Top Banner
Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland [email protected] ENGI 8673 Subsea Pipeline Engineering Lecture 04: Pipeline Flow and Thermal Analysis
21

04 - Pipeline Flow and Thermal Analysis

Nov 18, 2014

Download

Documents

flowliner

Pipeline Course
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 04 - Pipeline Flow and Thermal Analysis

Shawn Kenny, Ph.D., P.Eng.Assistant ProfessorFaculty of Engineering and Applied ScienceMemorial University of [email protected]

ENGI 8673 Subsea Pipeline Engineering

Lecture 04: Pipeline Flow and Thermal Analysis

Page 2: 04 - Pipeline Flow and Thermal Analysis

2 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Lecture 04 Objective

To provide an overview heat transfer mechanisms and simple engineering tool to assess thermal performance in context of pipeline hydraulics

Page 3: 04 - Pipeline Flow and Thermal Analysis

3 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Heat Transfer MechanismsConduction

Direct contact•

Relatively inefficient

ConvectionFlow or circulation•

Natural or forced (advection)

RadiationElectromagnetic energyEmissivity•

Ability to absorb and radiate energy

Page 4: 04 - Pipeline Flow and Thermal Analysis

4 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Thermal EffectsFlow Assurance

Viscosity effects on pressure dropProcess facilitiesWax, asphaltene, hydrate formation

Material behaviourReduced strengthCorrosion ratesCreep

Mechanical designThermal expansionUpheaval, lateral buckling

Shut-in & start-up operationsFlow assuranceAxial walking, ratcheting

Page 5: 04 - Pipeline Flow and Thermal Analysis

5 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Liquid Hydrocarbon Viscosity

Page 6: 04 - Pipeline Flow and Thermal Analysis

6 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Heat Transfer – Conduction

Fourier LawQ ≡ heat loss per unit length (W/m)t ≡ time (s)k ≡ material thermal conductivity (W/m/K)S ≡ surface area (m2)T ≡ temperature (K)U ≡ heat transfer coefficient (W/m2-K)

S

Q k TdSt

∂= − ∇

∂ ∫Q TkAt x

Δ Δ= −

Δ Δ

Page 7: 04 - Pipeline Flow and Thermal Analysis

7 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Heat Transfer – Conduction (cont.)

Steady State ConditionsIntegrate per unit length•

Annular layer

Temperature gradient QT

r dr, ΔT

Q TkAt x

∂ ∂= −

∂ ∂Q UA T⇒ = Δ

2

1

2

ln

k TQrr

π Δ=

⎛ ⎞⎜ ⎟⎝ ⎠

2

1

1 2ln

kU A rr r

r

π⇒ = =⎛ ⎞⎜ ⎟⎝ ⎠

Page 8: 04 - Pipeline Flow and Thermal Analysis

8 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Heat Transfer – Conduction (cont.)

Multiple Layer SystemHeat transfer coefficient

Q UA T= Δ

1 2 3

1 11 1 1TU

RU U U

= =+ +∑

1 2 2

1 2 2

TA TQ r r r

k k k

Δ=Δ Δ Δ

+ + +…

Page 9: 04 - Pipeline Flow and Thermal Analysis

9 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Heat Transfer – Conduction (cont.)

Buried Pipelineri ≡ inside pipe radiusro ≡ outside pipe

radius in contact with the soil

21

1 1

cosh ln 1

soil soilburied

i i

oo o

k kUr rH H H

r r r

⎡ ⎤⎢ ⎥⎢ ⎥= =⎢ ⎥⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎜ ⎟⎝ ⎠⎝ ⎠

Page 10: 04 - Pipeline Flow and Thermal Analysis

10 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Thermal Conductivity Parameters

Common Materials (W/m/K)Steel 45Concrete 1.2Soil 1.0–2.0Neoprene 0.26PP syntactic 0.15–0.20PU syntactic 0.10–0.15PU light foam 0.02–0.03

Page 11: 04 - Pipeline Flow and Thermal Analysis

11 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Heat Transfer Coefficient, U (W/m2-K)

Non-insulated Single Wall25 W/m2KBurial decrease U by ~1/3

Pipeline Bundle≈ 1.5–2.5

Insulated Pipe-in-Pipe≈ 3.0.–6.0

Insulated Pipe-in-Pipe≈ 0.5–1.0 Ref: McKechnie and Hayes (2003)

Ref: Geertsenand Ofredi (2000)

Page 12: 04 - Pipeline Flow and Thermal Analysis

12 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Steady State Thermal Profile

Parametersm – mass flow rate (kg/s)U – heat transfer coefficient (W/m2-K)Cp – specific heat capacity (J/kg-K)•

Oil ≡

1800 and Gas ≡

2500

T0 – ambient temperature (°C)T1 – pipeline temperature at section 1 (°C)T2 – pipeline temperature at section 2 (°C)

( )-

= - +2 1 0 0p

U D dxmCT T T e Tπ

[ ]ρ=m Q

Page 13: 04 - Pipeline Flow and Thermal Analysis

13 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Design Considerations

Ref: Maksoud (2004)

Page 14: 04 - Pipeline Flow and Thermal Analysis

14 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Design Considerations (cont.)

Ref: Maksoud (2004)

Page 15: 04 - Pipeline Flow and Thermal Analysis

15 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Example 4-01

Calculate the heat loss coefficient (U) for an in-air, single wall, steel linepipe with no external or internal coatings.

Do = 508mmt = 12.7mmk = 45 W/m/K

22

1

451 1 3636

0.2413 0.254lnln0.2413

Wk WmKU

r m m Kmrmr

⎛ ⎞⎜ ⎟⎜ ⎟= = =⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠

Page 16: 04 - Pipeline Flow and Thermal Analysis

16 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Example 4-02

Compare heat transfer coefficientsNon-insulated pipeline versus pipeline with a 50mm concrete coating

Page 17: 04 - Pipeline Flow and Thermal Analysis

17 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Example 4-03Calculate the heat loss coefficient (U) for the following pipe-in-pipe system

Inner Pipe•

Do = 406.4mm

t = 17.5mm•

k = 45 W/m/K

Polypropylene Foam•

t = 45mm

k = 0.22 W/m/KCasing•

t =12.7mm

k = 45 W/m/K

Page 18: 04 - Pipeline Flow and Thermal Analysis

18 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Example 4-03 (cont.)Example 4-03

Determine U-value for multiple layer system

DEFINED UNITS

BBL 42gal:=

INPUT PARAMETERS

Pipeline System

Nominal Outside Diameter - Inner Pipe Do 406.4mm:=

Nominal Wall Thickness - Inner Pipe t1 17.5mm:=

Conductivity - Inner Pipe k1 45 W⋅ m 1−⋅ K 1−

⋅:=

Nominal Wall Thickness - PP Foam t2 45mm:=

Conductivity - PP Foam k2 0.22W m 1−⋅ K 1−

⋅:=

Nominal Wall Thickness - Outer Pipe t3 12.7mm:=

Conductivity - Outer Pipe k3 45W m 1−⋅ K 1−

⋅:=

Page 19: 04 - Pipeline Flow and Thermal Analysis

19 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Example 4-03 (cont.)

Page 20: 04 - Pipeline Flow and Thermal Analysis

20 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

Reading List1.

Bell, J. and Geertsen, C. (2002). The McPIPETM

Extended Cooldown

System. Presentation, Deepwater Offshore Techology, 14-16 November, 20p.

[2002_Bell_McPipe_Extended_Cooldown_System.pdf]

2.

Geertsen, C. and Offredi, M. (2000). Highly Thermally Insulated and Traced Pipelines for Deepwater. 12th

Deep Offshore Technology Conference, New Orleans, USA, 13p.

[2000_Geertsen_Insulated_Traced_Deepwater_PL.pdf]

3.

Loch, K.J. (2000). Deepwater Soil Thermally Insulates Buried Flowlines. Deepwater Technology, www.pipeline.com, August 2000.

[2000_Loch_Deepwater_Soil_Insulation.pdf]

4.

Maksoud, J. (2004). Petro-Canada Investigates Flow Assurance Challenges. Offshore, pp.112-113.

[2004_Maksoud_ FA_Challenges_Petro_Canada.pdf]

Page 21: 04 - Pipeline Flow and Thermal Analysis

21 ENGI 8673 Subsea Pipeline Engineering – Lecture 04© 2008 S. Kenny, Ph.D., P.Eng.

ReferencesGeertsen, C. and Offredi, M. (2000). Highly Thermally Insulated and Traced Pipelines for Deepwater. 12th Deep Offshore Technology Conference, New Orleans, USA, 13p.Loch, K.J. (2000). Deepwater Soil Thermally Insulates Buried Flowlines. Deepwater Technology, www.pipeline.com, August 2000.Maksoud, J. (2004). Petro-Canada Investigates Flow Assurance Challenges. Offshore, pp.112-113.McKechnie, J.G. and D.T. Hayes (2003). Pipeline Insulation Performance for Long Distance Subsea Tie-backs. 14p.