Top Banner
1 Fundamentals of Power System Stability 1 Power System Stability Seminar DIgSILENT GmbH Fundamentals of Power System Stability 2 General Definitions
38

01_-_Stability_Fundamental-libre (1).pdf

May 12, 2017

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 01_-_Stability_Fundamental-libre (1).pdf

1

Fundamentals of Power System Stability 1

Power System Stability

Seminar

DIgSILENT GmbH

Fundamentals of Power System Stability 2

General Definitions

Page 2: 01_-_Stability_Fundamental-libre (1).pdf

2

Fundamentals of Power System Stability 3

• „Stability“ - general definition:

Ability of a system to return to a steady state after a disturbance.

• Small disturbance effects

• Large disturbance effects (nonlinear dynamics)

• Power System Stability - definition according to CIGRE/IEEE:

• Rotor angle stability (oscillatory, transient-stability)

• Voltage stability (short-term, long-term, dynamic)

• Frequency stability

Power System Stability

Fundamentals of Power System Stability 4

Frequency Stability

Page 3: 01_-_Stability_Fundamental-libre (1).pdf

3

Fundamentals of Power System Stability 5

Ability of a power system to compensate for a power deficit:

1. Inertial reserve (network time constant)

� Lost power is compensated by the energy stored in rotating masses of all generators -> Frequency decreasing

2. Primary reserve:

� Lost power is compensated by an increase in production of primary controlled units. -> Frequency drop partly compensated

3. Secondary reserve:

� Lost power is compensated by secondary controlled units. Frequency and area exchange flows reestablished

4. Re-Dispatch of Generation

Frequency Stability

Fundamentals of Power System Stability 6

• Frequency disturbance following to an unbalance in active power

Frequency Deviation according to UCTE design criterion

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

-10 0 10 20 30 40 50 60 70 80 90

dF in Hz

t in s

Rotor Inertia Dynamic Governor Action Steady State Deviation

Frequency Stability

Page 4: 01_-_Stability_Fundamental-libre (1).pdf

4

Fundamentals of Power System Stability 7

• Mechanical Equation of each Generator:

• ∆P=ω∆T is power provided to the system by each generating unit.

• Assuming synchronism:

• Power shared according to generator inertia

nn

elmelm

PPPTTJ

ωωω

∆=

−≈−=�

j

i

j

i

ini

J

J

P

P

PJ

=∆

∆=ωω �

Inertial Reserve

Fundamentals of Power System Stability 8

• Steady State Property of Speed Governors:

• Total frequency deviation:

• Multiple Generators:

• Power shared reciprocal to droop settings

( )∑

∑∆

=∆⇒∆=∆i

totitot

K

PffKP

i

j

j

i

jjii

R

R

P

P

PRPR

=∆

∆=∆

PRPK

ffKP ii

i

ii ∆=∆=∆⇒∆=∆1

Primary Control

Page 5: 01_-_Stability_Fundamental-libre (1).pdf

5

Fundamentals of Power System Stability 9

Turbine 1

Turbine 2

Turbine 3

Generator 1

Generator 2

Generator 3

Network

Secondary Control

PT PG

PT PG

PT PG

f PA

Set Value

Set Value

Set Value

Contribution

• Bringing Back Frequency

• Re-establishing area exchange flows

• Active power shared according to participation factors

Secondary Control

Fundamentals of Power System Stability 10

Frequency drop depends on:

• Primary Reserve

• Speed of primary control

• System inertia

Additionally to consider:

• Frequency dependence of load

Frequency Stability

Page 6: 01_-_Stability_Fundamental-libre (1).pdf

6

Fundamentals of Power System Stability 11

• Dynamic Simulations

• Steady state analysis sometimes possible (e.g. generators remain

in synchronism):

• Inertial/Primary controlled load flow calculation

- Frequency deviation

• Secondary controlled load flow calculation

- Generation redispatch

Frequency Stability - Analysis

Fundamentals of Power System Stability 12

20.0015.0010.005.000.00 [s]

1.025

1.000

0.975

0.950

0.925

0.900

0.875

G 1: Turbine Power in p.u.

G2: Turbine Power in p.u.

G3: Turbine Power in p.u.

20.0015.0010.005.000.00 [s]

0.125

0.000

-0.125

-0.250

-0.375

-0.500

-0.625

Bus 7: Deviation of the El. Frequency in Hz

DIgSILENT Nine-bus system Mechanical

Sudden Load Increase

Date: 11/10/2004

Annex: 3-cycle-f. /3

DIg

SIL

EN

T

Frequency Stability

Page 7: 01_-_Stability_Fundamental-libre (1).pdf

7

Fundamentals of Power System Stability 13

Frequency Stability - Analysis

Frequency stability improved by:

Increase of Primary

Reserve and System

Inertia

-Dispatching more generators

-Interruptible loads

-Power Frequency controllers of HVDC links

Improvement of

Primary Control action

-Tuning / replacing of governor controls.

Automatic Load

shedding

-Under-Frequency Load Shedding relays

adjusted according to system-wide criteria.

Fundamentals of Power System Stability 14

Frequency Stability

Typical methods to improve frequency stability:

- Increase of spinning reserve and system inertia (dispatching more generators)

- Power-Frequency controllers on HVDC links

- Tuning / Replacing governor systems

- Under-Frequency load shedding relays adjusted according to system-wide criteria

- Interruptible loads

Page 8: 01_-_Stability_Fundamental-libre (1).pdf

8

Fundamentals of Power System Stability 15

Rotor Angle Stability

Fundamentals of Power System Stability 16

Two distinctive types of rotor angle stability:

- Small signal rotor angle stability (Oscillatory stability)

- Large signal rotor angle stability (Transient stability)

Rotor Angle Stability

Page 9: 01_-_Stability_Fundamental-libre (1).pdf

9

Fundamentals of Power System Stability 17

Small signal rotor angle stability (Oscillatory stability)

Ability of a power system to maintain synchronism under small disturbances

– Damping torque

– Synchronizing torque

Especially the following oscillatory phenomena are a concern:

– Local modes

– Inter-area modes

– Control modes

– (Torsional modes)

Oscillatory Stability

Fundamentals of Power System Stability 18

Small signal rotor angle stability is a system property

Small disturbance -> analysis using linearization around operating

point

Analysis using eigenvalues and eigenvectors

Oscillatory Stability

Page 10: 01_-_Stability_Fundamental-libre (1).pdf

10

Fundamentals of Power System Stability 19

Oscillatory Stability

Typical methods to improve oscillatory stability:

- Power System Stabilizers

- Supplementary control of Static Var Compensators

- Supplementary control of HVDC links

- Reduction of transmission system impedance ( for inter-area oscillations, by addition of lines, series capacitors, etc.)

Fundamentals of Power System Stability 20

Large signal rotor angle stability (Transient stability)

Ability of a power system to maintain synchronism during severe

disturbances

– Critical fault clearing time

Large signal stability depends on system properties and the type

of disturbance (not only a system property)

– Analysis using time domain simulations

Transient Stability

Page 11: 01_-_Stability_Fundamental-libre (1).pdf

11

Fundamentals of Power System Stability 21

3.2342.5871.9401.2940.650.00 [s]

200.00

100.00

0.00

-100.00

-200.00

G1: Rotor angle with reference to reference machine angle in deg

DIgSILENT Transient Stability Subplot/Diagramm

Date: 11/11/2004

Annex: 1 /3

DIg

SIL

EN

T

4.9903.9922.9941.9961.000.00 [s]

25.00

12.50

0.00

-12.50

-25.00

-37.50

G1: Rotor angle with reference to reference machine angle in deg

DIgSILENT Transient Stability Subplot/Diagramm

Date: 11/11/2004

Annex: 1 /3

DIg

SIL

EN

T

Transient Stability

Fundamentals of Power System Stability 22

Transient Stability

Typical methods to improve transient stability:

- Reduction of transmission system impedance (additional lines, series capacitors, etc.).

- High speed fault clearing.

- Single-pole breaker action.

- Voltage control ( SVS, reactor switching, etc.).

- Improved excitation systems ( high speed systems, transient excitation boosters, etc.).

- Remote generator and load tripping.

- Controls on HVDC transmission links.

Page 12: 01_-_Stability_Fundamental-libre (1).pdf

12

Fundamentals of Power System Stability 23

Voltage Stability

Fundamentals of Power System Stability 24

Voltage stability refers to the ability of a power system to

maintain steady voltages at all buses in the system after being

subjected to a disturbance.

• Small disturbance voltage stability (Steady state stability)

– Ability to maintain steady voltages when subjected to small

disturbances

• Large disturbance voltage stability (Dynamic voltage stability)

– Ability to maintain steady voltages after following large disturbances

Voltage Stability

Page 13: 01_-_Stability_Fundamental-libre (1).pdf

13

Fundamentals of Power System Stability 25

Small-Signal:

- Small disturbance

Large-Signal

- System fault

- Loss of generation

Long-Term - P-V-Curves (load flows)

- dv/dQ-Sensitivities

- Long-term dynamic models

including tap-changers, var-

control, excitation limiters, etc.

- P-V-Curves (load flows)

of the faulted state.

- Long-term dynamic models

including tap-changers, var-

control, excitation limiters, etc.

Short-Term - Dynamic models (short-term),

special importance on dynamic

load modeling, stall effects etc.

Voltage Stability - Analysis

Fundamentals of Power System Stability 26

Long-Term vs. Short-Term Voltage Stability

Reactive power control:

Short-Term Long-Term

Q- contribution of

synchronous gen.

Large (thermal overload

capabilities)

Limited by

overexcitation limitors

Switchable shunts No contribution

(switching times too

high)

High contribution

SVC/TSC High contribution High contribution

Page 14: 01_-_Stability_Fundamental-libre (1).pdf

14

Fundamentals of Power System Stability 27

Voltage Stability

Outage of large generator

������������������� ���

Fundamentals of Power System Stability 28

20.0015.0010.005.000.00 [s]

1.25

1.00

0.75

0.50

0.25

0.00

-0.25

APPLE_20: Voltage, Magnitude in p.u.

SUMMERTON_20: Voltage, Magnitude in p.u.

LILLI_20: Voltage, Magnitude in p.u.

BUFF_330: Voltage, Magnitude in p.u.

DIg

SIL

EN

T

Fault with loss of transmission line

Large-Signal Long-TermVoltage Instability

Page 15: 01_-_Stability_Fundamental-libre (1).pdf

15

Fundamentals of Power System Stability 29

Voltage Stability – Q-V-Curves

1762.641462.641162.64862.64562.64262.64

1.40

1.20

1.00

0.80

0.60

0.40

x-Achse: SC: Blindleistung in Mvar

SC: Voltage in p.u., P=1400MW

SC: Voltage in p.u., P=1600MW

SC: Voltage in p.u., P=1800MW

SC: Voltage in p.u., P=2000MW

P=2000MW

P=1800MW

P=1600MW

P=1400MW

DIg

SIL

EN

T

const. P, variable Q

Fundamentals of Power System Stability 30

• Dynamic voltage stability problems are resulting from sudden increase in reactive power demand of induction machine loads.

-> Consequences: Undervoltage trip of one or several machines, dynamic voltage collapse

• Small synchronous generators consume increased amount of reactive power after a heavy disturbance -> voltage recovery problems.

-> Consequences: Slow voltage recovery can lead to undervoltage trips of own supply -> loss of generation

Dynamic Voltage Stability

Page 16: 01_-_Stability_Fundamental-libre (1).pdf

16

Fundamentals of Power System Stability 31

1.201.161.121.081.041.00

3.00

2.00

1.00

0.00

-1.00

x-Axis: GWT: Speed in p.u.

GWT: Electrical Torque in p.u.

1.201.161.121.081.041.00

0.00

-2.00

-4.00

-6.00

-8.00

x-Axis: GWT: Speed in p.u.

GWT: Reactive Power in Mvar

DIg

SIL

EN

T

Dynamic Voltage Stability –Induction Generator (Motor)

Fundamentals of Power System Stability 32

1.041.031.021.011.00

3.00

2.00

1.00

0.00

-1.00

x-Axis: GWT: Speed in p.u.

GWT: Electrical Torque in p.u.

Constant Y = 1.000 p.u. 1.008 p.u.

1.041.031.021.011.00

0.00

-1.00

-2.00

-3.00

-4.00

-5.00

-6.00

x-Axis: GWT: Speed in p.u.

GWT: Reactive Power in Mvar

Constant X = 1.008 p.u.

-1.044 Mvar

DIg

SIL

EN

T

Dynamic Voltage Stability –Induction Generator (Motor)

Page 17: 01_-_Stability_Fundamental-libre (1).pdf

17

Fundamentals of Power System Stability 33

2.001.501.000.500.00 [s]

1.20

1.00

0.80

0.60

0.40

0.20

0.00

G\HV: Voltage, Magnitude in p.u.

MV: Voltage, Magnitude in p.u.

2.001.501.000.500.00 [s]

80.00

40.00

0.00

-40.00

-80.00

-120.00

Cub_0.1\PQ PCC: Active Power in p.u.

Cub_0.1\PQ PCC: Reactive Power in p.u.

2.001.501.000.500.00 [s]

1.06

1.04

1.02

1.00

0.98

GWT: Speed

DIg

SIL

EN

T

Dynamic Voltage Stability –Induction Generator (Motor)

Fundamentals of Power System Stability 34

3.002.001.000.00 [s]

60.00

40.00

20.00

0.00

-20.00

-40.00

Cub_0.1\PQ RedSunset: Active Power in p.u.

Cub_0.1\PQ RedSunset: Reactive Power in p.u.

3.002.001.000.00 [s]

60.00

40.00

20.00

0.00

-20.00

-40.00

Cub_0.2\PQ BlueMountain: Active Power in p.u.

Cub_0.2\PQ BlueMountain: Reactive Power in p.u.

3.002.001.000.00 [s]

60.00

40.00

20.00

0.00

-20.00

-40.00

-60.00

Cub_1.1\PQ GreenField: Active Power in p.u.

Cub_1.1\PQ GreenField: Reactive Power in p.u.

3.002.001.000.00 [s]

1.125

1.000

0.875

0.750

0.625

0.500

0.375

GLE\1: Voltage, Magnitude in p.u.

GLZ\2: Voltage, Magnitude in p.u.

WDH\1: Voltage, Magnitude in p.u.

DIg

SIL

EN

T

Dynamic Voltage Collapse

Page 18: 01_-_Stability_Fundamental-libre (1).pdf

18

Fundamentals of Power System Stability 35

3.002.001.000.00 [s]

1.20

1.00

0.80

0.60

0.40

0.20

0.00

HV: Voltage, Magnitude in p.u.

MV: Voltage, Magnitude in p.u.

3.002.001.000.00 [s]

120.00

80.00

40.00

0.00

-40.00

-80.00

-120.00

Cub_1\PCC PQ: Active Power in p.u.

Cub_1\PCC PQ: Reactive Power in p.u.

DIg

SIL

EN

T

Dynamic Voltage Stability –Voltage Recovery (Synchronous Generators)

Fundamentals of Power System Stability 36

Time-domain Analysis

Page 19: 01_-_Stability_Fundamental-libre (1).pdf

19

Fundamentals of Power System Stability 37

Fast Transients/Network Transients:

Time frame: 10 mys…..500ms

� Lightening

� Switching Overvoltages

� Transformer Inrush/Ferro Resonance

� Decaying DC-Components of short circuit currents

Transients in Power Systems

Fundamentals of Power System Stability 38

Medium Term Transients / Electromechanical Transients

Time frame: 400ms….10s

� Transient Stability

� Critical Fault Clearing Time

� AVR and PSS

� Turbine and governor

� Motor starting

� Load Shedding

Transients in Power Systems

Page 20: 01_-_Stability_Fundamental-libre (1).pdf

20

Fundamentals of Power System Stability 39

Long Term Transients / Dynamic Phenomena

Time Frame: 10s….several min

� Dynamic Stability

� Turbine and governor

� Power-Frequency Control

� Secondary Voltage Control

� Long Term Behavior of Power Stations

Transients in Power Systems

Fundamentals of Power System Stability 40

Stability/EMT

Different Network Models used:

Stability:

EMT:

ILjV ω= VCjI ω=

dt

diLv =

dt

dvCi =

Page 21: 01_-_Stability_Fundamental-libre (1).pdf

21

Fundamentals of Power System Stability 41

Short Circuit Current EMT

0.50 0.38 0.25 0.12 0.00 [s]

800.0

600.0

400.0

200.0

0.00

-200.0

4x555 MVA: Phase Current B in kA

Short Circuit Current with complete model (EMT-model) Plots

Date: 4/25/2001

Annex: 1 /1

DIg

SIL

EN

T

Fundamentals of Power System Stability 42

Short Circuit Current RMS

0.50 0.38 0.25 0.12 0.00 [s]

300.0

250.0

200.0

150.0

100.0

50.00

0.00

4x555 MVA: Current, Magnitude in kA

Short Circuit Current with reduced model (Stability model) Plots

Date: 4/25/2001

Annex: 1 /1

DIg

SIL

EN

T

Page 22: 01_-_Stability_Fundamental-libre (1).pdf

22

Fundamentals of Power System Stability 43

Phenomena RMS-Simulation EMT-Simulation

Critical fault clearing time X (X)

Dynamic motor startup

Peak shaft-torque

X

0

(X)

X

Torsional oscillations

Subsynchronous resonance

X

0

X

X

Dynamic voltage stability

Self excitation of ASM

X

0

(X)

X

Oscillatory stability X ((X))

AVR and PSS dynamics X (X)

Transformer/Motor inrush 0 X

HVDC dynamics (X) X

Switching Over Voltages 0 X

RMS-EMT-Simulation

Fundamentals of Power System Stability 44

Frequency-domain analysis

Page 23: 01_-_Stability_Fundamental-libre (1).pdf

23

Fundamentals of Power System Stability 45

Small signal stability analysis

• Small signal stability is the ability of the power system to maintain

synchronism when subjected to small disturbances.

• Disturbance is considered to be small when equation describing the response

can be linearized.

• Instability may result as: steady increase in rotor angle (lack of synchronizing

torque) or rotor oscillations of increasing amplitude (lack of damping torque)

Fundamentals of Power System Stability 46

Small signal stability analysis

• Linear model generated numerically by Power Factory.

• Calculation of eigenvalues, eigenvectors and participation factors

• Calculation of all modes using QR-algorithm -> limited to systems up to

500..1000 state variables

• Calculation of selected modes using implicitly restarted Arnoldi method ->

application to large systems

Page 24: 01_-_Stability_Fundamental-libre (1).pdf

24

Fundamentals of Power System Stability 47

Small signal stability analysis

• Linear System Representation:

• Transformation:

• Transformed System

• Diagonal System

bAxx +=�

xTx ~=

TbxTATx += − ~~ 1�

TbxDx += ~~�

Fundamentals of Power System Stability 48

Small signal stability analysis

• State Space Representation:

• State of a system is the minimum information at any instant necessary

to determine its future behaviour. The linearly independent variables

describing the state of the system are called state variables x.

• Output variables:

• Initial Equilibrium :

• Perturbation:

),...,,;,...,,( 2121 rnii uuuxxxfx =�

),...,,;,...,( 2121 rnii uuuxxxgy =

iii

iii

iii

xxx

uuu

xxx

��� ∆+=

∆+=

∆+=

0

0

0

0),...,,;,...,,( 02010020100== rnii uuuxxxfx�

Page 25: 01_-_Stability_Fundamental-libre (1).pdf

25

Fundamentals of Power System Stability 49

Small signal stability analysis

• As perturbations are small, the nonlinear functions f and g can

be expanded using the Taylor series:

• Using Vector-Matrix notation:

r

r

jj

n

n

jj

rnjj

r

r

iin

n

iirnii

uu

gu

u

gx

x

gx

x

guuuxxxgy

uu

fu

u

fx

x

fx

x

fuuuxxxfx

∆∂

∂++∆

∂+∆

∂++∆

∂+=

∆∂

∂++∆

∂+∆

∂++∆

∂+=

......),...,;,...,,(

......),...,,;,...,,(

1

1

1

1

0201002010

1

1

1

1

0201002010�

]][[]][[][

]][[]][[][

uDxCy

uBxAx

∆+∆=∆

∆+∆=∆�

Fundamentals of Power System Stability 50

Small signal stability analysis

• Taking the Laplace transform of the previous equations:

• Block Diagram of the state-space representation:

)](][[)](][[)]([

)](][[)](][[)]0([)]([

suDsxCsy

suBsxAxsxs

∆+∆=∆

∆+∆=∆−∆

Page 26: 01_-_Stability_Fundamental-libre (1).pdf

26

Fundamentals of Power System Stability 51

Small signal stability analysis

• Poles of [∆x(s)] and [∆y(s)] are the root of the characteristic equation of matrix

[A]:

• Values of s which satisfy above equation are the eigenvalues of [A]

• Real eigenvalues correspond to non oscillatory modes. Negative real

eigenvalues represent decaying modes.

• Complex eigenvalues occur in conjugate pairs. Each pair correspond to an

oscillatory mode.

0])[][det( =− AIs

Fundamentals of Power System Stability 52

Small signal stability analysis

• An oscillatory system mode is given by a pair of eigenvalues

• The real component σ gives the damping. A negative real part represents a

damped (decreasing) oscillation.

• The imaginary component ω gives the frequency of the oscillation in rad/s.

• The damping ratio ζ determine the rate of decay of the amplitude of the

oscillation and is given by:

ωσλ j±=

22 ωσ

σζ

+

−=

Page 27: 01_-_Stability_Fundamental-libre (1).pdf

27

Fundamentals of Power System Stability 53

-0.8000-1.6000-2.4000-3.2000-4.0000 Neg. Damping [1/s]

3.5000

2.9000

2.3000

1.7000

1.1000

0.5000

Damped Frequen

Stable EigenvaluesUnstable Eigenvalues

Y = 1.500 Hz

Y = 2.000 Hz

Y = 3.000 Hz

-0.8000-1.6000-2.4000-3.2000-4.0000 Neg. Damping [1/s]

3.5000

2.9000

2.3000

1.7000

1.1000

0.5000

Damped Frequen

Stable EigenvaluesUnstable Eigenvalues

Y = 0.800 Hz

DIg

SIL

EN

T

Eigenvalue Analysis without and with PSS

Without PSS

With PSS

Fundamentals of Power System Stability 54

Voltage Stability

Fundamental Concepts

Page 28: 01_-_Stability_Fundamental-libre (1).pdf

28

Fundamentals of Power System Stability 55

0E

eQX

'

GE

( )

( )( )GGG

e

GG

e

EEX

EQ

X

EEP

ϕ

ϕ

cos

sin

0

''

'

0

−=

=

Voltage Stability

Fundamentals of Power System Stability 56

Voltage stability: basic concepts

( ) ( )2 2

s

LN LD LN LD

EI

Z cos Z cos Z sin Z sinθ φ θ φ=

+ + +

1 s

LN

EI

ZF= ( )

2

1 2LD LD

LN LN

Z ZF cos

Z Zθ φ

= + + ⋅ ⋅ −

2

R LD

sLDR R

LN

V Z I

EZP V I cos cos

F Zφ φ

= ⋅

= =

con

Page 29: 01_-_Stability_Fundamental-libre (1).pdf

29

Fundamentals of Power System Stability 57

Voltage stability: basic concepts

Voltage collapse depends on the load characteristics

Fundamentals of Power System Stability 58

Study case: Tap changer

Page 30: 01_-_Stability_Fundamental-libre (1).pdf

30

Fundamentals of Power System Stability 59

1762.641462.641162.64862.64562.64262.64

1.40

1.20

1.00

0.80

0.60

0.40

x-Achse: SC: Blindleistung in Mvar

SC: Voltage in p.u., P=1400MW

SC: Voltage in p.u., P=1600MW

SC: Voltage in p.u., P=1800MW

SC: Voltage in p.u., P=2000MW

P=2000MW

P=1800MW

P=1600MW

P=1400MW

DIg

SIL

EN

T

const. P, variable Q

Voltage Stability – Q-V-Curves

Fundamentals of Power System Stability 60

1350.001100.00850.00600.00350.00100.00

1.00

0.90

0.80

0.70

0.60

0.50

x-Achse: U_P-Curve: Total Load of selected loads in MW

Klemmleiste(1): Voltage in p.u., pf=1

Klemmleiste(1): Voltage in p.u., pf=0.95

Klemmleiste(1): Voltage in p.u., pf=0.9

pf=1

pf=0.95

pf=0.9

DIg

SIL

EN

T

const. Power factor, variable P

Voltage Stability – P-V-Curves

Page 31: 01_-_Stability_Fundamental-libre (1).pdf

31

Fundam

enta

ls of P

ow

er S

yste

m S

tability

61

Ro

tor A

ng

le S

tab

ility

Fundam

enta

ls of P

ow

er S

yste

m S

tability

62

On

e M

ach

ine S

yste

m

DIg

SIL

EN

T

Pow

erF

acto

ry 12

.1.1

78

Exa

mp

le

Pow

er S

yste

m S

tab

ility an

d C

on

trol

On

e M

ach

ine P

rob

lem

Pro

ject: T

rain

ing

Gra

ph

ic: G

rid

Date

: 4/1

9/2

00

2

An

nex: 1

G~

G1Gen 2220MVA/24kV(1)

1998.000 MW967.920 Mvar

53.408 kA1.163 p.u.-0.000 p.u.

Trf

50

0kV

/24

kV

/22

20

MV

A

-1998.00 MW-634.89 Mvar

2.56 kA

1998.00 MW967.92 Mvar

53.41 kA

CC

T 2

Type

CC

T1

86

.00

km

-698.60 MW30.44 Mvar

0.90 kA

698.60 MW221.99 Mvar

0.90 kA

CC

T1

Type

CC

T1

00

.00

km

-1299.40 MW56.62 Mvar

1.67 kA

1299.40 MW412.90 Mvar

1.67 kA

V~

Infinite Source

-1998.00 MW87.07 Mvar

2.56 kA

Infinite Bus500.00 kV 450.41 kV

0.90 p.u.0.00 deg

HT500.00 kV 472.15 kV

0.94 p.u.20.12 deg

LT24.00 kV 24.00 kV

1.00 p.u.28.34 deg

DIgSILENT

Page 32: 01_-_Stability_Fundamental-libre (1).pdf

32

Fundamentals of Power System Stability 63

One Machine System

0E

ePX

'

GE

Equivalent circuit, transferred power:

Fundamentals of Power System Stability 64

One Machine System

• Power transmission over reactance:

• Mechanical Equations:

0

0

ωωϕ

ωωω

−=

−≈

−=

G

emem PPPPJ

( )

( )( )GG

Ge

GG

e

EEX

EQ

X

EEP

ϕ

ϕ

cos

sin

0

''

'

0

−=

=

Page 33: 01_-_Stability_Fundamental-libre (1).pdf

33

Fundamentals of Power System Stability 65

One Machine System

• Differential Equation of a one-machine infinite bus bar system:

• Eigenvalues (Characteristic Frequency):

• Stable Equilibrium points (SEP) exist for:

GGG

m

G

m

G

PPPPPJ ϕϕ

ωϕ

ωωϕ

ωωϕ ∆

−−≈−=

0

0

max

0

0

max

00

max

0

cossinsin��

0

0

max2/1 cos G

J

ωλ −±=

0cos 0 >Gϕ

Fundamentals of Power System Stability 66

One-machine System

180.0144.0108.072.0036.00 0.00

4000.

3000.

2000.

1000.

0.00

-1000...

x-Axis: Plot Power Curve: Generator Angle in deg

Plot Power Curve: Power 1 in MW

Plot Power Curve: Power 2 in MW

Pini y=1998.000 MW

DIgSILENT Single Machine Problem P-phi

Date: 4/19/2002

Annex: 1 /4

DIg

SIL

EN

T

SEP UEP

stable unstable

Page 34: 01_-_Stability_Fundamental-libre (1).pdf

34

Fundamentals of Power System Stability 67

Large disturbances (Transient Stability)

• Energy Function:

• At Maximum Angle:

( ) 0)(

2

1

0

2=+=

−+ ∫ potkin

emG EEd

PPJ

G

ϕω

ϕϕ

ϕ

0max

=G

ϕ�

0)(max

0

=−

= ∫ ϕω

ϕ

ϕ

dPP

EG

em

pot

( )0=kin

E

Fundamentals of Power System Stability 68

Large disturbances : Equal Area Criterion

180.0144.0108.072.0036.000.00

4000.

3000.

2000.

1000.

0.00

-1000...

x-Axis: Plot Power Curve: Generator Angle in deg

Plot Power Curve: Power 1 in MW

Plot Power Curve: Power 2 in MW

DIgSILENT Single Machine Problem P-phi Date: 4/19/2002

Annex: 1 /4

DIg

SIL

EN

T

E1

E2

0ϕ cϕ

maxϕ

SEP UEP

critϕ

Pm

Page 35: 01_-_Stability_Fundamental-libre (1).pdf

35

Fundamentals of Power System Stability 69

Large disturbances: Equal Area Criterion

21 EE −=

∫=c

dPE m

ϕ

ϕ

ϕω

0

11

( )∫ −=max

)sin(1

max2

ϕ

ϕ

ϕϕω

c

dPPE m

Stable operation if:

Fundamentals of Power System Stability 70

Large disturbances: Equal Area Criterion

)(1

01 ϕϕω

−= cmPE

)cos(cos)( maxmax

max2 ccm PP

E ϕϕω

ϕϕω

−+−=

000 cossin)2(cos ϕϕϕπϕ −−=c

Setting and equating E1 and -E2:0ϕπϕ −=crit

Page 36: 01_-_Stability_Fundamental-libre (1).pdf

36

Fundamentals of Power System Stability 71

Large-disturbances: Critical Fault Clearing Time

• During Short Circuit:

• Differential Equation:

• Critical Fault Clearing Time:

0

2

02ϕ

ωϕ += c

mc t

J

P

0=eP

0ωϕ m

G

PJ =��

Fundamentals of Power System Stability 72

Small disturbances (Oscillatory Stability)

G~

Ge

ne

rato

r X

V ~

Infin

ite

bu

s

Assumptions:

1. Constant excitation

2. Constant damping from synchronous machine, Ke

3. Simplified generator model, Pe = Te (in per unit)

4. Constant mechanical torque

'

gE oE

Page 37: 01_-_Stability_Fundamental-libre (1).pdf

37

Fundamentals of Power System Stability 73

Small disturbances

( )

( ) δδδδ

δ

∆⋅=∆∂

∂=∆

==

o

o

ee

g

ee

PT

T

X

EETP

cos

sin

max

'

0Equation of electrical circuit…

Equation of motion…

0)(2

)(2

)(2

)(

2

2

2

=∆+∆++∆

∆++∆=∆−∆

++=−

++=−

eem

emem

emem

emem

TKKsHs

KKsHsTT

KKsHsTT

KKJTT

δδ

δδ

δδ

δδ ���

Combined… 0cos22

max2 =+

++ o

em

H

P

H

KKss δ

H

P on

2

cosmax δω =

Fundamentals of Power System Stability 74

Small disturbances:Structure of linearised generator model

δ∆*K0

eT∆

ω∆*K

• Damping torque: a torque in phase with

• Synchronising torque: a torque in phase with

ω∆

δ∆

Exciter Generator Shafts

1

mT∆

−∆ eT ω∆ δ∆

tu∆

0=∆refu Exciter Generator Shaft

s

1

mT∆

ω∆ δ∆

tu∆

0=∆refu

Page 38: 01_-_Stability_Fundamental-libre (1).pdf

38

Fundamentals of Power System Stability 75

Linear model of generator + AVR + PSS

PSSu∆

Exciter Generator Shafts

1

ω∆

δ∆

tu∆

PSSu∆

Exciter Generator Shafts

1

0=∆ mT

−∆ eT

ω∆

δ∆

tu∆

PSS

oPSSeTangleWant 0

)(=

ω

Phase lag

Phase lead compensation