Top Banner

of 28

01 Tt2530eu02al 01 Introduction

Apr 05, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    1/28

    Introduction Siemens

    TT2530EU02AL_011

    Contents

    1 Definition of Fiber 32 History of Optical Transmission 73 Loss of a Few Optical Media 11

    4 Advantages and Disadvantages of Optical Fibers 135 Principle of Transmission with Light 156 Regenerator Spacing 197 Exercise 218 Solution 25

    Introduction

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    2/28

    Siemens Introduction

    TT2530EU02AL_012

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    3/28

    Introduction Siemens

    TT2530EU02AL_013

    1 Definition of Fiber

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    4/28

    Siemens Introduction

    TT2530EU02AL_014

    In optical transmission an effect of total internal reflection is desired. This effectoccurs if two transparent media are arranged one above the other. The externalmedium must be "better" than the internal one.

    The combination of glass and air would also fulfil this condition. However, oneachieves more favorable characteristics with two almost equally "good" types of glass.

    A technically functional optical fiber (OF) consists of the following components:

    The information-carrying glass (the core ) is covered

    with a slightly "better" glass (the cladding ).

    A protective layer of plastic (the coating ) is applied over the cladding.

    This combination of core - cladding - coating is the fiber.

    The fiber-glass factory delivers the fibers with a naturally colored coating.If fibers are processed into cables, they are colored for identification in the cablefactory according to the specifications of the customer.

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    5/28

    Introduction Siemens

    TT2530EU02AL_015

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    125

    250

    Potical fibres use din transmission applications have the following dimensions:

    Diameter of the core approx.:8 mm, 50 mm, 62,5 mmDiameter with cladding:125 mmDiameter with the coating:250 mm

    Fibre cross sectionandrefraction index.

    Fig. 1

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    6/28

    Siemens Introduction

    TT2530EU02AL_016

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    7/28

    Introduction Siemens

    TT2530EU02AL_017

    2 History of Optical Transmission

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    8/28

    Siemens Introduction

    TT2530EU02AL_018

    Use of light signals in the early epoch (such as signal fluch)

    1626 Snell's law 1794 First telegraph line in France

    1870 John Tydall demonstrated the light conductivity of a water jet

    1880 Graham Bell developed the Opthophon (voice signals were sent via light but were effected by the whether)

    1888 Demonstration of electromagnetic waves by Hertz

    1897 Analysis of the waveguide

    1934 Norman R. French patented an optical telephone system using glass rodsor something similar in order to transport voice signals.

    1958 Arthur Schawlow and Charles H. Townes developed the laser.

    1960 Theodor H. Maiman operated the laser the first time.

    1962 First semiconductor laser by GE, IBM, MIT

    1966 Charles H. Kao and George A. Hockham proposed the glass fiber asconductor.

    1968 Optical wave guides with an attenuation of 1000 dB/km.

    1970 Corning Glassworks produces an OWG with less than 20 dB/km at 633 nm.

    1972 Attenuation of 4 dB/km at 850 nm and a bandwidth of 20 - 50 MHz/km isachieved.

    1973 The first FO cables for telephone purposes are employed on militaryvessels.

    1974 The concept for graded index fiber is introduced 500-1000 MHz/km.

    1976 First system trials in the USA by Western Electric in Atlanta. Siemens startsa 2.1 km long test line in Munich.

    1977 Field trial in Chicago over 2.5 km by Bell Systems.

    Simultaneously in Long Beach over 9.5 km by General Telephone.

    Siemens installs the first FO link for DBP in Berlin.

    1981 Dispersion 4 ps/nm x km Beales GB

    1983 Siecor delivers the first single mode fiber cable.

    1984 In the laboratory, over 200 km spans are achieved at 1.55 m.

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    9/28

    Introduction Siemens

    TT2530EU02AL_019

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1985 Dispersion-shifted fiber

    1987 Foundation of the Siecor company in Neustadt with 80,000 km processedglass fiber. LA 140 LWL

    1992 Siemens, together with Siecor, installs more than 3,000,000 km of cabledfiber in over 25 countries. SLA 4/SLA 16

    1995 The cable factory Neustadt processes 500,000 km fiber into cables for thefirst time.

    1996 Foundation of PT Trafindo Perkasa in Indonesia. The production startstemporarily with 70,000 km of fiber.

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    10/28

    Siemens Introduction

    TT2530EU02AL_0110

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    11/28

    Introduction Siemens

    TT2530EU02AL_0111

    3 Loss of a Few Optical Media

    Medium

    Pure Water Window glassOptical glassThick fogCity air in Dusseldorf Glass fibre 1970

    Good fibre 1978Good fibre 1986

    Optical Attenuation

    100,00050,000

    3,000500

    1020

    30,2

    Penetration depth at 50% light gloss

    33 mm66 mm

    1,000 mm6,6 m

    330 m165 m

    1,000 m18,000 m

    Fig. 2

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    12/28

    Siemens Introduction

    TT2530EU02AL_0112

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    13/28

    Introduction Siemens

    TT2530EU02AL_0113

    4 Advantages and Disadvantages of OpticalFibers

    Advantages:l High transmission capacityl Low susceptibility to electromagnetic interference important for use in industrial

    plants control lines in power plants in principle, no spacing requirements when runin parallel.

    l Potential separation between transmitter and receiver (no ground loop)l Long distances between repeaters over 300 km is possible for sea cables large

    production lengths therefore greater distances between couplings therefore fewer couplings therefore fewer installation errors.

    l No line interference, no signal dispersionl Highly resistant to eavesdroppingl Short-circuit-free (no spark formation) important in areas where there is a risk of

    explosions.l Light weight, highly flexible lighter equipment easier handling less volume for

    shipping smaller cable reels lighter trailers smaller winches.l Smaller dimensions smaller cable diameter more effective utilization of cable

    ducts.l No corrosion of fibers.l Unlimited material availability (SiO 2 is available in nearly limitless supply) 1 gram

    of silicon corresponds to 10 kg of copper.#

    Disadvantages:

    l Installation technologyl high level of precision requiredl sophisticated devices necessary

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    14/28

    Siemens Introduction

    TT2530EU02AL_0114

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    15/28

    Introduction Siemens

    TT2530EU02AL_0115

    5 Principle of Transmission with Light

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    16/28

    Siemens Introduction

    TT2530EU02AL_0116

    Message transmission with light can be easily explained:

    In the transmitter, the electrical signal is converted into a light signal in an electro-optical converter (e.g. a light emitting diode (LED) or a laser diode (LD)). To be moreprecise: The light intensity of the transmitting diode is modulated by the binary pulse-modulated diode current i 1, and light with the power P (0) is coupled with the opticalfiber. After traversing the optical fiber, the light is converted back into an electricalsignal in an opto-electric converter (e.g. photodiode) at the end of the transmissionroute. The optical transmission route therefore begins and ends with an electricalinterface whose data is normed independently of the transmission medium. There-fore, digital systems with fiber optics use, in principle, the same interfaces (CCITTrecommendations G. 703) they use for radio relay and multiplex units.

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    17/28

    Introduction Siemens

    TT2530EU02AL_0117

    i1

    CCITT Interface

    Light-emittingor laser code

    opticaltransmitter

    i2+

    -Photodiode optical

    receiver

    Optical fibre

    P (0)

    P (L)

    L Length of optical transmission routei1, i2 Laser diode or photodiode currentP(0), P(L) Optical transmit or receive power

    Fig. 3

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    18/28

    Siemens Introduction

    TT2530EU02AL_0118

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    19/28

    Introduction Siemens

    TT2530EU02AL_0119

    6 Regenerator SpacingThe diagram shows regenerator spacing independently of transmission capacity andthe various transmission media.

    An analog system (for example with 10,800 channels over a 2.6/9.5 coaxial cable)requires a repeater every 1.55 km.

    A glass fiber can transmit more than three times as many channels across approx.100 km without a regenerator.

    Maximum regenerator spacing

    100

    50

    20

    10

    5

    2

    1 100 200 500 1000 2000 5000 10000 20000 50000

    MM fibre

    1500 nm

    V300

    V960

    V2700

    V3600coaxial pair 2.6/9.5 mm

    V10800

    LA 34 KX

    LA 140 KX

    LA 565 KX

    8 Mbit/s 34 Mbit/s 140 Mbit/s565 Mbit/s622 2.5 Gbit/s

    bit rate

    SM fibre

    Fig. 4

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    20/28

    Siemens Introduction

    TT2530EU02AL_0120

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    21/28

    Introduction Siemens

    TT2530EU02AL_0121

    7 Exercise

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    22/28

    Siemens Introduction

    TT2530EU02AL_0122

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    23/28

    Introduction Siemens

    TT2530EU02AL_0123

    Exercise

    1. Name at least 5 decisive advantages of fiber-optic technology over standardcopper cable technology.

    a)

    b)

    c)

    d)

    e)

    2. In what year did the Corning Glassworks company succeed in manufacturing anoptical fiber with an attenuation of less than 20 dB/km (the beginning of fiber-optic technology)?

    3. Describe the basic design of a fiber-optic transmission route!

    4. Name the three elements of an optical fiber.

    a)

    b)

    c)

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    24/28

    Siemens Introduction

    TT2530EU02AL_0124

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    25/28

    Introduction Siemens

    TT2530EU02AL_0125

    8 Solution

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    26/28

    Siemens Introduction

    TT2530EU02AL_0126

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    27/28

    Introduction Siemens

    TT2530EU02AL_0127

    Solution

    1. a) high transmission capacity

    b) low weight

    c) large production lengths

    d) not susceptible to electromagnetic influence

    f) resistant to eavesdropping

    2. 1970

    3. telephone - electro-optical converter - fiber - electro-optical converter - telephone

    4. a) core

    b) cladding

    c) coating

  • 7/31/2019 01 Tt2530eu02al 01 Introduction

    28/28

    Siemens Introduction