Top Banner
01/04/09 A. Salamon – TDAQ WG - CERN 1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni
19

01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

Jan 18, 2016

Download

Documents

Isabel Jenkins
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 1

LKr calorimeter L0 trigger

V. Bonaiuto, L. Cesaroni, A. Fucci,A. Salamon, G. Salina, F. Sargeni

Page 2: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 2

L0 LKr trigger

• L0 LKr trigger (photon veto): cluster counting with 1-2 ns time resolution• Use existing hardware (NA48 and LHC)• Use the NA48 analog sums (2x8 cells) and cables replacing the “old”

system with a new TELL1 based system

Page 3: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 3

L0 LKr trigger

• Use analog sums (2x8 cells) and all the cables already exist• Need to design the trigger processor

read-out boards

13k analogchannels

analogsums

LKr calorimeter

DAQ

864 analogchannels

L0 LKrtrigger

read-outafter L0

CTP

Page 4: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 4

The TELL1 board

• LHCb general purpose data acquisition board• 5 user programmable FPGAs, large on-board DDR memories• mezzanines for 4 x 1 gbit ethernet output

analog mezzanine16 x 10 bit

Stratix FPGA25k logic elem

Stratix FPGA40k logic elem

digital mezzanine12 x 16 bit

parallel bus32 bit @ 160 MHz

output interface4 x gbit ethernet

Page 5: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 5

FE boards: pulse reconstr (time, position, energy)

TELL

1

28 boards

CTP

L0 LKr Trigger: architecture

• Need to design two mezzanines:– one FE + ADC mezzanine– one ethernet concentrator mezzanine

•Two 9U crates!

13248 channels for the readout 864 channels (2x8 pixel supercells) for the trigger!

AD

C

mezz

32 supercells

Concentrator boards: merging, sorting

TELL

1

24 ch

5 boards

Eth

ern

et

mezzethernet

1 meter

32 ch

Page 6: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 6

L0 Lkr trigger: architecture

Concentrator TELL1: merging, sorting24 Front-End TELL1

Front-End TELL1: pulse reconstruction (time, position and energy)32 analog channels (1 channel = 2x8 liquid krypton cells analog sum)

1 analog sum (supercell) =

2x8 channels

28 FE TELL1s, 5 concentrator TELL1s, 32 supercells per TELL1

Page 7: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 7

Front-End ADC mezzanine

• At the moment we are preparing a test stand using an existing LHCb mezzanine

• New mezzanine later

TELL

1

28 boards

CTPA

DC

m

ezz

32 supercells

TELL

1

24 ch

5 boards

Eth

ern

et

mezz

ethernet

32 ch

Page 8: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 8

FE to concentrator link I (new receiver)

• Use existing gbit ethernet output mezzanine and design new ethernet receiver on the concentrator

• Up to 24 ethernet input on the concentrator = 8 FE TELL1 (3 gbit per TELL1)

• 24 ethernet connector is (mechanically) difficult but possible

• Pros: lower design effort, bidirectional, added FPGA processing power on the receiver, flexible (same link for trigger and readout)

• Cons: ethernet overhead, lower bandwidth

TELL

1

Concentr

Eth

ern

et

mezz

ethernet

Front-End

Eth

TXTE

LL1

NEW!!

Page 9: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 9

FE to concentrator link II (new TX)

• Use existing optical receiver input mezzanine on the concentrator and design new ethernet + fiber optic transmitter

• Cons: higher design effort, monodirectional, no added FPGA processing power on the receiver

• Pros: no ethernet and added latency on the trigger path, higher bandwidth

TELL

1

Concentr

Opti

cal m

ezz

ethernet

Front-End

Eth

+

op

t TXTE

LL1

NEW!!

Page 10: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 10

Pulse reconstruction (FE TELL1)

Peak in spacePeak in time

Over threshold

7 bit reconstructed fine time

Parabolic fitPeak processor(one channel)

Peak finder (one channel)

Page 11: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 11

80 MHz sampling: 50 ps/binfull scale pulse -> 100 ps rms

40 MHz sampling: 100 ps/bin1/40 full scale pulse + noise and jitter -> 700 ps rms

simul

ation

simul

ation

simul

ation

simul

ation

Some plots (digital simulation!!!)

Page 12: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 12

Front-End PP FPGA

multipliers, dividers: lot of Logic Elements

Fmax ~ 80 MHz80% device usageon an EP1S25

Page 13: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 13

Front-End PP FPGA (new!!)

multipliers, dividers: lot of Logic Elements

RATE:5 samples @ 80 MHz = 16 MHz / PP FPGA

Page 14: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 14

Hit rates (Front-End TELL1s)

• Instantaneous design hit rate (Marco’s TDAQ note): 30 MHz

• Rate in the central region (Giuseppe’s private communication): 3 times mean hit rate

• Clusters of 256 liquid krypton cells (conservative)

• All hits generate a shower (conservative)

( 30 MHz / 28 ) x 3 = 3.2

( 30 MHz / 28 ) x 3 = 3.2

( 30 MHz / 28 ) x 3 / 8 = 0.4

TOTAL RATE = 10.8 MHzvs

64 bit/cluster over 3 gbit eth links

Page 15: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 15

Hit rates (PP FPGA = ¼ TELL1)

• Same assumptions• Fast communication between PP

FPGAs in the same TELL1 -> rate reduction

( 30 MHz / 28 ) x 3 / 8 = 0.4

TOTAL RATE = 4.8 MHzvs

64 bit/cluster over 32b @ 160 MHz

( 30 MHz / 28 ) x 3 /4 = 0.8

( 30 MHz / 28 ) x 3 / 4 = 0.8

Page 16: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 16

Concentrator TELL1 (overlkap handling and hit rates)

Maximum in the red area: the cluster is handled by the “red” TELL1 concentrator

Maximum in the blue area: the cluster is handled by the “blue” TELL1 concentrator

Double counting resolved at the level of the concentrator

Only 4 over 8 Front-End TELL1s contribute to the output hit rate:

OUTPUT RATE = (30 MHz / 28) x 3 x 4 = 12.9 MHz

vs64 bit/cluster over 3 gbit eth links

Page 17: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 17

Lab tests: front-end

• We are preparing our test station for the Front-End mezzanine

• AWG 2021 -> mezzanino analog sums -> cable -> TELL1 analog mezzanine -> TELL1

• Same signal in two different analog sums channels

• time resolution rms = sigma(T1-T2)/sqrt(2)

Arbitrary waveform generator: AWG2021

NA48 analog sum card

TELL1

TELL1 analog mezzanine

Page 18: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 18

Lab tests: concentrator link

• We are also working at the test station for our receiver

• Use an altera development kit (Stratix II 60k Logic Elements) to validate and study the receiver

ethernet

Page 19: 01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.

01/04/09 A. Salamon – TDAQ WG - CERN 19

Time schedule

• End of april – beginning of may: FE and ethernet link tests in the lab• Then start mezzanines desing• Then try to test the system on the liquid krypton (with LHCb ADC

mezzanine first)