Top Banner

of 41

03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

Apr 14, 2018

Download

Documents

bulentbulut
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    1/41

    1

    Filter Performance,

    Efficiency, Penetration,Differential Pressure

    Product Line Industrial Filtration TechnologyStatus: March 2012

    Product Training

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    2/41

    2

    Agenda

    Efficiency + Penetration Definition of Efficiency + Penetration

    Particle Filtration Mechanisms + MPPS

    Differential Pressure Influencing Values of Differential Pressure

    Filter Performance

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    3/41

    3

    Agenda

    Efficiency + Penetration

    Definition of Efficiency + Penetration

    Particle Filtration Mechanisms + MPPS

    Differential Pressure Influencing Values of Differential Pressure

    Filter Performance

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    4/41

    4

    Efficiency and Penetration

    FilterConcentration or Quantity (of

    particles) at filter outlet Co

    Concentration or Quantity

    (of particles) at filter inlet Ci

    Quantity of particles upstream and downstream

    a (depth) filter can be measured e.g. by particle counter

    Quantity of particles on a depth filter

    are difficult to measure!

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    5/41

    5

    Efficiency and Penetration

    FilterConcentration or Quantity

    (of particles) at filter inlet Ci

    Ci = 100 Particles

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    6/41

    6

    Efficiency and Penetration

    Filter

    90 Particles retained by filter

    Concentration or Quantity (of

    particles) at filter outlet Co

    Co = 10 Particles passed the filter

    Concentration or Quantity

    (of particles) at filter inlet Ci

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    7/41

    7

    Efficiency and Penetration

    100%

    C

    CCE

    i

    oi

    %100)

    C

    C1(E

    i

    o

    %100filterupstreamparticlesofQuantity

    filterbyretainedparticlesofQuantity

    EfficiencyE

    or

    %90%100)100

    101(E

    Example:

    Ci = 100 particles; Co = 10 particles

    Efficiency = 90%

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    8/41

    8

    Efficiency and Penetration

    100%

    filterupstreamparticlesofQuantity

    filterthepassedparticlesofQuantitynPenetratioP

    %100C

    CP

    i

    o

    Example:

    Ci = 100 particles; Co = 10 particles

    %10%10010010P

    Penetration = 10%

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    9/41

    9

    Efficiency and Penetration

    P100%E

    Conclusion:

    E = 100% - 10% = 90%

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    10/41

    10

    Efficiency and Penetration

    %100)

    filterupstreammparticles/ofNumber

    filterdownstreammparticles/ofNumber1(E

    %100)filterupstream/mmg

    filterdownstream/mmg1(E

    oil

    oil

    Filter Efficiency and Penetration can be related to

    different definitions of concentrations.Some examples

    %100)filterupstreamppm

    filterdownstreamppm1(E

    oil

    oil

    ppmwt= mg/kg

    ppmVol= ml/m

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    11/41

    11

    Efficiency and PenetrationCalculation Example:

    Oil aerosol concentration atfilter inlet Ci = 15 mg/m

    Oil aerosol concentration at filteroutlet Co = 0,1 mg/m

    Which filter efficiency is needed to achieve the required outlet concentration?

    %3,99%100)15mg/m0,1mg/m1(%100)

    CC1(E

    i

    o

    Filter element grade M (micro filter) achieves an oil aerosol efficiency of

    99,7%

    ???

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    12/41

    12

    Efficiency and Penetration

    10.000 Particles

    90%Efficiency

    99%Efficiency

    99,9%Efficiency

    99,99%Efficiency

    10% Penetration

    = 1.000 particles

    1% Penetration

    = 100 particles

    0,1% Penetration

    = 10 particles

    0,01% Penetration

    = 1 particle

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    13/41

    13

    Agenda

    Efficiency + Penetration

    Definition of Efficiency + Penetration

    Particle Filtration Mechanisms + MPPS

    Differential Pressure

    Influencing Values of Differential Pressure

    Filter Performance

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    14/41

    14

    Particle Filtration Spectrum

    Aerosols and Solid Particles

    0,01 0,1 10 1001 10000,001

    Viruses

    Particle Size [ m ]

    Vapour, fumes, smoke Dust Mist Spray

    10000

    Droplets, Grains

    Bacteria Drifting Sand

    Gas Molecules Flour

    Grains of Salt Pollen

    Dried Milk Spores

    Pigments Human Hair

    Soot Cement Dust

    Tobacco Smoke Coal Dust

    Oil Vapor Water Clouds

    Perceptible under microscope Visually PerceptibleSubmicroscopic Perceptible

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    15/41

    15

    Primary Particle Filtration Mechanisms(Fibrous Media)

    DiffusiveInterception

    Fiber

    Parameter Change Efficiency

    Particle

    Diameter

    Fiber / Pore

    diameter

    Air Velocity

    Temperature

    Air Viscosity

    Retention Mechanism Retention of smaller contaminations (< 0,1m)

    Diffusive Interception

    D = (1/vdf* CKT) / (3Nydp)

    D = Diffusion Coefficient

    V = Velocity of air

    C = Cunningham correction factor

    K = Boltzmann constantT = Kelvin temperature

    df= Fiber Diameter

    Ny = Air viscosity

    dp = Particle diameter

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    16/41

    16

    Primary Particle Filtration Mechanisms(Fibrous Media)

    Interception

    Fiber

    Retention Mechanism Retention of larger contaminations (> 0,5m)

    Interception

    Parameter Change Efficiency

    Particle

    Diameter

    Fiber

    Diameter

    R = dp / df

    dp = Particle diameter

    df= Fiber diameter

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    17/41

    17

    Primary Particle Filtration Mechanisms(Fibrous Media)

    Inertial Impaction

    Fiber

    Parameter Change Efficiency

    Particle

    Diameter

    Air Velocity

    Fiber / Pore

    diameter

    Air Viscosity

    Particle

    density

    Temperature

    Retention Mechanism Retention of larger contaminations (> 0,5m)

    Inertial Impaction

    M = (Cpvdp2) / (18Nydf)

    M = Inertia parameter

    v = Velocity of air

    C = Cunningham correction factor

    p = Particle densitydf= Fiber Diameter

    Ny = Air viscosity

    dp = Particle diameter

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    18/41

    18

    Primary Particle Filtration Mechanisms(Fibrous Media)

    Gravity

    Fiber

    Fiber

    Fiber

    Retention Mechanism Retention of larger contaminations (> 1m)

    Gravitational Settling

    Parameter Change Efficiency

    Particle

    Diameter

    Air Velocity

    Air Viscosity

    Particledensity

    Temperature

    G = (Cpgdp2) / (18NyV)

    G = Settling parameter

    g = Gravitational constantC = Cunningham correction factor

    p = Particle density

    Ny = Air viscosity

    V = Air Velocity

    dp = Particle diameter

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    19/41

    19

    Primary Particle Filtration Mechanisms(Fibrous Media)

    Sieving

    Fiber

    Fiber

    Fiber

    Retention Mechanism Retention of larger contaminations (> 1 m)

    Sieving

    Parameter Change Efficiency

    Particle

    Diameter

    Fiber

    Diameter

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    20/41

    20

    Primary Particle Filtration Mechanisms(Fibrous Media)

    +Electrostatics

    Fiber

    Retention Mechanism

    Retention of contaminations with different

    electric charge than fiber

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    21/41

    21

    Primary Particle Filtration Mechanisms(Fibrous Media)

    0%

    20%

    40%

    60%

    80%

    100%

    0,01 0,10 1,00 10,00

    Particle Diameter (m)

    Efficie

    ncy

    Diffusion

    Regime

    Diffusion

    and

    Interception

    Regime

    Inertial

    Impaction

    and

    Interception

    Regime

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    22/41

    22

    Primary Particle Filtration Mechanisms(Fibrous Media)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Efficienc

    y(%)

    Particle Size (microns)

    Total

    Diffusion

    InertialInterception

    Sieving

    MPPS =

    Most Penetrating Particle Size [m]

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    23/41

    23

    Fractional Efficiency

    1 2 3 4 5 10 300,01 0,02 0,03 0,05 0,1 0,2 0,3 0,5 10050200

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Mobility Diameter[m]

    Fractionalefficienc

    y[%]

    Aerodynamic Diameter [m]

    6,7% at MPPS = 0,29 m

    Filter medium for retention of particles approx. > 3 m

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    24/41

    24

    Fractional Efficiency

    1 2 3 4 5 10 300,01 0,02 0,03 0,05 0,1 0,2 0,3 0,5 20 50 100

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Mobility Diameter [m]

    Fraktionsabscheideg

    rad[%]

    Aerodynamic Diameter [m]

    72,2% at MPPS = 0,14 m

    Filter medium for retention of particles approx. > 1 m

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    25/41

    25

    Agenda

    Efficiency + Penetration

    Definition of Efficiency + Penetration

    Particle Filtration Mechanisms + MPPS

    Differential Pressure

    Influencing Values of Differential Pressure

    Filter Performance

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    26/41

    26

    Cost of Differential Pressure

    After-cooler, Separators+Filters,

    Dryers, Pressure Vessels, Valves,

    Pipelines, Fittings,

    6 bar

    7 bar = 6 bar + 1 bar

    + 1 bar + 10% energy cost

    Reduced flow Extended running time

    + 8K additional compression temperature

    Additional cooling energy needed

    Compressor Differential Pressurep = 1 bar

    7 bar

    Application

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    27/41

    27

    Differential Pressure of Filters

    p1 p2p1 > p2

    Flow through a filter always creates differential pressure!

    p = p1 p2

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    28/41

    28

    Differential Pressure of Filters

    Totalp =

    p Filter Housing p Filter Element

    +

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    29/41

    29

    Agenda

    Efficiency + Penetration

    Definition of Efficiency + Penetration

    Particle Filtration Mechanisms + MPPS

    Differential Pressure

    Influencing Values of Differential Pressure

    Filter Performance

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    30/41

    30

    Influencing Values of Differential Pressure

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 0,1 0,2 0,3 0,4 0,5 0,6

    Flow Velocity Filter Element [m/s]

    Dp[mbar]

    p Filter Medium

    p Filter Housing

    p Entire System

    Volume Flow + Flow Velocity

    +

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    31/41

    31

    Influencing Values of Differential Pressure

    0

    20

    40

    60

    80

    100

    120

    140

    20% 40% 60% 80% 100%

    Nominal Flow

    deltap[mbar]

    1bar a

    2bar a

    3bar a

    4bar a

    5bar a

    6bar a

    7bar a

    8bar a

    Operating Pressure

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    32/41

    32

    Influencing Values of Differential Pressure

    Binder containing glass fibres

    Binder-free glass fibres

    Synteq XP

    Filter Media

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    33/41

    33

    Influencing Values of Differential Pressure

    Filter Manufacturing Technology

    Wrapped Filter Media

    Pleated Filter Media

    Binder containing glass fibres

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    34/41

    34

    Influencing Values of Differential Pressure

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    20% 100%

    Nominal Flow

    DifferentialPressur

    e[mbar] p at wet condition

    (at certain oil viscosity)

    p at dry condition

    Wetting of Filter Media

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    35/41

    35

    Influencing Values of Differential Pressure

    Particle Contamination of Filter Media

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    36/41

    36

    Influencing Values of Differential Pressure

    Volume Flow + Flow Velocity

    Operating Pressure

    Filter Media

    Filter Manufacturing Technology

    Wetting of Filter Media

    Particle Contamination

    Summary

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    37/41

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    38/41

    38

    Filter Performance

    Filter Performance is defined by

    Efficiency and Differential Pressure

    Efficency

    [%]

    DifferentialPressure[m

    bar]

    Differential Pressure

    Efficiency

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    39/41

    39

    Filter Performance

    Efficency

    [%]

    DifferentialPressure[m

    bar] Required

    Efficiency level

    Best

    efficiency

    High

    p

    High

    efficiency

    Lowestp

    Good

    efficiency

    Highest

    p

    Efficiency

    too low!

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    40/41

    40

    Filter Performance

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225250

    275

    300

    325

    350

    375

    400

    425450

    475

    500

    Competitor A

    (pleated)

    Competitor B

    (pleated)

    Competitor C

    p[m

    bar]

    98

    98,1

    98,2

    98,3

    98,4

    98,5

    98,6

    98,7

    98,8

    98,999

    99,1

    99,2

    99,3

    99,4

    99,5

    99,6

    99,799,8

    99,9

    100

    Efficien

    cy[%]

    Differential pressure (p) and retention rate (efficiency) according ISO 12500-1.

    Comparable coalescence filter oil wetted steady state at 8 bar.

    p p p p p p p p

    Required Efficiency Level Grade S (Submicrofilter)

    Donaldson

  • 7/29/2019 03_Filter_Performance_Efficiency_Penetration_MPPS_DifferentialPressure_120314 (2).pptx

    41/41

    41

    Questions ?