Top Banner

of 23

04 mpc jbr

Jun 01, 2018

Download

Documents

VuongTrinh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/9/2019 04 mpc jbr

    1/23

    Preliminaries for Model Predictive Control course

    James B. Rawlings

    Department of Chemical and Biological EngineeringUniversity of Wisconsin–Madison

    Insitut für Systemtheorie und RegelungstechnikUniversität StuttgartStuttgart, Germany

    June 20, 2011

    Stuttgart – June 2011   MPC short course   1 / 46

    Outline

    1   Introduction

    2   Stability, equilibria, invariant sets

    3   Lyapunov function theory

    4   Disturbances and robust stability

    5   Basic MPC problem and nominal stability

    Stuttgart – June 2011   MPC short course   2 / 46

  • 8/9/2019 04 mpc jbr

    2/23

    Predictive control

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0 0

    0 0

    1 1

    1 1

    0 0

    0 0

    0 0

    1 1

    1 1

    1 1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    0

    1

    1

    1

    Measurement

    MH EstimateMPC control

    Forecast

    t   time

    Reconcile the past   Forecast the future

    sensorsy

    actuatorsu

    minu (t )

       T 0|y sp  − g (x , u )|

    2Q 

     + |u sp  − u |2R 

     dt 

    ẋ  = f  (x , u )

    x (0) = x 0   (given)

    y  = g (x , u )Stuttgart – June 2011   MPC short course   3 / 46

    State estimation

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0 00 01 11 1 0 00 00 01 11 11 1

    0

    0

    1

    1

    0

    0

    1

    1

    000111

    Measurement

    MH EstimateMPC control

    Forecast

    t  time

    Reconcile the past   Forecast the future

    sensorsy

    actuatorsu

    minx 0,w (t )

       0−T 

    |y  − g (x , u )|2R  + |ẋ  − f  (x , u )|2Q  dt 

    ẋ  = f  (x , u ) + w    (process noise)

    y  = g (x , u ) + v    (measurement noise)

    Stuttgart – June 2011   MPC short course   4 / 46

  • 8/9/2019 04 mpc jbr

    3/23

    System model1

    We consider systems of the form

    x + = f  (x , u )

    where the state  x   lies in  Rn and the control (input)  u   lies in  Rm;

    In this formulation  x   and  u  denote, respectively, the current state andcontrol, and  x + the successor state.

    We assume in the sequel that the function  f   : Rn × Rm → Rn iscontinuous.

    Letφ(k ; x , u)

    denote the solution of  x + = f  (x , u ) at time  k   if the initial state is

    x (0) = x  and the control sequence is  u = {u (0), u (1), u (2), . . .};The solution exists and is unique.

    1Most of this preliminary material is taken from Rawlings and Mayne (2009,Appendix B). Downloadable from  www.che.wisc.edu/~jbraw/mpc.

    Stuttgart – June 2011   MPC short course   5 / 46

    Existence of solutions to model

    If a state-feedback control law  u  = κ(x ) has been chosen, theclosed-loop system is described by  x + = f  (x , κ(x )).

    Let  φ(k ; x , κ(·)) denote the solution of this difference equation attime  k  if the initial state at time 0 is  x (0) = x ; the solution exists andis unique (even if  κ(·) is discontinuous).

    If  κ(·) is not continuous, as may be the case when  κ(·) is a model

    predictive control (MPC) law, then f  ((·), κ(·)) may not be continuous.In this case we assume that  f  ((·), κ(·)) is   locally bounded .

    Definition 1 (Locally bounded)

    A function  f   : X  → X  is locally bounded if, for any  x  ∈ X , there exists aneighborhood  N   of  x   such that  f  ( N ) is a bounded set, i.e., if there existsa  M  > 0 such that  |f  (x )| ≤ M   for all  x  ∈ N .

    Stuttgart – June 2011   MPC short course   6 / 46

    http://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpc

  • 8/9/2019 04 mpc jbr

    4/23

    Stability and equilibrium point

    We would like to be sure that the controlled system is “stable”, i.e., thatsmall perturbations of the initial state do not cause large variations in thesubsequent behavior of the system, and that the state converges to adesired state or, if this is impossible due to disturbances, to a desired setof states.If convergence to a specified state,  x ∗ say, is sought, it is desirable for thisstate to be an  equilibrium point:

    Definition 2 (Equilibrium point)

    A point  x ∗ is an equilibrium point of  x + = f  (x ) if  x (0) = x ∗ impliesx (k ) = φ(k ; x ∗) = x ∗ for all  k  ≥ 0. Hence  x ∗ is an equilibrium point if itsatisfies

    x ∗ = f  (x ∗)

    Stuttgart – June 2011   MPC short course   7 / 46

    Positive invariant set

    In other situations, for example when studying the stability properties of an oscillator, convergence to a specified closed set  A ⊂ Rn is sought.If convergence to a set  A  is sought, it is desirable for the set  A  to bepositive invariant :

    Definition 3 (Positive invariant set)

    A set A   is positive invariant for the system  x + = f  (x ) if  x  ∈ A   impliesf  (x ) ∈ A.

    Clearly, any solution of  x + = f  (x ) with initial state in  A, remains in  A.The (closed) set A = {x ∗}  consisting of a (single) equilibrium point is aspecial case;  x  ∈ A  (x  = x ∗) implies  f  (x ) ∈ A  (f  (x ) = x ∗).

    Stuttgart – June 2011   MPC short course   8 / 46

  • 8/9/2019 04 mpc jbr

    5/23

    Distance to a set; set addition

    Define distance from point  x   to set A

    |x |A  := inf z ∈A|x  − z |

    If  A = {x ∗}, then  |x |A  = |x  − x ∗|  which reduces to  |x |  when  x ∗ = 0.

    Set addition:   A⊕ B   := {a + b  | a ∈ A, b  ∈ B }.

    Stuttgart – June 2011   MPC short course   9 / 46

    K,  K∞,  KL, and  PD  functions

    Definition 4

    A function  σ : R≥0 → R≥0  belongs to class  K   if it is continuous, zeroat zero, and strictly increasing;

    σ  : R≥0 → R≥0  belongs to class K∞  if it is a class  K  and unbounded(σ(s )→∞  as  s  → ∞).

    A function  β  : R≥0 × I≥0 → R≥0  belongs to class  KL   if it iscontinuous and if, for each  t  ≥ 0,  β (·, t ) is a class  K  function and foreach  s  ≥ 0,  β (s , ·) is nonincreasing and satisfies limt →∞ β (s , t ) = 0.

    A function  γ  : R→ R≥0  belongs to class  PD  (is positive definite) if itis continuous and positive everywhere except at the origin.

    Stuttgart – June 2011   MPC short course   10 / 46

  • 8/9/2019 04 mpc jbr

    6/23

    Some useful properties of  K  functions

    The following useful properties of these functions are established in Khalil(2002, Lemma 4.2):

    if  α1(·) and  α2(·) are K  functions (K∞  functions), then  α−11   (·) and

    (α1 ◦ α2)(·) := α1(α2(·)) are K  functions (K∞   functions).

    Moreover, if  α1(·) and  α2(·) are K  functions and  β (·) is a  KLfunction, then  σ(r , s ) = α1(β (α2(r ), s )) is a  KL   function.

    Stuttgart – June 2011   MPC short course   11 / 46

    Stability — Definitions

    Definition 5 (Various forms of stability (constrained))

    Suppose X  ⊂ Rn is positive invariant for  x + = f  (x ), that A   is closed andpositive invariant for x + = f  (x ), and that A  lies in the interior of  X . ThenA   is

    1 locally stable in  X   if, for each  ε > 0, there exists a  δ  = δ (ε) > 0 such

    that  x  ∈ X  ∩ (A⊕ δ B ), implies  |φ(i ; x )|A  < ε  for all   i  ∈ I≥0.a

    2 locally attractive in  X   if there exists a  η > 0 such thatx  ∈ X  ∩ (A⊕ ηB ) implies  |φ(i ; x )|A → 0 as   i  → ∞.

    3 attractive in  X   if  |φ(i ; x )|A → 0 as   i  → ∞  for all  x  ∈ X .

    aB  denotes the unit ball in  Rn.

    Stuttgart – June 2011   MPC short course   12 / 46

  • 8/9/2019 04 mpc jbr

    7/23

  • 8/9/2019 04 mpc jbr

    8/23

    Lyapunov function

    Definition 7 (Lyapunov function)

    A function  V   : Rn → R≥0  is said to be a Lyapunov function for the system

    x +

    = f  (x ) and set  A   if there exist functions  αi  ∈ K∞,   i  = 1, 2 andα3 ∈ PD  such that for any  x  ∈ Rn,

    V (x ) ≥ α1(|x |A) (2)

    V (x ) ≤ α2(|x |A) (3)

    V (f  (x ))− V (x ) ≤ −α3(|x |A) (4)

    If  V (·) satisfies (2)–(4) for all  x  ∈ X   where  X  ⊃ A   is a positive invariantset for  x + = f  (x ), then  V (·) is said to be a Lyapunov function in  X   forthe system x + = f  (x ) and set  A.

    Stuttgart – June 2011   MPC short course   15 / 46

    Some fine print

    Remark 8

    It is shown in Jiang and Wang (2002), Lemma 2.8, that, under theassumption that f  (·) is continuous, we can always assume that  α

    3(·) in (4)

    is a K∞   function.

    Stuttgart – June 2011   MPC short course   16 / 46

  • 8/9/2019 04 mpc jbr

    9/23

    Lyapunov function — Asymptotic stability

    The existence of a Lyapunov function is a sufficient condition for global

    asymptotic stability as shown in the next result which we prove under theassumption, common in MPC, that  α3(·) is K∞   function.

    Theorem 9 (Lyapunov function and GAS)

    Suppose V (·)   is a Lyapunov function for x + = f  (x )  and set  A  with  α3(·)a K∞   function. Then  A  is globally asymptotically stable.

    Stuttgart – June 2011   MPC short course   17 / 46

    Converse Lyapunov theorem — Asymptotic stability

    Theorem 9 merely provides a sufficient condition for global asymptoticstability that might be thought to be conservative. The next result, aconverse  stability theorem by Jiang and Wang (2002), establishes necessityunder a stronger hypothesis, namely that  f  (·) is continuous rather thanlocally bounded.

    Theorem 10 (Converse theorem for asymptotic stability)

    Let  A be compact and f  (·)  continuous. Suppose that the set  A  is globally asymptotically stable for the system x + = f  (x ). Then there exists asmooth Lyapunov function for the system x + = f  (x )  and set  A.

    A proof of this result is given in Jiang and Wang (2002), Theorem 1,part 3.

    Stuttgart – June 2011   MPC short course   18 / 46

  • 8/9/2019 04 mpc jbr

    10/23

    Asymptotic stability — Constrained case

    Theorem 11 (Lyapunov function for asymptotic stability (constrained

    case))

    Suppose X  ⊂ Rn is positive invariant for x + = f  (x ), that  A   is closed and positive invariant for x + = f  (x ), and that  A   lies in the interior of X. If there exists a Lyapunov function in X for the system x + = f  (x )  and set  Awith  α3(·)  a K∞  function, then  A   is asymptotically stable for x + = f  (x )with a region of attraction X.

    Stuttgart – June 2011   MPC short course   19 / 46

    Exponential stability — Constrained case

    Theorem 12 (Lyapunov function for exponential stability)

    Suppose X  ⊂ Rn is positive invariant for x + = f  (x ), that  A   is closed and positive invariant for x + = f  (x ), and that  A   lies in the interior of X. If there exists V   : Rn → R≥0  satisfying the following properties for all x  ∈ X 

    a1 |x |σA ≤ V (x ) ≤ a2 |x |σAV (f  (x ))− V (x ) ≤ −a3 |x |

    σ

    A

    in which a1, a2, a3, σ > 0, then  A   is exponentially stable for x + = f  (x )with a region of attraction X.

    Stuttgart – June 2011   MPC short course   20 / 46

  • 8/9/2019 04 mpc jbr

    11/23

    Converse theorem for exponential stability

    Exercise B.3: A converse theorem for exponential stability

    a Assume that the origin is globally exponentially stable (GES) for thesystem

    x + = f  (x )

    in which  f   is Lipschitz continuous. Show that there exists a Lipschitzcontinuous Lyapunov function  V (·) for the system satisfying for allx  ∈ Rn

    a1 |x |σ ≤ V (x ) ≤ a2 |x |

    σ

    V (f  (x ))− V (x ) ≤ −a3 |x |σ

    in which  a1, a2, a3, σ > 0.Hint: Consider summing the solution  |φ(i ; x )|  on   i  as a candidateLyapunov function  V (x ).

    b Establish also that in the Lyapunov function defined above, any  σ > 0is valid, and the constant  a3  can be chosen as large as one wishes.

    Stuttgart – June 2011   MPC short course   21 / 46

    Robust Stability

    We turn now to stability conditions for systems subject to boundeddisturbances (not vanishingly small) and described by

    x + = f  (x , w ) (5)

    where the disturbance  w   lies in the compact set  W.This system may equivalently be described by the difference inclusion

    x + ∈ F (x ) (6)

    where the setF (x ) := {f  (x , w ) | w  ∈W}

    Let  S (x ) denote the set of all solutions of (5) or (6) with initial state  x .

    Stuttgart – June 2011   MPC short course   22 / 46

  • 8/9/2019 04 mpc jbr

    12/23

    Positive invariant sets

    We require, in the sequel, that the set  A   is positive invariant for (5) (orfor x + ∈ F (x )):

    Definition 13 (Positive invariance with disturbances)

    The set A  is positive invariant for  x + = f  (x , w ),  w  ∈W  if  x  ∈ A  impliesf  (x , w ) ∈ A  for all  w  ∈W; it is positive invariant for  x + ∈ F (x ) if  x  ∈ Aimplies  F (x ) ⊆ A.

    Clearly the two definitions are equivalent;  A  is positive invariant forx + = f  (x , w ),  w  ∈W, if and only if it is positive invariant for  x + ∈ F (x ).In Definitions 14-16, we use “positive invariant” to denote “positive

    invariant for  x + = f  (x , w ),  w  ∈W” or for  x + ∈ F (x ).

    Stuttgart – June 2011   MPC short course   23 / 46

    Stability and attraction

    Definition 14 (Local stability (disturbances))

    The closed positive invariant set  A   is  locally stable  for x + = f  (x , w ),w  ∈W (or for  x + ∈ F (x )) if, for all  ε > 0, there exists a  δ > 0 such that,for each  x   satisfying |x |A  < δ , each solution  φ ∈ S (x ) satisfies |φ(i )|A  < εfor all   i  ∈ I≥0.

    Definition 15 (Global attraction (disturbances))

    The closed positive invariant set  A   is   globally attractive  for the systemx + = f  (x , w ),  w  ∈W (or for  x + ∈ F (x )) if, for each  x  ∈ Rn, eachsolution  φ(·) ∈ S (x ) satisfies |φ(i )|A → 0 as   i  → ∞.

    Stuttgart – June 2011   MPC short course   24 / 46

  • 8/9/2019 04 mpc jbr

    13/23

    Asymptotic stability

    Definition 16 (GAS (disturbances))

    The closed positive invariant set  A   is  globally asymptotically stable  forx + = f  (x , w ),  w  ∈W (or for  x + ∈ F (x )) if it is locally stable and globallyattractive.

    An alternative definition of global asymptotic stability of  A  forx + = f  (x , w ),  w  ∈W, if  A  is compact, is the existence of a  KL  functionβ (·) such that for each  x  ∈ Rn, each  φ ∈ S (x ) satisfies|φ(i )|A ≤ β (|x |A, i ) for all   i  ∈ I≥0.

    Stuttgart – June 2011   MPC short course   25 / 46

    Lyapunov function

    To cope with disturbances we require a modified definition of a Lyapunovfunction.

    Definition 17 (Lyapunov function (disturbances))

    A function  V   : Rn → R≥0  is said to be a Lyapunov function for the systemx + = f  (x , w ),  w  ∈W (or for  x + ∈ F (x )) and set A   if there exist

    functions  αi  ∈ K∞,   i  = 1, 2 and  α3 ∈ PD  such that for any  x  ∈ Rn

    ,

    V (x ) ≥ α1(|x |A) (7)

    V (x ) ≤ α2(|x |A) (8)

    supz ∈F (x )

    V (z )− V (x ) ≤ −α3(|x |A) (9)

    Stuttgart – June 2011   MPC short course   26 / 46

  • 8/9/2019 04 mpc jbr

    14/23

    GAS (disturbances)

    Inequality 9 ensures  V (f  (x , w ))− V (x ) ≤ −α3(|x |A) for all  w  ∈W. Theexistence of a Lyapunov function for the system  x + ∈ F (x ) and set  A   is a

    sufficient condition for  A  to be globally asymptotically stable forx + ∈ F (x ) as shown in the next result.

    Theorem 18 (Lyapunov function for GAS (disturbances))

    Suppose V (·)   is a Lyapunov function for x + = f  (x , w ), w  ∈W (or for x + ∈ F (x )) and set  A  with  α3(·)  a K∞   function. Then  A  is globally asymptotically stable for x + = f  (x , w ), w  ∈W (or for x + ∈ F (x )).

    Stuttgart – June 2011   MPC short course   27 / 46

    Input-to-State Stability

    In input-to-state stability (Sontag and Wang, 1995; Jiang and Wang,2001) we seek a bound on the state in terms of a uniform bound on thedisturbance sequence  w := {w (0), w (1), . . .}. Let ·  denote the usual  ∞norm for sequences, i.e.,  w := supk ≥0 |w (k )|.

    Definition 19 (Input-to-state stable (ISS))

    The system x + = f  (x , w ) is (globally) input-to-state stable (ISS) if there

    exists a KL  function  β (·) and a K   function  σ(·) such that, for eachx  ∈ Rn, and each disturbance sequence  w = {w (0), w (1), . . .}   in  ∞

    |φ(i ; x , wi )| ≤ β (|x | , i ) + σ(wi )

    for all i  ∈ I≥0, where  φ(i ; x , wi ) is the solution, at time  i , if the initial stateis x  at time 0 and the input sequence is  wi   := {w (0), w (1), . . . , w (i  − 1)}.

    Stuttgart – June 2011   MPC short course   28 / 46

  • 8/9/2019 04 mpc jbr

    15/23

    The basic nonlinear, constrained MPC problem

    The system model isx + = f  (x , u ) (10)

    Both state and input are subject to constraints

    x (k ) ∈ X ,   u (k ) ∈ U   for all k  ∈ I≥0

    Given an integer  N  (referred to as the finite horizon), and an inputsequence  u  of length  N ,  u = {u (0), u (1), . . . , u (N − 1)}, let  φ(k ; x , u)denote the solution of (10) at time k  for a given initial state  x (0) = x .

    Terminal constraint (and penalty)

    φ(N ; x , u) ∈ Xf   ⊆ X

    Stuttgart – June 2011   MPC short course   29 / 46

    Feasible sets

    The set of feasible initial states and associated control sequences

    ZN  = {(x , u) | u (k ) ∈ U, φ(k ; x , u) ∈ X for all  k  ∈ I0:N −1,

    and  φ(N ; x , u) ∈ Xf  }

    and  Xf   ⊆ X  is the feasible terminal set.

    The set of feasible initial states is

    X N  = {x  ∈ Rn | ∃u ∈ UN  such that (x , u) ∈ ZN }   (11)

    For each  x  ∈ X N , the corresponding set of feasible input sequences is

     U N (x ) = {u | (x , u) ∈ ZN }

    Stuttgart – June 2011   MPC short course   30 / 46

  • 8/9/2019 04 mpc jbr

    16/23

    Cost function and control problem

    For any state  x  ∈ Rn and input sequence  u ∈ UN , we define

    V N (x , u) =N −1k =0

    (φ(k ; x , u), u (k )) + V f   (φ(N ; x , u))

    (x , u ) is the stage cost;  V f   (x (N )) is the terminal cost

    Consider the finite horizon optimal control problem

    PN (x ) : minu∈U N 

    V N (x , u)

    Stuttgart – June 2011   MPC short course   31 / 46

    Control law and closed-loop system

    The control law isκN (x ) = u 

    0(0; x )

    The optimum may not be unique; then  κN (·) is a point-to-set map

    Closed-loop system

    x +

    = f  (x , κN (x )) difference equation

    x + ∈ f  (x , κN (x )) difference inclusion

    Nominal closed-loop stability question; is the origin stable?

    If yes, what is the region of attraction? All of  X N ?

    Stuttgart – June 2011   MPC short course   32 / 46

  • 8/9/2019 04 mpc jbr

    17/23

    Inherent robustness of the nominal controller

    Consider a process disturbance  d ,  x + = f  (x , κ(x )) + d 

    A measurement disturbance  x m = x  + e 

    Nominal controller with disturbance

    x + ∈ f  (x , κN (x m)) + d 

    x + ∈ f  (x , κN (x  + e )) + d 

    x + ∈ F (x , w )   w  = (d , e )

    Robust stability; is the system  x + ∈ F (x , w ) input-to-state stableconsidering  w  = (d , e ) as the input.

    Stuttgart – June 2011   MPC short course   33 / 46

    Basic MPC assumptions

    Assumption 20 (Continuity of system and cost)

    The functions  f   : Rn ×Rm → Rn,   : Rn × Rm → R≥0  andV f    : R

    n → R≥0  are continuous,  f  (0, 0) = 0,  (0, 0) = 0, and  V f   (0) = 0.

    Assumption 21 (Properties of constraint sets)

    The set  U  is compact and contains the origin. The sets  X and  Xf    areclosed and contain the origin in their interiors,  Xf   ⊆ X.

    Stuttgart – June 2011   MPC short course   34 / 46

  • 8/9/2019 04 mpc jbr

    18/23

    Basic MPC assumptions

    Assumption 22 (Basic stability assumption)

    For any  x  ∈ Xf    there exists  u  := κf   (x ) ∈ U such that  f  (x , u ) ∈ Xf    andV f   (f  (x , u )) + (x , u ) ≤ V f   (x ).

    Note: understanding this requirement created a big research challenge forthe development of nonlinear MPC. Credit the celebrated quasi-infinitehorizon work of Chen and Allgöwer (1998) for cracking this problem.

    Assumption 23 (Bounds on stage and terminal costs)

    The stage cost  (·) and the terminal cost  V f   (·) satisfy

    (x , u ) ≥ α1(|x |)   ∀x  ∈ X N ,   ∀u  ∈ U

    V f   (x ) ≤ α2(|x |)   ∀x  ∈ Xf  

    in which  α1(·) and  α2(·) are K∞   functions

    Stuttgart – June 2011   MPC short course   35 / 46

    Optimal MPC cost function as Lyapunov function

    We show that the optimal cost  V 0N (·) is a Lyapunov function for theclosed-loop system. We require three properties.Lower bound.

    V 0N (x ) ≥ α1(|x |) for all   x  ∈ X N 

    Given the definition of  V N (x , u) as a sum of stage costs, we have usingAssumption 23

    V N (x , u) ≥ (x , u (0; x )) ≥ α1(|x |) for all   x  ∈ X N , u ∈ UN 

    so the first property is established.

    Stuttgart – June 2011   MPC short course   36 / 46

  • 8/9/2019 04 mpc jbr

    19/23

    MPC cost function as Lyapunov function – cost decrease

    Next we require the  cost decrease

    V 0N (f  (x , κN (x )) ≤ V 0N (x )− α3(|x |) for all   x  ∈ X N 

    At state  x  ∈ X N , consider the optimal sequence

    u0(x ) = {u (0; x ), u (1; x ), . . . , u (N  − 1; x )}, and generate a  candidate sequence  for the successor state,  x + := f  (x , κN (x ))

    ũ = {u (1; x ), u (2; x ), . . . , u (N  − 1; x ), κf   (x (N ))}

    with  x (N ) := φ(N ; x , u). This candidate is   feasible   for x + because  Xf    iscontrol invariant under control law  κf   (·) (Assumption 22).The cost is

    V N (x +, ũ) = V 0N (x )− (x , u (0; x ))

    − V f   (x (N )) + (x (N ), κf   (x (N ))) + V f   (f  (x (N ), κf   (x (N ))))

    Stuttgart – June 2011   MPC short course   37 / 46

    Cost decrease (cont.)

    But by Assumption 22

    V f   (f  (x , κf   (x ))) + (x , κf   (x )) ≤ V f   (x ) for all   x  ∈ Xf  

    so we have that

    V N (x +, ũ) ≤ V 0N (x )− (x , u (0; x ))

    The optimal cost is certainly no worse, giving

    V 0N (x +) ≤ V 0N (x )− (x , u (0; x ))

    V 0N (x +) ≤ V 0N (x )− α1(|x |) for all   x  ∈ X N 

    which is the desired cost decrease with the choice  α3(·) = α1(·).

    Stuttgart – June 2011   MPC short course   38 / 46

  • 8/9/2019 04 mpc jbr

    20/23

    Upper bound

    Finally we require the  upper bound.

    V 0N (x ) ≤ α2(|x |) for all   x  ∈ X N 

    Surprisingly, this one turns out to be the most involved.First, we have the bound from Assumption  23

    V f   (x ) ≤ α2(|x |) for all   x  ∈ Xf  

    Next we show that  V 0N (x ) ≤ V f   (x ) for  x  ∈ Xf   ,  N  ≥ 1.Consider N  = 1,

    V 01 (x ) = minu ∈U{(x , u ) + V f   (f  (x , u )) | f  (x , u ) ∈ Xf  }

    ≤ V f   (x )   x  ∈ Xf  

    Stuttgart – June 2011   MPC short course   39 / 46

    Dynamic programming recursion

    Next consider  N  = 2, and optimal control law  κ2(·)

    V 02 (x ) = minu ∈U{(x , u ) + V 01 (f  (x , u )) | f  (x , u ) ∈ X 1}   x  ∈ X 2

    = (x , κ2(x )) + V 0

    1 (f  (x , κ2(x )))   x  ∈ X 2

    ≤ (x , κ1(x )) + V 0

    1 (f  (x , κ1(x )))   x  ∈ X 1

    ≤ (x , κ1(x )) + V f   (f  (x , κ1(x )))   x  ∈ X 1

    = V 0

    1 (x )   x  ∈ X 1

    ThereforeV 02 (x ) ≤ V f   (x )   x  ∈ Xf  

    Continuing this recursion gives for all  N  ≥ 1

    V 0N (x ) ≤ V f   (x )   x  ∈ Xf  

    Stuttgart – June 2011   MPC short course   40 / 46

  • 8/9/2019 04 mpc jbr

    21/23

    Extending the upper bound from  Xf   to  X N

    Question: When can we extend this bound from  Xf    to the (possiblyunbounded!) set X N ? Recall that  V 

    0N (·) is not necessarily continuous.

    Answer: A function can be upper bounded by a K∞   function if and

    only if it is locally bounded.2

    We know from continuity of  f  (·) (Assumption 20) that  V N (x , u) is acontinuous function, hence locally bounded, and therefore so isV 0N (x ).Therefore, there exists  β (·) ∈ K∞  such that

    V 0N (x ) ≤ β (|x |) for all   x  ∈ X N 

    Be aware that the MPC literature has been confused about the

    requirements for this last result.

    2See Proposition 10 of “Notes on Recent MPC Literature” link on:www.che.wisc.edu/~jbraw/mpc.  Thanks also to Andy Teel.

    Stuttgart – June 2011   MPC short course   41 / 46

    Asymptotic stability of constrained nonlinear MPC

    Why you want a Lyapunov function

    We have established that the optimal cost  V 0N (·) is a Lyapunovfunction on  X N  for the closed-loop system.

    Therefore, the origin is asymptotically stable (KL version) with regionof attraction  X N .

    We can also establish robust stability, but let’s do that later.

    If we strengthen the properties of  (·), we can strengthen theconclusion to exponential stability.

    Notice the essential role that  V 0N (·) plays in the stability analysis of MPC.

    In economic MPC we lose this Lyapunov function and have to work tobring it back.

    Stuttgart – June 2011   MPC short course   42 / 46

    http://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpc

  • 8/9/2019 04 mpc jbr

    22/23

    Recommended exercises

    Stability definitions. Example 2.3

    Lyapunov functions. Exercise B.2–B.4.4

    Dynamic programming. Exercise C.1–C.2.4

    MPC stability results. Theorem 7 and Example 1.3

    Exercises 2.11, 2.14, 2.154

    3“Notes on Recent MPC Literature” link on:   www.che.wisc.edu/~jbraw/mpc.4Rawlings and Mayne (2009, Appendices B and C). Downloadable from

    www.che.wisc.edu/~jbraw/mpc.Stuttgart – June 2011   MPC short course   43 / 46

    Further Reading I

    H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear modelpredictive control scheme with guaranteed stability.   Automatica, 34(10):1205–1217, 1998.

    Z.-P. Jiang and Y. Wang. Input-to-state stability for discrete-timenonlinear systems.   Automatica, 37:857–869, 2001.

    Z.-P. Jiang and Y. Wang. A converse Lyapunov theorem for discrete-timesystems with disturbances.  Sys. Cont. Let., 45:49–58, 2002.

    H. K. Khalil.   Nonlinear Systems . Prentice-Hall, Upper Saddle River, NJ,third edition, 2002.

    J. B. Rawlings and D. Q. Mayne.  Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison, WI, 2009. 576 pages, ISBN978-0-9759377-0-9.

    E. D. Sontag and Y. Wang. On the characterization of the input to statestability property.  Sys. Cont. Let., 24:351–359, 1995.

    Stuttgart – June 2011   MPC short course   44 / 46

    http://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpchttp://www.che.wisc.edu/~jbraw/mpc

  • 8/9/2019 04 mpc jbr

    23/23

    Further Reading II

    A. R. Teel and L. Zaccarian. On “uniformity” in definitions of globalasymptotic stability for time-varying nonlinear systems.   Automatica, 42:2219–2222, 2006.

    Stuttgart – June 2011   MPC short course   45 / 46

    Acknowledgments

    The author is indebted to Luo Ji of the University of Wisconsin andGanzhou Wang of the Universität Stuttgart for their help in organizing thematerial and preparing the overheads.