Top Banner

of 24

04-CarbonateDepSystems [Compatibility Mode].pdf

Aug 07, 2018

Download

Documents

jesf_2014
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    1/56

    AppliedReservoir

    Geology

    Chapter 4

     

    Copyright 2008, NExT, All rights reserved

     

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    2/56

    AppliedReservoir

    Geology

    Copyright 2008, NExT, All rights reserved 2

    Learning Objectives:

    Carbonate Depositional Systems Reef Formation & Models

    Carbonate Sequence Stratigraphy

    Effect of type on the Reservoir 

    Recovery Efficiency

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    3/56

    AppliedReservoir

    Geology

    Carbonates in General

    • The composition of most carbonates lies somewhere between calcite (CaCO3) anddolomite (CaMg(CO3)2. For example, most contain some magnesium, but not as

    much as pure dolomite.

    • Chemistry: the key here is that any process that removes CO2 (gas) from normalseawater (pH=8.4) tends to drive up pH, encouraging deposition of carbonate. Such

    Copyright 2008, NExT, All rights reserved 3

     

    processes include: increasing temperature, evaporation, and pH.

    • Most carbonate comes from growth and death of organisms who make their hardparts out of carbonate. Over 90% of carbonates formed in modern environments

    are thought to be biological in origin and form under marine conditions.Distribution of most carbonate is directly controlled by environmental parameters

    favorable for the growth of the calcium carbonate secreting organisms. These

    parameters include temperature, salinity, substrate, and presence/absence of

    siliciclastics.

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    4/56

    AppliedReservoir

    Geology

    Depositional Systems

    Reef Systems

    Copyright 2008, NExT, All rights reserved 4

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    5/56

    AppliedReservoir

    Geology

    Carbonates have some similarities to clastics but major differences inthe sequence stratigraphy of the two sediments exist.

    While both respond to changes in base level and both can be

    Carbonate Systems: Differences with Clastics

    Copyright 2008, NExT, All rights reserved 5

      ,

    stratigraphy of these sediment types is related to carbonate

    accumulation tending to be "in situ production" while clastics are

    transported to their depositional resting place.

    Rates of carbonate production are linked to photosynthesis and soare depth dependent and greatest close to the air/sea interface.

    This favors carbonate facies and their fabrics as clear indicators of

    sea level position.

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    6/56

    AppliedReservoir

    Geology

    Additionally carbonate sediments often have a biochemical originand are influenced by the chemistry of the water from which they are

    precipitated.

    Carbonate System: Differences with Clastics

    Copyright 2008, NExT, All rights reserved 6

     

    tectonic configuration of the depositional setting of the basin

    responds to pale-climate change, and/or changes in paleogeography 

    related to isolation or access to the open sea.

    This means that carbonates can be used as indicators of depositionalsetting that, when combined with sequence Stratigraphy, make

    carbonate facies analysis a powerful tool for the interpretation of the

    geological section and lithofacies prediction away from data rich

    areas

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    7/56

    AppliedReservoir

    Geology

    Carbonates and Clastics - Comparison

    Copyright 2008, NExT, All rights reserved 7

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    8/56

    AppliedReservoir

    Geology

    Carbonates and Clastics - Comparison

    Copyright 2008, NExT, All rights reserved 8

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    9/56

    AppliedReservoir

    Geology

    Carbonate Depositional Environments

    Copyright 2008, NExT, All rights reserved 9

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    10/56

    AppliedReservoir

    Geology

    Carbonate Facies

    Copyright 2008, NExT, All rights reserved 10

    Courtesy of John Humphrey, Colorado School of Mines, 2005

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    11/56

    AppliedReservoir

    Geology

    Carbonate Depositional Rates

    Copyright 2008, NExT, All rights reserved 11

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    12/56

    AppliedReservoir

    GeologyPorosidad y Permeabilidad:

    Tamano de grano

    Compactacion

    ClasificacionCrecimiento de minerales

    Copyright 2008, NExT, All rights reserved 12

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    13/56

    AppliedReservoir

    Geology

    Copyright 2008, NExT, All rights reserved 13

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    14/56

    AppliedReservoir

    Geology

    Copyright 2008, NExT, All rights reserved 14

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    15/56

    AppliedReservoir

    Geology

    Copyright 2008, NExT, All rights reserved 15

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    16/56

    AppliedReservoir

    GeologyRamp Model (gentle slope, m per km)

    SLShelf 

    Tidal Flat

    Grainstone Shoals

     

    Carbonate Models

    Copyright 2008, NExT, All rights reserved 16

    (Modified from Perkins and Lloyd, undated)

     Tidal Flat

    Shelf  PinnacleReef 

    Shelf 

    MarginMound

    Basin

    SLReef 

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    17/56

    AppliedReservoir

    Geology

    Copyright 2008, NExT, All rights reserved 17

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    18/56

    AppliedReservoir

    Geology

    Copyright 2008, NExT, All rights reserved 18

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    19/56

    AppliedReservoir

    Geology

    Copyright 2008, NExT, All rights reserved 19

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    20/56

    AppliedReservoir

    Geology

    Copyright 2008, NExT, All rights reserved 20

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    21/56

    AppliedReservoir

    Geology

    Carbonate Depositional Environments

    - Outer Shelf

    Copyright 2008, NExT, All rights reserved 21

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    22/56

    AppliedReservoir

    Geology

    Carbonate Depositional Environments

    - Inner Shelf

    Copyright 2008, NExT, All rights reserved 22

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    23/56

    AppliedReservoir

    Geology

    Variables Controlling Carbonate Systems Tracts

    Copyright 2008, NExT, All rights reserved 23SEPM Photo CD-1

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    24/56

    AppliedReservoir

    Geology

    Variables Controlling Carbonate Systems Tracts

    Copyright 2008, NExT, All rights reserved 24SEPM Photo CD-1

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    25/56

    AppliedReservoir

    Geology

    Variables Controlling Carbonate Systems Tracts

    Copyright 2008, NExT, All rights reserved 25SEPM Photo CD-1

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    26/56

    AppliedReservoir

    Geology

    Modern Carbonate Platforms

    Copyright 2008, NExT, All rights reserved 26

    Arabian Gulf

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    27/56

    AppliedReservoir

    Geology

    Coral Reefs - Locations

    Copyright 2008, NExT, All rights reserved 27

    Note that the vast majority of coral

    reefs are in warm water 

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    28/56

    AppliedReservoir

    Geology

    Carbonate Reef System

    S   N30 km

    150

    100

    mMiliolids

    ReefForereef

    Dense lime mudstone

    Back Reef(Lagoon)

    Lime Grainstone

    Shelf

    Open WaterSL

    Copyright 2008, NExT, All rights reserved

    (modified from Wilson, 1975; after Harris et al, 1968)

    50

    0

    BoundstoneOrbitolina

    lime mudstoneChalky

     

    Globigerinamudstone

    Cross section showing complex facies relations in a carbonate reef setting.Reservoir quality varies with facies type

    Conjunto de caracteres petrográficos y paleontológicos que definen un depósito (ver definición) o una

    roca (ver definición).A veces se la subdivide en litofacies o facies litológica y biofacies, o facies

    marina.Se habla de microfacies cuando los diferentes caracteres no aparecen más que en escala

    microscópica.La facies de un estrato permite reconstruir el medio en el que ha sido depositado.

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    29/56

    AppliedReservoir

    Geology

    Modern AnalogThe Bahamas

    Andros Is.

    N

    Eleuthera Is.

    Copyright 2008, NExT, All rights reserved

    NASA Photo STSO-90-0Cuba

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    30/56

    AppliedReservoir

    Geology

    Antecedent Surface

    Sea Level

    Catch Up

    Antecedent Surface

    Sea Level

    Start Up

    Transgressive

    SystemsTract

    Maximum Flooding

    Model For An Isolated Carbonate Platform

    Copyright 2008, NExT, All rights reserved 30

    Antecedent Surface

    Sea LevelPlatformDrowning

    Antecedent Surface

    Sea Level

    SubaerialExposure

    SB

    Antecedent Surface

    Sea Level

    Keep Up

    MFS   HighstandSystems

    Tract

    LowstandSystems

    Tract

    Platform Drowning(Drowning

    Unconformity)

    Sequence Boundary (SB)

    (modified from Emery and Myers, 1996)

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    31/56

    AppliedReservoir

    Geology

    Sea LevelStart Up

    Sea level floods antecedent

    Model For An Isolated Carbonate Platform

    Copyright 2008, NExT, All rights reserved 31

    Antecedent Surface

    high

    Carbonate production isinitiated

    (modified from Emery and Myers, 1996)

    A li d

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    32/56

    AppliedReservoir

    Geology

    Sea LevelCatch Up

    Carbonate roduction tracks

    Model For An Isolated Carbonate Platform

    Copyright 2008, NExT, All rights reserved 32

    Antecedent Surface

    rising sea level

    Builds aggradational margin

    (modified from Emery and Myers, 1996)

    A li d

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    33/56

    AppliedReservoir

    Geology

    Sea Level

    Keep UpCarbonate production exceeds

    Model For An Isolated Carbonate Platform

    Copyright 2008, NExT, All rights reserved 33

    Antecedent Surface

    ax mum

    FloodingSurface

    ra e o crea on o accommo a on

    space

    Carbonate is shed off platformtop to slope and basin

    (modified from Emery and Myers, 1996)

    A li d

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    34/56

    AppliedReservoir

    Geology

    Sea LevelSequenceBoundary Karst

    SubaerialExposure

    Model For An Isolated Carbonate Platform

    Copyright 2008, NExT, All rights reserved 34

    Antecedent Surface

    MaximumFloodingSurface

    FringingReef

    n s u  car ona e pro cu on

    largely terminated aside fromminor fringing reefs

    Platform top is karstified inhumid climates

    (modified from Emery and Myers, 1996)

    Applied

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    35/56

    AppliedReservoir

    Geology

    Sea Level

    DrowningUnconformity Clastic

    PlatformDrowning

    Model For An Isolated Carbonate Platform

    Copyright 2008, NExT, All rights reserved 35

    Antecedent Surface

    Sediment

    may cause platform to ceaseproduction and drown

    Drowned platform may beonlapped and dowlapped by

    prograding deepwatersiliciclastic sediment

    (modified from Emery and Myers, 1996)

    Applied Depositional Sequence Model Arid

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    36/56

    AppliedReservoir

    Geology After Louke, 19 (Hamblin and Christiansen,1995)

    Depositional Sequence Model AridCarbonate-Evaporite-Siliciclastic Map

    Copyright 2008, NExT, All rights reserved 36

    Applied

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    37/56

    AppliedReservoir

    GeologyafterLouke, 19 (Hamblin and Christiansen,1995)

    Depositional Sequence Model AridCarbonate-Evaporite-Siliciclastic Rimmed Shelf

    Copyright 2008, NExT, All rights reserved 37

    Applied

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    38/56

    AppliedReservoir

    Geology

    DunhamCarbonate RockClas sification

    Depositional Texture Recognizable DepositionalTexture

    Not Recognizable

    Grain Supported 

    Lacks Mud,Grain- 

    Supported 

    Components Not Bound Together During Deposition 

    Mud Supported

    Contains Mud (clay and silt size particles 

    10 % Grains 

    Original Components 

    Bound Together During Deposition 

    Dunham Carbonate Rock Classification

    Copyright 2008, NExT, All rights reserved 38

    Dep ositionalTextureRe cognizable Deposition alTextureNotRecogniz able

    Muds toneWackestone PackstoneGrains toneBoundst oneCrystalin eCarbona teG  r a  i n  S  u  p  p  o  r t e  d  La  c  k  s  Mu  d  ,G  r a i n  - S  u  p  p  o  rt  e  d  

    C  o  mp  o  n  e  n  t s  N  o  t B  o  u  n  d  T  o  g e  t h  e  r D  u  r i n  g  D  e  p  o  s  i t i o n  M u  d  S  u  p  p  o  r t e  d  C  o  n  t a  i n  s  M  u d  ( c  l a  y  a  n  d  s  i l t s  i z  e  p  a r t i c  l e  s  <  1 0  % 

    G  ra  i n  s  >  10  % G  r a  i n  s  

    O  r i g  i n  a  l C  o  m p o  n  e  n  t s  B  o  u  n  d  T  o  g  e t h  e  r D  u  r i n  g  D  e  p  o s  i t i o  n  

    Mudstone Wackestone Packstone   Grainstone Boundstone Carbonate

    (modified from Dunham, 1962)

    In contrast to sandstones, carbonate sediment may form through direct chemical precipitationor by organic activity (for example the growth of organisms in reefs). Carbonate sediment mayalso be transported (for example off of the edge of reefs)

    Applied Ke Steps In Constr cting A Model For

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    39/56

    AppliedReservoir

    Geology

    Relating rock fabrics to petrophysical

    parameters Identifying the geological processes that formed

    Key Steps In Constructing A Model ForDistribution Of Petrophysical Properties

    Copyright 2008, NExT, All rights reserved 39

     

    Describing a cycle-based sequence-

    stratigraphic framework

    Distributing petrophysically significant rock-fabric bodies within the stratigraphic framework

    Applied

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    40/56

    AppliedReservoir

    Geology

    Petrographicanalysis is

    important to

    Predictive Facies Models Improve Property Distribution

    Depositional Fabric Is RelatedTo Petrophysical Character

    Copyright 2008, NExT, All rights reserved 40

     

    depositional fabricof carbonate rocks

    Relation of poretypes todepositional fabricThin-section micrograph

    Plane-polarized light 2 mm

    Applied Calibration of Core Data to Well Logs

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    41/56

    AppliedReservoir

    GeologyHigh-Frequency Depositional CyclesTidal-

    Flat

    Capped

    Cycle

    AnhydriteAnhydriteAnhydriteAnhydrite

    PorosityGR

    Calibration of Core Data to Well Logs

    Copyright 2008, NExT, All rights reserved 41

    FenestralFenestralFenestralFenestral

    PoresPoresPoresPores

    gagagaga

    LaminationLaminationLaminationLaminationAnhydrite CapAnhydrite CapAnhydrite CapAnhydrite Cap

    Anhydrite CapAnhydrite CapAnhydrite CapAnhydrite Cap

    Core samples are among the tools used to evaluate reservoirrock and calibrate geophysical tools

    Applied

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    42/56

    AppliedReservoir

    Geology

    Interparticle Intraparticle Intercrystal Moldic

    FabricSelective

    Idealized Carbonate Porosity Types

    Copyright 2008, NExT, All rights reserved 42

    Fenestral Shelter Growth-Framework

    Fracture Channel Vug

    Non-FabricSelective

    Breccia Boring Burrow Shrinkage

    Fabric Selective or Not Fabric Selective

    Applied Petrophysical Properties Are Related

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    43/56

    AppliedReservoir

    Geology

        y       (      m     d      )  

    1000

    100

       C    l  a

      s  s I

        i   n  s   t  o   n

      e

       I   I   a  c   k  s

      t  o  n  e

      s

    Increasinggrain size

    Increasinggrain size

    and sorting Increasing

    graincontent

    Petrophysical Properties Are Related

    To Rock Fabric

    Copyright 2008, NExT, All rights reserved 43

    Interparticle Porosity (%)

         P    e     r    m    e     a 

         b      i     l     i

    1.0

    0.15 10 20 30 40

       G   r

      C   l  a

      s

      G  r  a   i  n -  d  o

      m   i  n  a  t

      e

      C  l a  s  s

     I  I  I

      M  u d - d

     o  m  i  n a

      t e d f a  b  r

    (modified from Lucia, 1999)

    Rock fabric continuum in non-vuggy limestone

    AppliedLithostratigraphic vs Chronostratigraphic

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    44/56

    ppReservoir

    Geology

    Sequence Model

    Lithostrati ra

    Lithostratigraphic vs. ChronostratigraphicLayering Schemes

    Copyright 2008, NExT, All rights reserved 44

    1

    2

    3

    5

    4

    67

    13119

    15

    7

    5

    3

    1

    2468

    10

    121416

    1

    Reservoir Model Reservoir Model

    7 layer model Flow Barrier Reservoir Layer

    (modified from Kerans and Tinker, 1997)

    Applied Scales in Carbonate

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    45/56

    ppReservoir

    Geology

    Scales in CarbonateSequence Stratigraphy

    Panels A and B show geometric

    relationships of typical depositional

    sequences (dip section) Panels C and D show typical

    sequences in a shelf carbonateBBBB

    AAAA Regional

    Field

    Copyright 2008, NExT, All rights reserved 45

     

    Panel D shows the level of flow-unitdescription necessary to model

    production from the reservoir

    Panel D fits within one-quarter to one-

    half a wavelet on the seismic data

    Typical Well/Data SpacingTypical Well/Data SpacingTypical Well/Data SpacingTypical Well/Data Spacing

    In Orenburg FieldIn Orenburg FieldIn Orenburg FieldIn Orenburg Field

    (Relative to Panel D)(Relative to Panel D)(Relative to Panel D)(Relative to Panel D)

    CCCC

    DDDD

     

    Formation

    Flow Units

    Applied

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    46/56

    ppReservoir

    Geology

    Porosity andpermeability

    correlate withdepositionaltexture

     

    Typical Upward-Shallowing Cycles

    Copyright 2008, NExT, All rights reserved 46

    a at

    cappedcycles defineshoreline

    Thickness ofcycles is afew to manymeters

    AppliedDevelopment Of A Depositional Cycle

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    47/56

    Reservoir

    GeologyDecreasing

    AccommodationSpace

    Prograding EventSea Level

    Development Of A Depositional Cycle

    Copyright 2008, NExT, All rights reserved 47

    Due to structural subsidence and eustatic sea-level fluctuation

    Subtidal wackestone and mudstone

    Tidal flat wackestone and mudstone

    Subtidal mud-dominated packstoneSubtidal grain-dominated fabrics

    IncreasingAccommodation

    Space

    (modified from Lucia, 1999)

    Sea Level

    AppliedHi h F C l d D iti l T t

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    48/56

    Reservoir

    Geology

    ProgradingHighstand Systems

    Tract (HST)

    Explanation

    High-Frequency Cycles and Depositional Texture

    Copyright 2008, NExT, All rights reserved 48

    25 Miles

    50feet

    Tidal FlatGrainstone

    Deep WaterMuds

    Outer Ramp Muds

    Grain-DominatedPackstone

    High-FrequencyCycles

    BacksteppingTransgressive Systems

    Tract (TST)

    Inner Ramp Muds

    Scale

    (modified from Lucia, 1999)

    123

    45

    6

    AppliedDistribution of Depositional

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    49/56

    Reservoir

    Geology

    Distribution of DepositionalPorosity and Permeability

    Copyright 2008, NExT, All rights reserved 49

    25 Miles

    50feet

    Scale

    70

    55

    63

    High-FrequencyCycles

    45

    (modified from Lucia, 1999)

    123

    45

    6

    Porosity(%) Permeability(md)

    5,500

    30,000

    1,800

    200Porosity and permeability valuesare for modern environments

    Highest permeability is in the ramp crest (yellow) and

    tidal flats (red)

    AppliedRamp and Shelf Facies Distributions

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    50/56

    Reservoir

    Geology

    Holocene

    porosity and

    RampCrest

    MiddleRamp

    PeritidalOuterRamp

    Basin

    Sediment Transport

    HIgh energy

    HIgh energy

    Ramp

    Ramp and Shelf Facies Distributions

    Copyright 2008, NExT, All rights reserved 50

     

    values fordepositionaltextures

    Peritidal MiddleShelf ShelfCrest OuterShelf Basin

    Sediment Transport

    HIgh energy

    HIgh energy

    Tidal flat

    Grainstone

    Boundstone

    Grain-

    dominatedpackstone

    Inner ramp muds

    Outer ramp muds

    Deep water

    ramp muds

    Porosity(%)

    Porosity(%)

    Perm.(md)

    Perm.(md)63

    45

    45

    55

    70

    70

    70

    5,500

    30,000

    30,000

    1,800

    200

    200

    200

    (modified from Enos and Swatsky, 1981; Lucia, 1999)

    AppliedR i

    Analog – Permian Basin, Texas

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    51/56

    Reservoir

    GeologyNorth Jenkins Field

    Increasing Oil Production   Increasing Water Production

    Increasing Effective Porosity and Total Fluid Recovery

    Post ClearFork-Glorieta

    Intertidal   Subtidalφ   φφ

    φ

    k kk

    k

    Analog Permian Basin, Texas

    Copyright 2008, NExT, All rights reserved 51

    Middle to Lower Paleozoic

    Pre-Clear Fork-Glorieta  Oil

    OilOil

    Water

    WaterWater

    Progradationally StackedReservoir Compartments

    φ k

    (modified from Atchley and others , 1999)

    AppliedR i

    Effect of Geologic Model on Simulation Results

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    52/56

    Reservoir

    Geology

    Less constrained and/orsimpler models tend to

    result in over-optimistic

    Permeability Distribution Cross

    Sections

    Modeling Results – Permian Basin

    Model A – Simple interpolation

    Effect of Geologic Model on Simulation Results

    Copyright 2008, NExT, All rights reserved 52

    pre ct ons

    Model A predicts 50%

    recovery of oil in place

    Model B predicts 35%

    recovery

    Lower predicted recovery

    but better ability to target

    effectively

    Model B – Actual Permeability Distribution

    AppliedR i Reservoir Property Distribution

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    53/56

    Reservoir

    Geology

    Upper model is

    unconstrained by faciesmodel and provides

    geologically unrealistic

    Undesirable model

    Reservoir Property Distribution

    Copyright 2008, NExT, All rights reserved 53

    Lower model distributes

    reservoir properties in a

    more realistic manner

    Desirable modelUses rock fabric, but not depositional framework

    Uses uses both rock fabric and depositional framework

    (i.e. constrained by cycle boundaries)

    AppliedReservoir

    Carbonate Reservoir Property Distribution -

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    54/56

    Reservoir

    Geology

    Shows porosity

    distribution in a 1-

    meter thick interval

    High lateral

    p yPorosity

    Copyright 2008, NExT, All rights reserved 54

    Porosity trends

    parallel the

    shoreline / shelf

    margin

    (modified from Tinker, 1996)

    AppliedReservoir

    Schematic Reservoir Layering Profile In

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    55/56

    Reservoir

    Geology Flow unitBaffles/barriers

    3150

    SA -97ASA -251

      SA -356 SA -71  SA -344 SA -371SA -348

    SA -346  SA -37

    3200

    3250

    3100

    3150

    3250

    3300

    3150

    3200

    3100

    3150

    3200

    3150

    3200

    31003150

    3200

    y gA Carbonate Reservoir

    Copyright 2008, NExT, All rights reserved 55

    3300

    3350

    32503200

    3250

    3250

    3250

    3350

    3300

    3250

    3300

    3200

    3250

    3300

    3350

    3250

    From Bastian and others

    Example of flow and non-flow units in a carbonate reservoir, Pozo Rica oilfield, Mexico, from an integrated reservoir study by HOLDITCH.

    AppliedReservoir Recovery Efficiency By Depositional System

  • 8/20/2019 04-CarbonateDepSystems [Compatibility Mode].pdf

    56/56

    Reservoir

    Geology

    Recovery Efficiency By Depositional System

    Clastic

    Wave-dominated DeltaicBarrier Strandplain

    Fluvial Deltaic

    Wave-Modified Deltaic

    Fluvial

    Fluvial DeltaicBack-Barrier Strandplain

    Copyright 2008, NExT, All rights reserved 56

    Carbonate

    0 20 40 6080

    100

    Average Recovery Efficiency (Percent)

    Mud-Rich Submarine Fan

    Atoll-Pinnacle Reef

    Platform MarginOpen Shelf-Ramp

    Cretaceous Restricted Platform

    Karst-Modified Open Shelf-RampPlatform Margin

    Paleozoic Restricted Platform

    Unconformity Related