofa70angularerrorbetweenthemissilepositionandtheattackdirection.Byusingthecurvescorrespondingtodifferentmissiles,itcanbeconcludedthatGM1,GM2andGM3canneverbelocatedmorethan325,477and593kmfromthetargetlaunchsite,respectively.Figure315alsohighlightsthefactthatthemoresuperiorthemissile,themoreflexibilitypossiblewhenpositioningthemissile.BycomparingFig.315withFig.313,theintroducedangularerrorapproximatelyhalvedtherequireddistanceforGM3whileitcausedapproximatelyonethirddegradationforGM1.Thisshowsthatthesuperiormissilecantoleratelocationandangulardeviationsbetter.

    41

  • 7/28/2019 04Sep_Uzun

    64/163

    Figure315.LimitationtotheMissileLaunchSiteDistancefromtheTargetLaunchSite:70AngularError,NoLaunchDelay.Anotherimportantfactoristhelaunchdelay.Followingthetargetlaunch,thede

    tectionandthedecisionprocesstointerceptthemissiletakesplace.Thismissilelaunchdelayalsointroducesadditionallimitations.Figure316illustratestheeffectoflaunchdelayforGM1forthreedifferentmissiletotargetdistanceswhenthemissileislocatedexactlyintheattackdirection.Asthedistancefromthetargetincreases,tolerancetolaunch

    delay

    decreases.

    For

    example,

    if

    GM-1

    is

    located

    at

    adistance

    of

    700

    km

    from

    the

    targetlaunchsite,anymissilelaunchattemptwithadelayofmorethanapproximately32swillfail.

    42

  • 7/28/2019 04Sep_Uzun

    65/163

    Figure316.LimitationtotheTolerableLaunchDelayforGM1LocatedatAttackDirection.ReturningtotheSanFranciscoattack,itispossibletoinvestigatethelimitations

    intermsoflocationandlaunchdelay.ForGM3,theeffectofmissilelocationcanbeillustratedasshowninFig.317.ToaccomplishaboostphaseinterceptwithGM3,anattacktargetingSanFrancisco,Californiarequiresamissilelocationoflessthan992kmtotheeastofthetargetlaunchsite

    Figure317.LimitationtotheMissileLaunchSiteDistancefromtheTargetLaunchSite:40AngularError,GM3,SanFranciscoAttack.

    43

  • 7/28/2019 04Sep_Uzun

    66/163

    Figure318showsthetolerablelaunchdelayasafunctionofthemissileto

    targetdistanceatlaunch.Forthisspecificscenario,itiseasilypossibletocalculatethemaximumtolerablelaunchdelayforagivendistancetothelaunchsite.Forexample,assumeadeployedcruisercarryingthemissiletotheSeaofJapanatalocation600kmeastoftargetlaunchsite.ByusingFig.318,itispossibletocalculatethatthemissilemustbelaunchedwithinapproximately31sfollowingthetargetlaunch.

    Figure318.LimitationtotheTolerableLaunchDelay:40AngularError,GM3,SanFranciscoAttack.

    Theinvestigationofmissilerequirementsyieldedthefollowingresults.Givenasuitableposition(inangleanddistance)andlaunchangles,allpotentialmissilesdefinedinTable3-2accomplishedtheboostphaseinterceptwithinreasonablemissdistanceandlateraldivertvalues.Thecapabilityofthemissilebecameimportantwhenpositionandlaunchdelaydeviationswereintroduced.Generally,themorecapablethemissile,themoretolerableitistolessthanidealcircumstances.Thepositionaladvantagewasthebestwhenthemissilewasdirectlyintheattackdirectionandwithazerolaunchdelay.Asthedeviationsfromtheidealwereintroduced,locationandlaunchdelaytolerancesdecayedquickly.Itwasshownthat,givenanangulardeviationand/oracceptablelaunchdelay,themaximumdistancethatthemissilecanbelocatedcouldbeestimatedbyusingthesimulation.

    44

  • 7/28/2019 04Sep_Uzun

    67/163

    F. SUMMARY

    Thischapterdevelopedamultistage,boostingmissilecapableofinterceptingarealistictargetmodeldevelopedinChapterII.Theproportionalnavigationin3Dwasimplemented.Testrunsshowedthattheproportionalnavigationalgorithmworkedsatisfactorilyagainstconstantspeedandrealistictargets.Alsodevelopedwasanonzerolagmodeldefinedbya3rdordertransferfunction.Thesystemlagagainsttheconstantspeedtargetmodelwastestedandconfirmedthetheory.Themissilerequirementswerebrieflyinvestigatedintermsofcapabilityandposition.Theeffectsofdistanceandangulardeviationsaswellasthelaunchdelayweredemonstrated.Thisconcludedthedevelopmentofthetargetmissilemodel,whichisthebasisfortheworkinthefollowingchapters.Sofar,physicalcharacteristicsofthetargetandthemissilemotionwereexamined.Thenextstepistodeterminetargetcharacteristicsthataffectthesensorsdetectionandprocessingcapability.

    45

  • 7/28/2019 04Sep_Uzun

    68/163

    THISPAGEINTENTIONALLYLEFTBLANK

    46

  • 7/28/2019 04Sep_Uzun

    69/163

    IV. RADARCROSSSECTIONANDIRENERGYRADIATION

    PREDICTION

    Inthefirstpartofthischapter,themonostaticradarcrosssection(RCS)ofathreestagegenericintercontinentalballisticmissile(ICBM)ispredicted.Thisisaccomplishedbymodelingthephysicalshapeofeachstagebyusingfacets.Asoftwareprogramwasthenusedtocalculatetheresultsfordifferentaspectangles.Allseparatestagesofthetargetaremodeledtoquantifythediscontinuitiesbetweenstages.Toinvestigatetheeffectoffrequency,theRCSispredictedforLBand(1.5GHz),SBand(3GHz),CBand(6GHz),andXBand(10GHz).

    TheinvestigationofthemonostaticRCSiscrucialsincetheaccuracyoftheRFsensortrackisdirectlyproportionaltothebackscattercharacteristicsofthetarget.Forthetarg